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Barcelona Graduate School of Mathematics (BGSMath)
Universitat de Barcelona (UB)

Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
E-mails: angel@maia.ub.es, marc@maia.ub.es, rosales@maia.ub.es

April 2nd, 2019

Abstract

The Bicircular model is a periodic time dependent perturbation of the Earth-Moon Re-
stricted Three-Body problem that includes the direct gravitational effect of the Sun on the
infinitesimal particle. In this paper we focus on the dynamics in the neighbourhood of the
L1 point of the Earth-Moon system. By means of a periodic time dependent reduction to the
centre manifold, we show the existence of two families of quasi-periodic Lyapunov orbits, one
planar and one vertical. The planar Lyapunov family undergoes a (quasi-periodic) pitchfork
bifurcation giving rise to two families of quasi-periodic Halo orbits. Between them, there is
a family of Lissajous quasiperiodic orbits, with three basic frequencies.

∗This work has been supported by the grants MTM2015-67724-P and 2017 SGR 1374. The project leading to
this application has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement #734557.
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1 Introduction

The motion of a test particle in the proximity of Earth and Moon is a hot topic in astrodynamics.
The list of potential applications that could benefit from a deeper understanding of the natural
dynamics near Earth and Moon is long and it is increasing day by day. Let us mention, for
instance, the possibility of setting an extraterrestrial hub, the exploration in-situ of natural
resources, deep space exploration by means of telescopes, new solutions for the delicate issue
of space debris, end-of-life strategies adapted to the natural dynamics and, probably the most
recent examples, the study of mini-moons, small objects captured (temporarily) by the Earth.

The simplest model that describes the motion of a small particle in the Earth-Moon system
is the Restricted Three Body Problem (RTBP). The very specific properties of the Earth-Moon
system, such as the large mass ratio between Moon and Earth; the eccentricity of the motion of
the primaries or the uniformly large effect of Sun’s gravity, are certainly not well captured by
the Earth-Moon RTBP. It is natural, therefore, to look for a more sophisticated model. Sun’s
gravitational acceleration upon the test particle is one of the most relevant forces ignored by the
RTBP, at least if a large vicinity of Earth and Moon is considered. This effect is called direct
effect of Sun’s gravity. There is, however, another effect of Sun’s gravity on the particle, the
indirect one: the gravity of Sun changes the motion of Earth and Moon, therefore the motion
of the test particle suffers a small deviation according to the new trajectories of Earth and
Moon. This effect is especially important near Earth and Moon. This work does not consider
the indirect effect.

To write the equations of motion, it is usual to take the same units and reference frame
as in the RTBP: The origin is taken at the centre of mass of Earth and Moon, and the axis
are rotating such that Earth and Moon are sitting on the x axis. Then, Sun is moving around
the origin in a circular way (see Figure 1). Defining the momenta as px = ẋ − y, py = ẏ + x
and pz = ż, the motion of the infinitesimal particle is described by a Hamiltonian system that
depends on time in a periodic way:

HBCP =
1

2

(
p2
x + p2

y + p2
z

)
+ ypx − xpy −

−1− µ
rPE

− µ

rPM
− mS

rPS
− mS

a2
S

(y sin θ − x cos θ) ,

where r2
PE = (x−µ)2 + y2 + z2, r2

PM = (x−µ+ 1)2 + y2 + z2, r2
PS = (x−xS)2 + (y− yS)2 + z2,

xS = aS cos θ, yS = −aS sin θ, and θ = ωSt (see Table 1 for the values of the parameters). The
Bicircular Problem (BCP) is among the simplest models considering the gravitational effects of
Earth, Moon and Sun on a test particle. This model was introduced in [Hua60, CRR64]. In
the BCP Earth and Moon move as in the RTBP, and Earth-Sun barycentre and Sun move in
circular orbits around their centre of mass. Note that this motion does not follow Newton’s laws,
since we are not taking into account the effect of Sun on the motion of Earth and Moon. In
fact, this model can be regarded as the coupling of two RTBP. The BCP is a periodically time

µ = 0.012150581623433623 mS = 328900.54999999906

ωS = 0.925195985518289646 aS = 388.81114302335106

Table 1: Floating point values used for the different constants of the BCP.
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Figure 1: Sketch of the Bicircular problem. The points L1,...,5 are the Lagrangian (equilibrium)
points of the Earth-Moon RTBP. They are not equilibrium points of the BCP due to the effect
of the Sun.

dependent Hamiltonian system, that can be seen as a periodic time dependent perturbation of
the RTBP. For instance, it is well known that, near the triangular points, the phase space is
qualitatively changed by the effect of Sun, see [GJMS91, SGJM95, CJ00, Jor00].

1.1 The L1 point

The objective of this work is to describe the dynamics of the BCP in an extended neighbourhood
of L1. As the BCP is a periodic perturbation of the RTBP, the Lagrangian points of the RTBP
are no longer equilibria, and they are replaced by periodic orbits with the same period as the
perturbation. These periodic orbits are usually called dynamical equivalents of the equilibria.
Henceforth, the goal of this work is to understand the dynamics in a neighbourhood of the
dynamical equivalent of L1.

