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Abstract

We take into account the Coulomb (N + 1)-body problem with N = 12, 24, 60. One of
the particles has positive charge Q > 0, and the remaining N have all the same negative
charge q < 0. These particles move under the Coulomb force, and the positive charge is
assumed to be at rest at the center of mass. Imposing a symmetry constraint, given by the
symmetry group of the Platonic polyhedra, we were able to compute periodic orbits, using
a shooting method and continuation with respect to the value Q of the positive charge.

In the setting of the classical N -body problem, the existence of such orbits is proved with
Calculus of Variation techniques, by minimizing the action functional. Here this approach
does not seem to work, and numerical computations show that the orbits we compute are
not minimizers of the action.
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1 Introduction

The classical Newtonian N -body problem, for its history and its challenges, is a fundamental
problem in mathematical physics. During the centuries, a lot of mathematicians faced the prob-
lem, starting with Newton, which solved the problem of two bodies, passing from Lagrange, who
was the first to discover the triangular solutions of the three-body problem, through Poincaré
which discovered the chaotic nature of the three body problem. In more recent years, the
discovery of the Figure Eight solution of the three body problem [20] started a research on
particular periodic orbits of the N -body problem, that now are known with the name of chore-
ographies. Numerical evidence of the existence of such orbits are given in [25–27], and also
rigorous computer assisted methods to study their existence and their dynamical properties have
been used [11, 15–17]. The first rigorous proof of the existence of the Figure Eight orbit was
given in [5], and it uses the method of minimization of the action over a particular set of periodic
loops. Since then, this technique was used to prove the existence of other several periodic mo-
tions, see [2–6, 11–13, 19, 28, 29] and references therein. The idea of minimizing the action goes
back to Poincaré [22].

Connection between the macroscopic scale, i.e. celestial mechanics, and the microscopic scale,
i.e. the atomic mechanics, is given by the Coulomb force, which governs the interaction between
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charged particles. The Coulomb potential depends on 1/r, as the Newtonian potential, with
the difference that it depends on the charges and not on the masses. However, charges can be
also negative, making this force both attractive and repulsive. The most famous connection is
given by the Rutherford model of the atom [23], which represents the atom as a miniature solar
system. Since the introduction of quantum mechanics, this model was deprecated. However,
despite quantum mechanics provides a more accurate description of nature, classical methods
are still useful in studying atomic dynamics [30]. In more recent years, the Coulomb N -body
problem, i.e. the problem of N charged particles which interact through the Coulomb force,
was taken into account, and periodic orbits in the Coulomb three-body problem were found, see
for example [14, 21, 24], trying to reproduce some features of the known orbits in the classical
Newtonian three-body problem. On the other hand, some special symmetric solutions were
found numerically in [7], for small values of N . The use of the Coulomb force as the only
interacting force is motivated by the fact that the gravitational interaction is negligible when the
electrostatic force is introduced in the system. Moreover, the Coulomb force by itself amounts to
a non relativistic approximation, which is reliable only when the velocities are small compared
to the speed of light [18].

In this paper we consider the Coulomb (N+1)-body problem, composed by a positive charged
particle and other N negative equally charged particles. We search for periodic motions sharing
the symmetry of Platonic polyhedra, that is Tetrahedron, Cube, Octahedron, Dodecahedron and
Icosahedron, hence N can be either 12, 24 or 60. For the Newtonian N -body problem, a list of
orbits with this symmetry was found in [11]. Here we have been able to compute a similar set
of periodic orbits, see the webpage http://adams.dm.unipi.it/˜fenucci/research/coulomb.html
for animations of these solutions. Our numerical computations also show that these orbits are
unstable. Moreover, since the approach used in [11, 13] for the proof of the existence was the
minimization of the action, here we investigated also if this method could still work for the
Coulomb (N + 1)-body problem. However, we show numerically that the orbits we compute are
not minimizers of the action, not even locally.

The paper is organized as follows. Section 2 introduces the model used. In Section 3 we
describe the numerical methods used for the computation and in Section 4 we present the results
obtained.

2 The Coulomb (N + 1)-body problem

We take into account a system composed by N + 1 charged particles, one of which has positive
charge and the rest have equal negative charges. Despite the Rutherford model [23] turned out
to be not valid to represent the physical nature of the atom, for the sake of simplicity we will
use terms as electrons and nucleus in the following.

We denote with q < 0,m > 0 the charge and the mass of the electron respectively, with Q > 0
the charge of the nucleus, with ui ∈ R3, i = 1, . . . , N the position of the i-th particle and with
u0 ∈ R3 the position of the nucleus. The mass of the nucleus is very high compared with the
mass of the electrons, so we assume that the nucleus stays fixed at u0 ∈ R3. The particles move
under the Coulomb force, and the system of equations that determine the motion is given by

müi = κq

[ N∑
j=1
j 6=i

q
ui − uj
|ui − uj |3

+ Q
ui − u0

|ui − u0|3

]
, i = 1, . . . , N, (1)

where κ > 0 is the Coulomb constant.
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We choose a reference frame centered at the center of mass, hence from now on we assume
that u0 ≡ 0. The system (1) is Lagrangian, and the Lagrangian L is given by

L = K + U,

where

K =
1

2

N∑
i=1

m|u̇i|2, (2)

is the kinetic energy and

U = −κ
∑

1≤i<j≤N

q2

|ui − uj |
− κ

N∑
i=1

qQ

|ui|
, (3)

is the Coulomb potential. To simplify the computations, we can choose the units of charge, mass
and distance so that

- the charge of the electron is unitary, hence q = −1,

- the mass of the electron is unitary, hence m = 1,

- the Coulomb constant is unitary, hence κ = 1.

Solutions to the equations (1) can be found also as stationary points of the Lagrangian action
functional, defined as

A(u) =

∫ b

a

L(u, u̇) dt. (4)

The functional (4) is defined over a set of curves K ⊆ H1([a, b],R3N ), which has to be specified,
depending on the problem that one wants to study.

2.1 Symmetry of the Platonic polyhedra and topological constraints

We want to compute periodic orbits of the system (1), imposing both symmetrical and topological
constraints. As done in [11, 13], we take into account a Platonic polyhedra (i.e. Tetrahedron,
Cube, Octahedron, Dodecahedron and Icosahedron) and we denote with R its rotation group.
We consider a system composed by N = |R| electrons (hence N can be either 12, 24 or 60) and,
identifying {1, · · · , N} with the elements of R, we label the positions of the particles with the
rotations of the group. We search for periodic orbits of period T > 0 such that

(a) the motion uR, R ∈ R \ {I} is recovered by

uR(t) = RuI(t), t ∈ R;

(b) the trajectory of uI , that we call generating particle, belongs to a given non-trivial free-
homotopy class of R3 \ Γ, where

Γ =
⋃

R∈R\{I}

r(R),

and r(R) is the axis of the rotation R. Note that, by condition (a), Γ \ {0} corresponds to
the set of the partial collisions between the electrons;
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(c) there exist R ∈ R and M > 0 such that

uI(t+ T/M) = RuI(t), t ∈ R.

In [11,13] periodic orbits of the N -body problem with equal masses, respecting these symmetries
and topological constraints, were found as minimizers of the Lagrangian action functional, using
Calculus of Variations techniques in order to prove their existence.

In our case, taking into account the symmetry (a), the action functional writes as

A(u) = N

∫ T

0

(
1

2
|u̇I |2 −

1

2

∑
R∈R\{I}

1

|(R− I)uI |
+

Q

|uI |

)
dt, (5)

and it is defined on the set

K = {u ∈ H1
T (R,R3N ) : (a), (b) and (c) hold}, (6)

where H1
T (R,R3N ) is the space of T -periodic loops of H1(R,R3N ). Since a term with a negative

sign appears in the Lagrangian, it is not clear whether this functional is coercive or not, and the
search for periodic orbits using the usual minimization of the action technique does not apply
so easily. For this reason we investigate the existence of these periodic orbits with a preliminary
numerical study.