It is well known that the L1 point of the RTBP is very unstable. This character is inherited
by the BCP, and the monodromy matrix around the periodic orbit that replaces L1 in the BCP
has an hyperbolic eigenvalue close to 4.287 × 108. This makes extremely difficult to study the
existence of periodic and quasi-periodic solutions by means of numerical simulations. Therefore,
we will introduce a sequence of transformations to separate the hyperbolic behaviour from the
non-hyperbolic one. As we will see, this process reduces the Hamiltonian system in one degree
of freedom. This reduced Hamiltonian does not have the hyperbolic behaviour mentioned above
so it can be studied by means of standard numerical methods. The obtained information can
be transported to the initial system by means of a change of variables.

A natural approach for these simplifying transformations is to use some kind of normal form.
The idea is to modify the system by means of changes of variables to make it more simple in
some determined sense. In dynamical systems and, in particular, Hamiltonian dynamics, normal
forms play an important role, indeed, they stood out as a tool to tackle a number of problems,
especially in celestial mechanics, see, for instance [GDF+89, GG78, GG85, JS94, Sim89, Sim98].
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1.2 Normalizing transformations

Let us suppose that we want to describe the motion around some periodic orbit of period T of
a T -periodic time dependent Hamiltonian system. By means of a translation, we can move the
periodic orbit to the origin of coordinates. That is, we perform a (periodic) change of variables
that fixes the trajectory of the periodic orbit at the origin of the new coordinates so that now the
origin is an equilibrium point of a time dependent Hamiltonian system. Therefore, the power
expansion of the Hamiltonian at the origin does not have terms of first order.

The linear normal behaviour around the origin (i.e., the periodic orbit) is determined by the
variational flow. The eigenvalues of the monodromy matrix, that is, the solution of the first
order variational equations evaluated at the time T , define the stability of the origin (i.e. of the
periodic orbit). This linear behaviour is also given by the second order terms of the Hamiltonian
expanded around the orbit. We can use the classical Floquet Theorem to cast the second order of
the Hamiltonian to constant coefficients. Also, we can choose coordinates for which the elliptic
and hyperbolic directions are decoupled. This is known as the Floquet (linear) Normal Form.

The hyperbolic part can be used to understand several phenomena in dynamics (for instance,
connections between a neighbourhood of L1 and other parts of the phase space) but this is not our
goal here. To skip the hyperbolic part, it is useful to do a change of variables to uncouple, up to
a given order, the hyperbolic part and the central part in order to focus on the bounded motion
around the periodic orbit. In the literature, this process is called centre manifold reduction.
Most of the references are concerned with centre manifold reduction around equilibrium points
of autonomous systems, see [Jor99, JM99, Sim96]. There are also some works for periodic time
dependent situations, see [GJMS93, SGJM95, GJ01] for studies on the triangular points based
on normal form computations. The approximation of centre manifolds for the L2 point has been
considered in [And98, AS00, And02]. Let us mention as well a couple of works on normal forms
for quasi-periodic time dependent Hamiltonians, [GJL05, GJ05].

There are two different approaches to deal with centre manifolds. The first, the ones we use
in this work, is to perform a number of canonical changes of variables to uncouple, up to high
order, the hyperbolic part and have a relatively simple way to describe the centre motion by
fixing the hyperbolic coordinates. Sometimes, this is called normal form style. Another strategy
is to compute a parametrization of the manifold. The classical graph transform method [FJ10]
and the more general and powerful parametrization method [BMGLD17] allow to compute
expansions of these parametrization up to high order.

As we have mentioned, the approach here is to use a Hamiltonian normal form, that is,
the changes of variables are not performed on the vectorfield, but on the Hamiltonian function.
This has the advantage of reducing the number of expressions we have to deal with from 2n
differential equations to one Hamilton function. The disadvantage is that all changes of variables
must be canonical. It is not trivial to produce explicit nonlinear canonical changes and, among
the methods to obtain such transformations, we have chosen the Lie series method.

This paper is structured as follows, in Section 2 we review how to adapt the classical Lie
series method to the case of Hamiltonian systems that depend periodically on time. We discuss
how to compute generating functions to fulfil distinct purposes. In particular, we explain how
construct generating functions that, besides removing certain monomials, also removes time
dependence. In Section 3 we study the periodic orbit that replaces L1 in the BCP. We discuss
the linear normal behaviour of the orbit and discuss the computation of the Floquet normal form.
We explain, as well, how to compute the expansion of the Hamiltonian of the BCP around the
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periodic orbit that replaces L1. In Section 4 we analyse the dynamics in the center manifold.
As the time dependence has been removed, we are able to reduce the problem of describing the
dynamics in the centre manifold by fixing an energy level and using suitable Poincaré sections.
This reduces the study to the visualisation of a family of Area Preserving Maps, parameterized
by the energy level. We classify the different orbits on the centre manifold and use the inverse
change to compute quasi-periodic Halo orbits with two frequencies and quasi-periodic Lissajous
orbits with three frequencies. Finally, Section 5 is devoted to conclusions and future work.