Note that (5) depends only on the path of the generating particle uI . This means that we can
reduce the searching for periodic orbits of the full system of charges to the searching of periodic
orbits of the generating particle uI , whose dynamics is defined by the Lagrangian

L =
1

2
|u̇I |2 −

1

2

∑
R∈R\{I}

1

|(R− I)uI |
+

Q

|uI |
. (7)

The Euler-Lagrange equations of (7), written as first order system, are
u̇I = vI ,

v̇I =
∑
R∈R

(R− I)uI
|(R− I)uI |3

− QuI
|uI |3

.
(8)

This system has the advantage that the dimension is much smaller than the dimension of the
system of equations (1), 6 compared to 6N . Moreover, if the periodic orbit of the generating
particle uI is unstable in the system (8), then the complete orbit with N electrons is unstable in
the system (1). On the other hand, the stability in the reduced system leads only to the stability
with respect to symmetric perturbations of the complete orbit. To study entirely the stability, we
need to solve equations (1), together with its variational equation, in order to compute the full
6N × 6N monodromy matrix. Since we do not expect to find many stable orbits for the reduced
system, the study of the stability is divided in two steps: at the first step we check whether the
generating particle is stable in the reduced system or not and, if it is stable, we proceed in the
computation of the full monodromy matrix and get an estimation the Floquet multipliers.

3 Numerical methods

In this section we describe the methods used to compute periodic orbits of (1) with the constraints
described in Section 2. The main method is a variant of the well-known shooting method, but
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here problems arise when we search for a good starting guess. In [11] the starting guess was
computed using a gradient descent method, applied to the discretized version of the action
functional of the N -body problem. In our case we can not use the same method, because the
lack of coercivity of the action (5) leads to a failure of the gradient method, that we experienced
in our numerical experiments. A good starting guess is found applying a continuation method
to a modification of the initial problem.

3.1 Shooting method

In order to compute the orbits, we use a shooting method in the phase space of the generating
particle. The goal is to solve the boundary value problem{

ẋ = f(x),

x(T/M) = Sx(0),
(9)

where f is the vector field in (8), x ∈ R6, S is the matrix

S =

(
R 0
0 R

)
,

with R ∈ R, M > 0 are given by condition (c) in Section 2.1. Fixed n values 0 = τ0 < τ1 <
· · · < τn = T/M , we define the function G : R6n → R6n as{

Gi = φτi−τi−1(xi−1)− xi, i = 1, . . . , n− 1

Gn = φτn−τn−1(xn−1)− Sx0.
(10)

If we have a T -periodic solution x(t) satisfying (9), the function G evaluated at

X = (x(τ0), . . . , x(τn−1))

vanishes. Zeros of the function (10) are thus computed with a Newton method. The Jacobian
matrix of G is

∂G

∂X
=


M1 − Id

M2
. . .

. . . − Id
−S Mn

 , (11)

where

Mi =
∂

∂x
φτi−τi−1(xi).

If X ′ denotes the new value of X at some iteration of the Newton method and ∆X = X ′ −X,
at each step we solve the linear system

∂G

∂X
(X)∆X = −G(X). (12)

However, the Jacobian matrix is singular at zeros of G, since we are free to choose the initial point
along the periodic orbit. This degeneracy can be avoided as in [1], by adding a transversality
condition on the first shooting point

f(x0) ·∆x0 = 0, (13)
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to the system (12), where x0,∆x0 are the first components of X,∆X. The system of equa-
tions (12), (13) has 6n + 1 equations and 6n unknowns, and we can solve it through the SVD
decomposition, thus obtaining the value of ∆X.

Moreover, in order to make the method more stable, we choose to use a damped Newton
method, i.e. the new value X ′ at the generic iteration is obtained as

X ′ = X + γ∆X. (14)

The damping parameter γ is adaptive, since it is computed as

γ =
γmin

max
(
γmin, |∆X|∞

) ,
where |∆X|∞ = maxi |∆Xi|. In our software we set γmin = 1

10 .

3.2 Continuation method

Suppose now that the vector field in (9) also depends on a real parameter, say λ, and hence
f = f(x, λ). In this manner, the function G in (10) also depends on λ, hence G = G(X,λ).
As we will use the continuation method for different purposes, we explain it using a generic
continuation parameter λ ∈ R. Given a couple (Xi, λi)

T such that G(Xi, λi) = 0, we want to
continue this solution with respect to the varying parameter λ, in order to find and entire curve
of solutions, parametrized with λ. To do this, we add to the system (10) an additional equation
to choose the next point of the continuation curve that we want to compute,

G(X,λ) = 0,∣∣∣∣
(
Xi

λi

)
−

(
X

λ

)∣∣∣∣2 − δ2 = 0,
(15)

where, as usual, |·| denotes the Euclidean norm and δ > 0 is a positive parameter determining the
displacement along the curve of solutions. The solution (Xi+1, λi+1)T of system (15) is computed
using again a Newton method, solving at each step a linear system given by the matrix ∂G

∂X

∂G

∂λ

2(X −Xi) 2(λ− λi)

 . (16)

The initial guess can be constructed starting from the known solution (Xi, λi)
T , and taking

a tangent displacement along the curve of solutions. However, we have simply constructed
the initial guess by approximating this tangent line using two previous different solutions, say
(Xi, λi)

T and (Xi−1, λi−1)T , as(
X̂

λ̂

)
=

(
Xi

λi

)
+ γ

(
Xi −Xi−1

λi − λi−1

)
, γ =

δ

|(Xi, λi)T − (Xi−1, λi−1)T |
.

As we are searching for periodic solutions, for the reasons explained above, we have added the
transversality condition (13). The final system we have to solve at each step is non-squared, and
we use again the SVD decomposition to solve it.

Note also that, since G is defined through the flow of an ordinary differential equation and
we need to compute the derivatives of G with respect to the parameter λ, we have to compute
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the derivatives of the flow with respect to λ. To do this, the system of equations that we have
to solve numerically is 

ẋ = f(x, λ),

Ȧ =
∂f(x, λ)

∂x
A,

ẇ =
∂f(x, λ)

∂x
w +

∂f(x, λ)

∂λ
,

(17)

where x,w ∈ R6, A ∈ R6×6 and λ ∈ R. In fact, the second equation gives the derivatives of the
flow φt with respect to the initial condition x, while the third equation gives the derivatives of
the flow φt with respect to the parameter λ.

3.3 Computing periodic orbits

As it has been mentioned before, one of the difficulties to carry out these computations is to find
a good initial guess for the Newton method to converge. To deal with this, we have used two
different continuation schemes.

From the physical intuition, if the central charge is zero, the electrons only repel each other,
and we do not expect to find any periodic solutions. For continuity reasons, if the central charge
is too small compared to the number of electrons, a periodic orbit could still not exist. On the
contrary, if the positive charge is large enough, the contribution of the electrons in the vector
field (1) is small, compared to the term given by the positive charge. In fact, rescaling the loops
as ui(t) = Q1/3vi(t), i = 1, . . . , N in (1), we obtain a differential equation for vi, which writes as

v̈i = µ

N∑
j=1
j 6=i

vi − vj
|vi − vj |3

− vi
|vi|3

, i = 1, · · · , N,

where µ = Q−1/3. Note that, when the positive charge is ideally “infinite”, the interactions be-
tween the different electrons disappear, and the differential equation that determines the motion
of vi is the equation of a Kepler problem. Intuitively, when the central charge is finite but very
large, the solution is close to a circular piecewise loop, composed by Keplerian arcs, joined at
points on the collision lines. For this reason, periodic solutions seem more likely to exist when
the central charge is high enough. For all these reasons it is easier to find periodic orbits for high
values of the central charge and to continue them to lower values of Q.

To find periodic orbits for large values of Q we use the following strategy. First we choose a
closed curve

ϕ : [0, T ]→ R6, ϕ(t) =
(
u(t), u̇(t)

)T
,

such that the image of the spatial component u([0, T ]) belongs to the chosen free-homotopy class
of R3 \ Γ. Moreover, we can take this spatial component to be on a sphere, since we expect the
final orbit to be almost spherical. Of course this curve will not solve equation (9), but we can
perturb the system and define a new differential equation for which ϕ is a solution. In fact, if
we define

ẋ = f(x)− εψ(t), (18)

where
ψ(t) = ϕ̇(t)− f(ϕ(t)),
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then ϕ(t) is a solution of (18) for ε = 1. To find the periodic orbit for ε = 0, we consider ε as
a parameter and we use the continuation method. In our computations, we decided to stop the
continuation when we reach a value of ε < 10−2: this was usually enough to have an initial guess
for the shooting method to converge for ε = 0 and compute the periodic orbits.