2 Normal forms for periodic time dependent Hamiltonians

This section is concerned about the generalisation of some key aspects of autonomous Hamilto-
nian formalism to periodic time dependent Hamiltonians. In this regard, we review the classical
Lie transformation method. The idea is to introduce concepts and results that are used to de-
velop the method. We assume that we have a Hamiltonian system, with n degrees of freedom,
that depends periodically on time with period TH = 2π

ωH
. A standard way of autonomizing the

Hamiltonian is to add an extra degree of freedom: the time is seen as an angle Θ, and a new
action IΘ is added to keep the Hamiltonian form,

H̄ = ωHIΘ +H(Q,P,Θ), (1)

where (Q,P ) belong to R2n. The main idea is to adapt a methodology that works with au-
tonomous Hamiltonians. Although the autonomized system (1) has n + 1 degrees of freedom,
the simplicity of the IΘ-dependence has some consequences that we will exploit.

We assume that Hamiltonian (1) has a periodic orbit of period TH , and that we are interested
in a description of the dynamics in an extended neighbourhood of the orbit. The first step is
to translate the periodic orbit to the origin so that now the origin is an equilibrium point. We
expand the Hamiltonian in power series w.r.t. (Q,P ), with coefficients that depend (periodically)
on Θ. When needed, we will handle these periodic coefficients as Fourier series. As we have
expanded at an equilibrium point, the power expansion of the Hamiltonian starts at degree 2.
In the next section we explain how to arrange the second order terms of the Hamiltonian by
means of the Floquet Theorem.

2.1 The symplectic Floquet Theorem

The second degree terms of the Hamiltonian can be reduced to constant coefficients by means
of the well known Floquet Theorem. The standard formulation of this theorem can be found in
any elementary textbook on Differential Equations, we provide here a Hamiltonian formulation.

Theorem 2.1 (A Symplectic Floquet Theorem). Let us consider a Hamiltonian function

H = ωHIΘ +QTA1(Θ)Q+QTA2(Θ)P + P TA3(Θ)P,

where Aj ∈ C0(T,MnC), and A1(Θ) and A3(Θ) are symmetric matrices for all Θ ∈ T. Then,
there exist a change of variables (Q,P ) → (Q̄, P̄ ) which is canonical, linear in (Q,P ) and
depends periodically on Θ, such that the transformed Hamiltonian takes the form

H̄ = ωHIΘ + Q̄TB1Q̄+ Q̄TB2P̄ + P̄ TB3P̄ ,

where Bj do not depend on Θ and B1, B3 are symmetric matrices. We will refer to this trans-
formation as the Floquet change of variables.
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See [GJMS93] for a constructive proof of the result. Now we will discuss how to trans-
late Theorem 2.1 into an algorithm to compute the Floquet change. Let us write the ODEs
corresponding to the previous Hamiltonian in compact form,{

u̇ = G(Θ)u, u(0) = I,

Θ̇ = ωH .
(2)

Let M be the fundamental matrix. To simplify the discussion, assume that there exist a linear
change of variables that casts M into the form

DM =

 U 0 0
0 C 0
0 0 S

 ,

where U , S ∈ Md(R) are diagonal matrices such that [ρ(U)]−1 < 1, ρ(S) < 1 and C ∈ Mr(C)
with Spec(C) ∈ S1 := {z ∈ C such that |z| = 1}. To keep the discussion simple, let us also
assume that all the eigenvalues have multiplicity one (all these assumptions are satisfied in the
Bicircular problem). Then, we proceed as follows:

1. We compute the monodromy matrix M of (2) by numerical integration.

2. Let S be the diagonalizing transformation M = SDMS
−1. Due to the Hamiltonian struc-

ture of the problem, the columns of S can be scaled such that

STJS = −iJ, S−1 = −iJSTJ,

where i =
√
−1.

3. Next we compute

• ω1, . . . , ωr such that λcj = eiωiT , λcj ∈ Spec(C),

• α1, . . . , αd such that λhj = eiαjT , λhj ∈ Spec(U).

Note that the values ωj are not uniquely defined. If ωj is a complex logarithm divided by
the period, then any of the values ±(ωj + 2kπ

T ), k ∈ Z is also admissible. Therefore, we
have some freedom to choose them. Defining

DB = diag(α1, . . . , αd, iω1, . . . , iωr,−α1, . . . ,−αd,−iω1, . . . ,−iωr),

and B = SDBS
−1, we have that B is a real matrix such that M = eBT .

4. Finally, integrating the initial value problem{
Ṗ (Θ) = Q(Θ)P (Θ)− P (Θ)B, P (Θ) = I,

Θ̇ = ωH ,
(3)

we obtain the Floquet change.
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Remark 2.2. It is advisable to perform an extra change of variables that casts B into a more
suitable (real) form JB, let us explain how it is constructed. Recall that α1, . . . , αd are the
normalized logarithms1 of the real eigenvalues, ω1, . . . ωr are the normalized logarithms of the
complex eigenvalues and d+ r = n. Then,

JB =

(
H E
−E H

)
,

where H and E are diagonal blocks of size n× n. If d 6= 0 and r 6= 0, there are not enough αj’s
nor ωj’s to fill all the entries of H and E, then the remaining entries are filled with zeros and
the values are arranged so the sub-block (H|E) has maximal rank. To compute JB consider the
matrix R defined in the following way: The first n columns are the eigenvectors corresponding to
the unstable eigenvalues and the real parts of the eigenvectors related to complex eigenvalues. The
remaining columns are filled with the eigenvectors corresponding to the real stable eigenvectors
and the imaginary parts of the complex eigenvectors. The columns can be arranged and scaled
so the matrix R is symplectic. We also need to compose the changes P and R. The computation
of P and the subsequent composition with R can be done at the same time if we integrate the
system (3) with the initial data P0 = R.