Summarizing, the approach used to compute the orbits is the divided in three steps.

Step 1: We generate a starting guess for a high value of the central charge Q, with the method
described above. In our computations, we decided to choose a value near 2N , i.e. two
times the number of electrons.

Step 2: We compute the solution using the shooting method described in Section 3.1, with the same
value of Q used to produce the initial guess, and using continuation w.r.t. ε as explained
above, until we reach ε = 0. Using this last solution as starting guess, we compute a
second solution for the value of the central charge equal to Q − 1: this is needed to start
the continuation method.

Step 3: Using the two solutions computed at the Step 2, we start the continuation method described
in Section 3.2, in order to find solutions for smaller values of Q.

4 Results of the computations

In [11], for each Platonic polyhedra, a list of free-homotopy classes of R3\Γ, each one containing a
collision-free minimizer of the N -body problem with equal masses, were provided: these lists are
available at [10]. Here we search for symmetric periodic solutions of the system (1), in the same
free homotopy classes listed at [10]. In [11], 9 and 57 homotopically different periodic orbits with
the symmetry of the Tetrahedron and the Cube, respectively, were found for the N -body problem
with equal masses. The total number of orbits with the symmetry of the Dodecahedron was 1442,
but the entire computation of all of them was not done. Here we were able to compute all these
orbits also in Coulomb (N + 1)-body problem introduced in Section 2, with the symmetry of the
Tetrahedron and the Cube, reproducing the list in [10]. For the symmetry of the Dodecahedron
only a few number of orbits were computed (a large number of them is expected). Examples of
orbits with 24 electrons are displayed in Figure 1. More images and videos are available in the
webpage [9].

4.1 Continuation

In our computations we set the period to be T = 1: this is not restricting, since an orbit with
an arbitrary period can be found simply by rescaling size and time. During the continuation
process we always reached a turning point in Q. This means that, when we were able to reach
the physical situation of negative charged ions (i.e. when Q < N), we can continue the solutions
following the turning point, and find a second orbit in which the system is neutral (i.e. when
Q = N). This does not happen in all the cases we tried, and it is not clear if there is an additional
topological condition to be satisfied in order to have the turning point below Q = N .

4.2 Stability

As said before, the study of the stability is divided in two steps: first we study the stability of the
orbit of the generating particle in the reduced system (7), computing a 6× 6 monodromy matrix
M6. If the generating particle in unstable, then also the complete orbit in the system (1) is
unstable, otherwise we proceed in the computation of the complete 6N ×6N monodromy matrix
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Figure 1: Solutions with 24 electrons and the symmetry of the Cube. The value of the central charge is 24 for all the four
examples. The homotopy class for the orbits on top is ν2 and ν43 for the orbits on bottom. The enumeration is referred
to the website [9]. The red electrons represent the generating particles, and the red curve are their trajectories. The
black particle in the middle is the nucleus. The orbits on the right are obtained by the continuation method, starting
from the orbits on the left. We reached them after following a turning point on the curve of solutions.

M6N . During the continuation, the six eigenvalues of M6 move in the complex plane. For the
most of the orbits, looking at the eigenvalues of M6 was enough to conclude the instability, since
during the continuation a very large Floquet multiplier (of the order that ranges from 106 to 1020,
depending on the orbit) appears. However, it can happen that for certain values of the central
charge, the eigenvalues of M6 are all on the unit circle, meaning that the generating particle is
stable in the reduced system. In these few cases we computed the matrix M6N , verifying that
the complete orbit is indeed unstable, since a large Floquet multiplier arises. An example of
this situation is reported in Figure 2. More figures of this kind can be found at [9]. From the
computations, it results that all the orbits are unstable. Results for the orbits with the symmetry
of the Tetrahedron are summarised in Table 1.
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Figure 2: The spectral radius of the monodromy matrix. On the x axis is reported the value of the central charge and
on the y axis is reported the value of the spectral radius, in logarithmic scale. The blue curve represent the evolution
of the spectral radius of the monodromy matrix in the reduced system, while the red curve represent the evolution of
the spectral radius in the complete system. During the continuation, the generating particle becomes stable for certain
values of Q (near Q = 20, blue curve), but in fact the resulting complete orbit is unstable (red curve). This plot is
referred to the orbits in Figure 1, bottom.