Remark 2.3. As it has been mentioned before, there is some freedom when computing the
normalized logarithms of the complex eigenvalues. There is, however, a optimal choice for these
logarithms. Adding multiples of the frequency of the time dependence introduces rotations in the
change P . These rotations affects the size of the Fourier coefficients of P . The optimal choice
is the one that makes the dominant Fourier coefficients to be at the beginning of the Fourier
series. That is, we should use this freedom to make the change as close as possible to constant
coefficients. In problems which are a perturbation of an autonomous one, we know in advanced
that the logarithms are to be chosen as close as possible to the frequencies of the dynamical
equivalent of the periodic orbit in the autonomous system.

Let us consider JB defined as in Remark 2.2. The associated Hamiltonian reads as

HJB =
d∑
j=1

αjqjpj +
1

2

r∑
j=1

ωj(q
2
j + p2

j ). (4)

A Hamiltonian with expansion H =
∑

k≥0Hk such that H2 has the form (4) is said to be in real
Floquet normal form. To normalize the high order terms, it is much better to have the second
order terms of the Hamiltonian in complex normal form,

H2 =
d∑
j=1

αjqjpj +
r∑
j=1

iωjQjPj . (5)

The change of coordinates to go from (4) to (5) is

qj =
Qj + iPj√

2
, pj =

iQj + Pj√
2

. (6)

It is simple to check that this is, indeed, a canonical transformation. The inverse of (6) is

Qj =
qj − ipj√

2
, Pj =

−iqj + pj√
2

. (7)

1By normalized, we mean that the logarithms are divided by the period T .
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2.2 Higher order normal form

In this section we assume that we have a Hamiltonian expanded in power series, starting at
degree 2, with coefficients that are periodic functions w.r.t. an angle Θ (the time). The terms
of second degree are in complex normal form (5). Our goal is to obtain a Birkhoff normal form
by means of Lie series. We will use the scheme described in [Jor99] to avoid the use of the Lie
triangle. To summarise the procedure, let us recall that a Poisson bracket of two functions f
and g depending on (Q,P,Θ, IΘ) is defined as

{f, g} =

n∑
i=1

[
∂f

∂Qi

∂g

∂Pi
− ∂f

∂Pi

∂g

∂Qi

]
+
∂f

∂Θ

∂g

IΘ
− ∂f

∂IΘ

∂g

∂Θ
.

An important property (that is easy to check) is that, if f and g do not depend on IΘ and both
are homogeneous polynomials w.r.t. (Q,P ) of degrees r and s respectively, with coefficients
that depend periodically on Θ, then {f, g} is an homogeneous polynomial w.r.t. (Q,P ) of
degree r + s− 2 with coefficients that depend periodically on Θ.

The Lie series method is based on the following property. If G is a Hamiltonian system, then
its time 1 flow is a canonical transformation (and, hence, it preserves the Hamiltonian form),
and the composition of this time 1 flow with a Hamiltonian H can be computed as

H + {H,G}+
1

2!
{{H,G} , G}+

1

3!
{{{H,G} , G} , G}+ · · ·

IfH is a power series expansion, andG is chosen as a polynomial, this computation can be carried
out easily. The goal is to choose a suitable G (generating function) such that the Hamiltonian
has the desired form. Since in our case the action IΘ already appears in a very simple way, there
is no need to modify it. Therefore, we will construct generating functions not depending on IΘ.
Hence, for some H of the form (1) and G not depending on IΘ we have

{H,G} =

[
∂H

∂Qi

∂G

∂Pi
− ∂H

∂Pi

∂G

∂Qi

]
− ωH

∂G

∂Θ
.

As it has been mentioned above, we start with Hamiltonian of the form H = ωHIΘ +
H2 + H3 + · · · , where H2 is in complex normal form (5) and Hj = Hj(Q,P,Θ), j ≥ 3, is a
homogeneous polynomial of degree j whose coefficients are complex valued periodic functions
of Θ. The normalizing process starts by degree 3, using a generating function G3 which is also
a homogeneous polynomial of degree 3 in (Q,P ) whose coefficients depend periodically on Θ.
Then, we will arrange degree 4 by using a suitable G4, and so on.

Let us discuss how to arrange the terms of degree, say, m. So, suppose that the Hamiltonian
is already in suitable form up to degree m− 1:

H = ωHIΘ +H2(Q,P ) +
m−1∑
j=3

Hj(Q,P,Θ) +Hm(Q,P,Θ) +Hm+1(Q,P,Θ) + · · ·

where Hm(Q,P,Θ) =
∑
|k|=m h

k
m(Θ)Qk

1
P k

2
, hkm(Θ) =

∑
j h

k
m,je

jiΘ and k = (k1, k2) ∈ Z3 × Z3

is a multi-index. We want to make a change of variables that removes some specific terms in Hm

(the choice of terms to be removed will be discussed later on). Let us call Gm the generating
function of the canonical transformation we are looking for,

Gm = Gm(q, p,Θ) =
∑
|k|=m

gkm(Θ)Qk
1
P k

2
, gkm(Θ) =

∑
j

gkm,je
jiΘ.
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Applying the transformation defined by the time 1 flow of Hamiltonian Gm (for details, see the
Appendix A of [Jor99]), we can see that the terms of degree m of the transformed Hamiltonian,
H̄m, are given by