4.3 Are these orbits minimizers?

To understand better the variational nature of the orbits computed, we wonder whether they
are minimizers of the action (5) or not. Verify that the orbits are global minimizers is hard to
do with only numerical methods, since all the loops have to be taken into account. However, we
can verify if they are at least directional local minimizers, weak local minimizers or strong local
minimizers. To this end, we recall here briefly the definitions and the results that we need.

Formulation of the problem Fixed T > 0, let us consider a functional

A(u) =

∫ T

0

L(t, u, u̇)dt, (19)

where L : [0, T ]× Ω → R is a C2 function, T -periodic in the variable t, and Ω ⊆ Rn × Rn is an
open set. We define the space of the T -periodic functions

V = {u ∈ C1([0, T ],Rn) : u(0) = u(T )}.

and we consider A defined on a subset X ⊆ V .

Definition 1. We say that u0 ∈ X is a

(GM) global minimum point if A(u) ≥ A(u0) for all u ∈ X;

(SLM) strong local minimum point if there exists ε > 0 such that for all u ∈ X satisfying

‖u− u0‖∞ < ε;

we have that A(u) ≥ A(u0);
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label minQ |λ| (Q = minQ) |λ6N | (Q = minQ) |λ| (Q = 12)
ν1 10.346970805 7.3761606 / 0.18050567 · 104

ν2 8.2812509283 2.5911113 / 0.26940597 · 104

ν3 9.9652582174 3.7293607 / 0.49658024 · 102

ν4 12.905694682 1.0 0.4930569 · 105 /
ν5 8.7205631222 0.28289539 · 103 / 0.33578812 · 109

ν6 9.5460053624 0.49445974 · 102 / 0.27073516 · 105

ν7 8.0760877496 0.18090607 · 105 / 0.33898930 · 1013

ν8 12.905977225 2.8508903 / /
ν9 12.905656346 1.0 0.2461446 · 1010 /

Table 1: Some numerical values obtained for the orbits with the symmetry of the Tetrahedron. Second column contains
an approximation of the minimal value of the central charge Q obtained during the continuation. Third column contains
the spectral radius of the monodromy matrix M6 for Q = minQ. When this value is equal to 1, we report the spectral
radius of the complete monodromy matrix M6N in column four. Last column contains the value of the spectral radius
of M6 for Q = 12, for which the system is neutral. The labels correspond to the enumeration used in the website [9].

(WLM) weak local minimum point if there exists ε > 0 such that for all u ∈ X satisfying

‖u− u0‖∞ + ‖u̇− u̇0‖∞ < ε;

we have that A(u) ≥ A(u0);

(DLM) directional local minimum point (DLM) if the function

ϕ(s) := A(u0 + sv),

has a local minimum point at s = 0 for all v ∈ V . Note that, fixed v ∈ V , ϕ : (−δ, δ)→ R
is a function of the real variable s.

It is clear that (GM) implies (SLM), which implies (WLM), which implies (DLM). Moreover,
it is known that a necessary condition for a regular function u0 to be a (DLM) is that it solves
the Euler-Lagrange equation associated to (19), i.e.

d

dt
Lu̇(t, u0(t), u̇0(t)) = Lu(t, u0(t), u̇0(t)) (20)

Note also that a solution u0 of (20) is a (DLM) if and only if the second variation

δ2A(v) =

∫ T

0

(
v(t) · L̂uu(t)v(t) + 2v̇(t) · L̂uu̇(t)v(t) + v̇(t) · L̂u̇u̇(t)v̇(t)

)
dt,

is non-negative for all v ∈ V , where

L̂uu(t) = Luu(t, u0(t), u̇0(t)),

L̂uu̇(t) = Luu̇(t, u0(t), u̇0(t)),

L̂u̇u̇(t) = Lu̇u̇(t, u0(t), u̇0(t)).