H̄m = Hm + {ωHIΘ, Gm}+ {H2, Gm} ≡ Hm + ωH
∂Gm
∂Θ

+ {H2, Gm} . (8)

We define as η = (α1, . . . , αd, iω1, . . . , iωr) the vector of coefficients of H2 (see (5)). As

{H2, Gm} =
∑
|k|=m

〈
k2 − k1, η

〉
gkm(Θ)Qk

1
P k

2
,

we have that the transformed Hamiltonian (8) is

H̄m =
∑
|k|=m

[
hkm(Θ) + ωH

dgkm
dΘ

(Θ) +
〈
k2 − k1, η

〉
gkm(Θ)

]
Qk

1
P k

2
.

This expression makes easy to choose periodic functions gkm such that H̄m has some specific
form, with some limitations: if k1 = k2, it is clear that it is not possible to cancel the average of
hkm (k1 = k2 is usually called an unavoidable resonance). In what follows, we will assume that
there are no other resonances, that is, 〈k, η〉 6= 0 for all k ∈ Z \ {0}. If we want to construct a
complete normal form, then we have to remove everything except the unavoidable resonances.
This is done by the generating function

gkm(Θ) =


−hkr,0

〈η, k2 − k1〉
+
∑
j 6=0

hkm,j
ijωH − 〈η, k2 − k1〉

ejiΘ, if k1 6= k2,

∑
j 6=0

hkm,j
ijωH

ejiΘ, if k1 = k2.

The advantage of complete normal forms is that they are explicitly integrable, so the dynamics
can be studied very easily. The disadvantage is that they usually have a very small radius of
validity due to the effect of the so-called small divisors. Because of that, we will not perform a
complete normal form but a partial one. More concretely, we focus on uncoupling the elliptic
directions from the hyperbolic ones.

2.3 Centre manifold reduction

A centre manifold reduction is a seminormal form such that the transformed Hamiltonian has an
invariant manifold tangent to the elliptic (centre) directions. This is achieved by cancelling some
specific monomials. To simplify the explanations, let us assume that we have only one hyperbolic
direction while the remaining ones are elliptical (this is indeed the case of the L1 point). If
(Q1, P1) are the hyperbolic directions, then we choose to suppress all the monomials such that
the exponent of Q1 is different from the exponent of P1. This means that the Hamiltonian
depends on (Q1, P1) through the product Q1P1. It is easy to check that, then, the quantity I1

is a first integral and setting I1 = 0 the Hamiltonian is reduced in one degree of freedom and
restricted to the elliptic (centre) directions.

During this process of reduction, we can also suppress the time dependence of the Hamil-
tonian. This is what we have done for the expansion at L1. As it has been mentioned before,
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this introduces small divisors which reduce the radius of convergence of the expansions, but it
allows to study the dynamics in a much simpler way.

If the initial Hamiltonian function is analytic (which is the case of the BCP), as we are only
performing a finite number of changes of variables, we can ensure that the final Hamiltonian has
a finite domain of convergence.

Remark 2.4. In [AS00, And02] Andreu and Simó use another criterion for the centre manifold.
Their criterion preserves more monomials and, therefore, the radius of convergence is slightly
larger. However, it does not produces additional first integrals.

2.4 Changes of variables

We are also interested in computing explicitly the change of variables that transforms the coor-
dinates of the normal form to synodical coordinates and vice-versa. We have followed the same
scheme as in [Jor99].

The global change is split in two different sub-changes. The first one is the translation of
the periodic orbit plus the linear Floquet change that puts H2 in diagonal form (we will refer to
these coordinates as “diagonal” coordinates). The second sub-change consists of the nonlinear
change that goes from the normal form (or centre manifold) coordinates to the diagonal ones.
Let us focus in the second sub-change.

The nonlinear change is obtained as a sequence of transformations using the generating
functions G3, G4, . . ., used to arrange each degree. For instance, the change of variables corre-
sponding to G3 is obtained as follows,

q
(3)
i = qi + {qi, G3}+

1

2!
{{qi, G3} , G3}+ · · · ,

p
(3)
i = pi + {pi, G3}+

1

2!
{{pi, G3} , G3}+ · · · ,

where q
(3)
i , p

(3)
i denotes the series obtained in this transformation. Now we can apply G4,

q
(4)
i = q

(3)
i +

{
q

(3)
i , G3

}
+

1

2!

{{
q

(3)
i , G3

}
, G3

}
+ · · · ,

p
(4)
i = p

(3)
i +

{
p

(3)
i , G3

}
+

1

2!

{{
p

(3)
i , G3

}
, G3

}
+ · · · ,

and this is the transformation that goes from the normal form coordinates of degree 4 to the
initial diagonal coordinates. This process can be carried out up to the desired order. To obtain
the inverse change we can apply the same procedure but using −G3, −G4, . . ..

2.5 Complexification and realification

During the computations, we work with Hamiltonian systems that are expanded in complex
variables. This largely simplifies the computation of the normal form as the systems to be solved
to find the generating functions Gj are diagonal. However, when studying the Hamiltonian
reduced to the centre manifold, it is easier to work in real coordinates. Then, we perform the
linear transformation (7) to the reduced Hamiltonian to obtain the final (real) reduction to the
center manifold. In this last step, we have checked, as an extra test, that the imaginary part
is of the order of the roundoff. Finally, this transformation (7) is also used on the changes of
variables.
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3 The dynamical replacement of L1 in the BCP

The BCP is build assuming Earth and Moon to behave as in the RTBP, that is, they move
following circular orbits centred in their common barycentre. At the same time, this barycentre
and Sun move following another circular orbit, with Sun, around the barycentre of Earth-Moon
and Sun. Notice that is this model can be seen as two coupled RTBP’s. We take the units and
the system of coordinates as in the Earth-Moon RTBP. With all this considerations the model,
a three and a half degrees of freedom perturbation of the RTBP, has a Hamiltonian function
that writes as

HBCP =
1

2
(p2
x + p2

y + p2
z) + ypx − xpy −

1− µ
rPE

− µ

rPM
− εmS

rPS
− εmS

a2
S

(y sin θ − x cos θ).

Here the units and coordinates are taken as in the Earth-Moon RTBP, mS is the mass of Sun,
aS the semi-major axis of Sun, r2

PE = (x − µ)2 + y2 + z2, r2
PM = (x − µ + 1)2 + y2 + z2,

r2
PS = (x − xS)2 + (y − yS)2 + z2, xS = aS cos θ, yS = −aS sin θ, θ = ωSt and ωS is the

mean angular velocity of Sun in these synodic coordinates. Notice that we have introduced
an additional parameter ε establishing an homotopy between the RTBP (ε = 0) and the BCP
(ε = 1). Due to the periodic perturbation due to Sun, the Lagrangian points are no longer
equilibria, they are replaced by periodic orbits with the same period as Sun’s (TS = 2π/ωS).
We name these replacements as dynamical equivalents of the Lagrangian points.

3.1 The dynamical equivalent of L1

Our first goal is to compute the periodic orbit(s) that are born around the equilibrium points
when ε goes from zero (the RTBP) to one (the BCP). Due to the high instability of L1, we have
applied a multiple shooting technique combined with a continuation method to go from ε = 0
to ε = 1. When ε reaches 1, the replacement is a small unstable periodic orbit with the same
normal behaviour as L1 (four elliptic directions and two hyperbolic ones). The size of the orbit
is around 10−3 and its (x, y) projection revolves L1 twice in TS units of time (see Figure 2). The
linear normal behaviour is of type saddle×centre×centre. An important feature to be stressed
about this orbit is its high instability.

The unstable eigenvalue of the monodromy matrix is large, around 108. This implies that
the dynamics near L1 is dominated by this large eigenvalue and, in particular, initial conditions
close to L1 escape through the unstable manifold of the dynamical replacement. The reason
for this large instability is that the eigenvalue of the dynamical replacement is, at first order,
the exponential the eigenvalue of L1 in the RTBP multiplied by the period of Sun. Notice that
this also happens for small values of ε, that is, the large instability appears because we are
measuring the eigendirections along a whole orbit of period TS . However, there are two elliptic
directions related to the periodic orbit L1. Some rich dynamics is to be expected due to the
nonlinear terms related to the elliptic directions. For this reason we are interested in decoupling
the hyperbolic and the elliptic part.

3.2 The Floquet change

Assume that the dynamical equivalent of L1 has already been translated to the origin, and the
Hamiltonian has been expanded. We recall that, under these conditions, the Hamiltonian has no
terms of order one. In order to simplify the second order terms we apply a symplectic Floquet
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Figure 2: Left: Continuation of L1 as TS periodic orbit with respect to ε. Horizontal axis: x.
Vertical axis: ε. Right: Dynamical replacement of L1. Horizontal axis x. Vertical axis y.

change of variables as explained in Section 2.1. As there is some freedom in the construction of
the change, we discuss the details here. The dynamical replacement of L1 has a single hyperbolic
direction, that is, the set of eigenvalues is given by (λh, λ

−1
h , λe,1, λ

−1
e,1, λe,2, λ

−1
e,2). Here |λh| >> 1

is the unstable eigenvalue, while |λe,1| = |λe,2| = 1 determine the elliptic directions.
The first question to be addressed is related to Remark 2.3. The normalized logarithms are

given by
α1 = log λh, ω1,2 = log λe,1,2.

Here, ω1,2 are to be understood as a complex logarithms of the elliptic eigenvalues. As men-
tioned, any combination ±(ωi + kωS) for i = 1, 2 and k ∈ Z is also an admissible choice. In
Remark 2.3 we discuss the optimal choice for these logarithms in terms of the decay of the
Fourier series representing each entry of the Floquet change. In particular, we are interested in
the change of variables which is as close as possible to constant coefficients. This is obtained,
in this case, selecting ω1 =2.32981963603288 and ω2 =2.26695149158478, which are close
to the frequencies related to the equilibrium point L1 in the RTBP ( 2.33438585628816 and
2.2688310655411 respectively).

We also construct the matrix R defined in Remark 2.2 by choosing the elliptic eigenvectors
carefully. These can be scaled so that R has a very simple form and, in particular, the elliptic
directions coincide with the axes in the final coordinates. This adds some symmetries to the
expansion that can be used to get a better performance, see [Jor99]. With these considerations,
the Floquet change is composed with the second order of the Hamiltonian, reducing it to real
Floquet normal form, that is:

H2 = α1xpx + ω1

y2 + p2
y

2
+ ω2

z3 + p3
z

2
.