The second variation is a quadratic functional. Necessary and sufficient conditions for a quadratic
functional to be positive definite are given in [8], for general boundary conditions. We recall
briefly here the main theorem and the definitions needed to state it.
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Quadratic functionals Let [a, b] ⊆ R be a closed interval, we consider a general quadratic
functional

Q(v) =

∫ b

a

(
v · P (t)v + 2v̇ ·Q(t)v + v̇ ·R(t)v̇

)
dt, (21)

where P,Q,R : [0, T ] → Rn×n are C1 matrix functions such that P (t) = PT (t), R(t) = RT (t)
for all t ∈ [0, T ]. Given a matrix D ∈ R2n×2n, we consider Q defined on functions v : [a, b]→ Rn
such that

D

(
v(a)
v(b)

)
= 0. (22)

The Euler-Lagrange equation associated to (21) is

d

dt
[Rẏ +Qy] = QT ẏ + Py,

and it is usually called Jacobi differential equation. If detR(t) 6= 0 for all t ∈ [0, T ], we can write
the system as {

ẏ = Ay +Bz,

ż = Cy −AT z,
(23)

where
A = −R−1Q, B = R−1, C = P −QTR−1Q.

Note that B,C are symmetric matrices. It is useful to define also the matrix version of the
equation, i.e. {

Ẏ = AY +BZ,

Ż = CY −ATZ,
(24)

where Y, Z : [0, T ] → Rn×n are matrix functions. We introduce now some conditions and give
some definitions, useful to state the main theorem.

Definition 2. Let (y, z) be a solution of system (23) such that y(a) = 0. A point c ∈ (a, b] is
said to be conjugate with a if

y(c) = 0.

Definition 3. We say that the strengthened Legendre condition (L’) holds if R(t) > 0 1 for all
t ∈ [a, b] for all t ∈ [a, b].

Definition 4. We say that the strengthened Jacobi condition (J’) holds if every solution (y, z)
of (23) with initial condition y(a) = 0 does not have any conjugate point c ∈ (a, b] with a.

Note that condition (J’) is equivalent in saying that the solution (Ya, Za) of (24) with initial
conditions {

Ya(a) = 0,

Za(a) = Id,

is such that detYa(t) 6= 0 for t ∈ (a, b]. The following theorem gives necessary and sufficient
conditions for Q to be positive definite.

1In the following, when we write A > 0 (A ≥ 0), where A ∈ Rn×n is a symmetric matrix, we mean that A is
positive definite (positive semi-definite).
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Theorem 1. Let condition (L’) hold. We have that

Q(v) > 0,

for any nonzero v satisfying (22) if and only if condition (J’) holds and

αT
(
−Wb(a) −Y −1

a (b)
−Y T−1

a (b) Wa(b)

)
α > 0 (25)

for all nonzero α ∈ R2n such that Dα = 0. Here (Ya, Za), (Yb, Zb) are the solutions of (24) given
by the initial conditions

Ya(a) = 0, Za(a) = Id, Yb(b) = 0, Zb(b) = − Id,

and Wa = ZaY
−1
a , Wb = ZbY

−1
b .

The case of symmetric orbits in the Coulomb (N + 1)-body problem

We take into account the symmetry of the space of loops in the theory summarized above
modifying the minimization problem. Let u : [0, T ] → R3N be a loop satisfying condition (a)
and the additional choreography constraint

uI

(
t+

T

M

)
= RuI(t), t ∈ [0, T ],

for a given R ∈ SO(3) and M ∈ N. For the sake of simplicity, we will work with the function uI ,
which represents the motion of a single electron along the periodic orbit. From expression (5),
we have that ∫ T

0

L(uI , u̇I) dt = M

∫ T
M

0

L(uI , u̇I) dt. (26)

We consider the functional

Ā(uI) =

∫ T/M

0

(
1

2
|u̇I |2 −

1

2

∑
R∈R\{I}

1

|(R− I)uI |
+

Q

|uI |

)
dt,

defined on the set of loops

uI :

[
0,

T

M

]
−→ R3,

such that RuI(0) = uI(T/M). Note that, by means of (26), if u∗I : [0, T ]→ R3 is a minimizer of
the functional A, then the restriction

u∗I
∣∣
[0,T/M ]

:

[
0,

T

M

]
−→ R3,

is a minimizer of Ā. Vice versa, if u∗I : [0, T/M ] → R3 is a minimizer of Ā, then we can extend
it to a closed loop u∗I : [0, T ] → R3, simply by using the rotation R, and we obtain a minimizer
for A.