3.3 On the expansion of the Hamiltonian

Let us summarise how to expand the Hamiltonian function. Let t 7→ g(t) ∈ R6 be the TS-periodic

orbit that replaces L1. We denote by gi for i = 1, . . . 6 its components. Let γ̄i = 1
TS

∫ TS
0 gi(s)ds
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be the corresponding averages and let γ be the distance between Moon and the average of the
periodic orbit. We will apply the three following changes:

1. A scaling by γ. This is done to get a new units such that the (averaged) distance between
the periodic orbit and the Moon is equal to one. With this we assure the expansion of the
Hamiltonian to have radius of convergence close to one.

2. A translation by g, to put the periodic orbits at the origin. This will leads to a Hamiltonian
with no order one monomials as discussed in the previous section.

3. A Floquet symplectic change. This will put the second order of the Hamiltonian in complex
diagonal form.

These three changes together define an affine transformation that will cancel the first order
terms and will simplify the second order ones. Applying this affine change of variables, the
Hamiltonian will take the form

H = α1xpx +
ω1

2
(y2 + p2

y) +
ω2

2
(z2 + p2

z)−
(

1− µ
rPE

+
µ

rPM
+
mS

rPS

)[≥3]

.

Notice that the names of the variables have been kept. This is to avoid heavy notation and
we hope this will cause no confusion to the reader. The main issue is, therefore, to expand the
gravitational potentials of the Earth, the Moon and the Sun in these new variables. To produce
the Taylor expansion of a gravitational potential is a well known problem and there are several
approaches to do so. We focus on the following one: A gravitational potential can be expressed
in the basis of Legendre polynomials as

1

rpb
:=

1√
(x−A(θ))2 + (y −B(θ))2 + (z − C(θ))2

=
1

D(θ)

∑
k≥0

(
ρ

D(θ)

)k
Pk

(
A(θ)x+B(θ)y + C(θ)z

D(θ)ρ

)
,

where Pk is the k-th Legendre polynomial, ρ2 = x2 + y2 + z2, D(θ)2 = A(θ)2 + B(θ)2 + C(θ)2.
Using the well known recurrences for the Legendre polynomials one can compute the expansion
1/rpb =

∑
k Tk(x, y, z, θ) by using the recurrence

Tk+1 =
1

D(θ)

[
2n+ 1

n+ 1
(A(θ)x+B(θ)y + C(θ)zTk −

n

n+ 1
ρ2Tk−1

]
,

with

T0 =
1

D(θ)
, and T1 =

A(θ)x+B(θ)y + C(θ)z

D(θ)3
.

This approach is used in the autonomous case for a number of works [Ric80, JM99] and adapted
to the periodic case in [GJMS93, GJ01, And98].

4 Dynamics near L1 in the BCP

In this section we describe the dynamics in an extended neighbourhood of the dynamical replace-
ment of L1. We have already discussed the linear normal behaviour and the Floquet normal form
of the periodic orbit. We will use a reduction to the centre manifold to describe the dynamics.
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Figure 3: Estimated radius of validity of the autonomous (red) and non-autonomous (green)
centre manifold w.r.t. the degree of the expansion.

4.1 Dynamics in the centre manifold

As explained in Section 2.2 we use the Lie transformation method to uncouple the hyperbolic
and the elliptic parts. Recall that the generating function can also be constructed to remove
the time dependence of the centre manifold. The centre manifold reduction for an autonomous
Hamiltonian system with only one hyperbolic direction does not involve small divisors. On the
other hand, when removing the time dependence of a non-autonomous periodic Hamiltonian,
small divisors are unavoidable, and they reduce the radius of convergence of the expansion
of the centre manifold. The advantage of cancelling the time dependence in the autonomous
reduction to the centre manifold is that the output Hamiltonian has two degrees of freedom and,
in particular, the energy is a preserved quantity. This fact can be used to reduce the problem
of studying the dynamics around the periodic orbit that replaces L1 to the study of a family of
area preserving maps parameterized by the energy: Indeed, fixing the energy we only need to
produce a Poincaré map by using suitable sections.

The main drawback of cancelling the time dependence is that it reduces the domain of
validity of the expansions. If the size of the domain of validity is critical, then one can consider
not to suppress the time dependence. For instance, we can only keep those Fourier modes that
lead to small divisors in the construction of the generating function. The output system when
time dependence is not remove is a Hamiltonian with two and a half degrees of freedom. Note
that the analysis of the dynamics is then more involved.

We can measure the impact of small divisors on the radius of convergence of the centre
manifold. A rough upper bound for the distance of the origin at which the normal form is valid
can be estimated in the following way. Let us define the following quantities

r−1
n = n

√
‖Hn‖1, ‖Hn‖1 =

∑
|k|=n

|hk|, 3 ≤ n ≤ N.