Therefore, for the functional Ā, we have that [a, b] = [0, T/M ]. Moreover, the matrix D
defining the admissible curves for the second variation is

D =

(
R − Id
0 0

)
∈ R6×6.
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Figure 3: The determinant of the matrix Y0(t) in the fundamental interval [0, T/M ] = [0, 1/2], for different values of the
central charge Q. These plots are referred to the periodic orbits in Figure 1, top.
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Figure 4: The determinant of the matrix Y0(t) in the fundamental interval [0, T/M ] = [0, 1/2], for different values of the
central charge Q. These plots are referred to the periodic orbits of Figure 1, bottom.

Therefore, a vector α ∈ R6 satisfying Dα = 0 is of the form

α =

(
β
Rβ

)
,

where β ∈ R3. Inserting this relation in (25), we obtain that the second variation associated to a
solution of Euler-Lagrange equation u0 is positive definite if and only if (J’) holds and the 3× 3
matrix

−WT/M (0)− Y −1
0 (T/M)R−RTY T−1

0 (T/M) +RTW0(T/M)R (27)

is positive definite. Note that condition (L’) is always satisfied, since we have that

∂2L

∂u̇2
I

= Id .

To decide whether a solution that we compute is actually a local minimizer or not, we check
if it is a (DLM) or not. To do so, we search for conjugate points in the fundamental interval
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[0, T/M ], simply by computing the solution of (Y0, Z0) of (24) with initial conditions{
Y0(0) = 0,

Z0(0) = Id,

and then plotting the determinant of Y0(t). Since the computation is quite fast, we can also
see how the determinant evolves with respect to the value of the central charge Q, including its
computation in the continuation process. Most of the orbits computed have a behaviour similar
to the one shown in Figure 3, i.e. they have at least a conjugate point in the fundamental
interval [0, T/M ], indicating that they are not minimizers, not even directional. Moreover, after
the turning point the presence of a conjugate point seems to be more likely, also because we saw
that the value of the action of the periodic orbit generically increase with respect to the previous
orbit with the same value of Q.

However, it can occur that, during the continuation process, the determinant of Y0(t) does
not vanish for certain values of the central charge Q. For example, in Figure 4, we can see that
the determinant is positive for the values Q = 36, 40. Continue increasing the value of the charge
Q, this behaviour still happens, and it seems that the determinant has a limit curve that does
not vanish in in the fundamental interval (0, 1/4]. Hence we have also to compute the matrix in
(27), and verify whether it is positive definite or not. In this case, the eigenvalues of the matrix
in (27), for Q = 40, are computed to be

14.723038, 5.5236623, −307.98056,

hence also this orbit is not a local minimizer, despite the absence of conjugate points. For values
of Q > 40, this property still holds, and the negative eigenvalues seems to converge to a value
close to −60.757245.

Further computations for the remaining orbits show that the two described behaviour are
common to all of them, suggesting that they are not local minimizers, but indeed different kind
of stationary point, such as saddles. For this reason the method of minimization of the action
does not seem to work for the Coulomb (N+1)-body problem to find periodic orbits, and maybe
other variational techniques have to be used to provide a rigorous proof of their existence.
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[8] Z. Došlá and O. Došlý. Quadratic functionals with general boundary conditions. Appl.
Math. Optim., 36(3):243–262, 1997.

[9] M. Fenucci. http://adams.dm.unipi.it/~fenucci/research/coulomb.html.

[10] M. Fenucci. http://adams.dm.unipi.it/~fenucci/research/nbody.html.

[11] M. Fenucci and G. F. Gronchi. On the stability of periodic N-body motions with the
symmetry of platonic polyhedra. Nonlinearity, 31(11):4935, 2018.

[12] D. L. Ferrario and S. Terracini. On the existence of collisionless equivariant minimizers for
the classical n-body problem. Inventiones mathematicae, 155(2):305–362, 2004.

[13] G. Fusco, G. F. Gronchi, and P. Negrini. Platonic polyhedra, topological constraints and pe-
riodic solutions of the classical N-body problem. Inventiones mathematicae, 185(2):283–332,
2011.
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