This estimation is based in the root tests for power series.
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In Figure 3 we display the radius of convergence of both, the Hamiltonian reduced to the cen-
tre manifold removing time dependence (purple curve) and without removing time dependence
(green curve). The horizontal axis shows the order of the expansion and the vertical axis shows
the estimation of the radius of convergence. We observe a similar behaviour for small degrees.
At degree 10, the curves start to show different patterns. In particular, the non-autonomized
centre manifold does not loose a large amount of the radius (it stays around 0.9 at order 16). The
behaviour in the case similar to the case of the autonomous case i.e. the centre manifold of the
RTBP around L1. On the other hand, the autonomized centre manifold, has a severe decrement
from degree 10. This corresponds to the encounter of small divisors in the construction of the
generating function.

Notice that the Hamiltonian of the centre manifold is a power expansion depending on four
variables. Indeed, the hyperbolic variables have been eliminated setting them to zero. From now
on, we name q1, p1, q2 and p2 the coordinates in the normal form. Notice that the second order
is in Floquet normal form and the Hamiltonian is positive definite. In fact, the frequencies has
been chosen to be close to the ones of the equilibrium point L1 in the RTBP. To do so it has
been required to select a suitable value for the complex logarithm of the monodromy matrix as
explained in Remark 2.3.

With this procedure we have reduced a phase-space of seven dimensions (six in phase space
and one in time) to a phase-space of four dimensions. To kill time dependence, we have to
pay the price of dealing with small divisors (and, hence, having a smaller domain of validity),
something that does not happen in the autonomous case. Notice that each periodic orbit with
the same period as Sun in the BCP is seen in the centre manifold coordinates as a equilibrium
point.

Next step is to visualise the phase space of the Hamiltonian restricted to the centre manifold.
As it is a two degrees of freedom Hamiltonian system, a standard strategy to visualize the
dynamics of this kind of systems is to select a Poincaré spatial section and fix a level of energy
to reduce the system to a family of Area Preserving Maps parametrized by the energy. We have
considered, in fact, two different sections.

The first one is Σh = {q2 = 0}. This corresponds, at first order, to fix z = 0 in the synodical
coordinates. We will name this section as the horizontal one. See, in Figure 4, a representation
of the phase space in the horizontal section for the values of the normalized energy fixed at
h = 0.2, 0.5, 0.7 and 0.9. The second section is Σv = {q1 = 0} and will be named vertical
section. See in Figure 5, a representation of the phase space in the vertical section for the values
of the normalized energy fixed at h = 0.2, 0.5, 0.7 and 0.9.

Let us explain Figures 4 and 5. As the Hamiltonian restricted to the centre manifold is
positive definite at the origin, each level of energy defines a three dimensional compact set of the
phase space. When these compact sets are intersected by Σh and Σv, we obtain a two dimensional
section. The periodic orbit replacing L1 is at the origin in the centre manifold coordinates, it
is totally elliptic, and has zero energy. The fixed points of both figures correspond to periodic
orbits and the invariant curves to two dimensional invariant tori. In particular, the process this
two Figures capture is the pitchfork bifurcation (of periodic orbits) that lead to Halo orbits (see
[BB79, CPS15] for the case of the RTBP). Note that, in synodical coordinates, this corresponds
to a pitchfork bifurcation of two dimensional invariant tori, giving rise to quasi-periodic Halo
orbits. In Figure 4 the outer limit of the plots correspond to a planar Lyapunov orbit, and the
fixed point at the centre to a vertical Lyapunov orbit. The outer limit of the plots in Figure 5
correspond to a vertical Lyapunov orbit, while the fixed point at the middle correspond to planar
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Figure 4: Horizontal section for the centre manifold of L1. The expansion used for the Hamil-
tonian is of order 12. The planar plots are obtained fixing the energy h at 0.2, 0.5, 0.7 and 0.9.
Horizontal axis: q1. Vertical axis: q3. See text for more details.

Lyapunov orbits.

The translation of what we see, in Figure 4, (b), to synodic coordinates is a bifurcating family
of elliptic tori appearing from the boundary of the phase-space. These tori are quasi-periodic
Halo orbits. This Poincaré section allows to observe the three families of vertical invariant tori
(periodic orbits in the plot) near L1. However, to observe the bifurcation from the boundary
of the plot can be a little bit misleading. In Figure 5, the phase space the centre manifold
intersected with Σv the bifurcation can be seen in a much better way. Here the roles of the
vertical and horizontal families are switched. That is, in synodical coordinates, at each plot of
Figure 5 the boundary is determined by a vertical Lyapunov torus while the invariant structure
at the origin of the plots is the planar Lyapunov family of tori.

4.2 Halo and Lissajous orbits

Let us focus on Figure 4. Before the bifurcation takes place e.g. (h = 0.2, panel (a)), the non-
chaotic motion in the Poincaré section between the origin (the periodic orbit that replaces L1)
and the vertical Lyapunov orbit is given by quasi-periodic invariant curves. These curves, when
translated to synodic coordinates are quasi-periodic invariant orbits with three frequencies. This
kind of orbits is known as Lissajous orbits. Notice that, in the case of the BCP, these orbits
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Figure 5: Vertical section for the centre manifold of L1. The expansion used for the Hamiltonian
is of order 12. The planar plots are obtained fixing the energy h at 0.2, 0.5, 0.7 and 0.9.
Horizontal axis: q2. Vertical axis: q4. See text for more details.

gain, generically, the frequency of Sun with respect to the classical ones appearing in the RTBP
(see [JV97] for a general explanation). These orbits can be obtained in coordinates of the BCP
simply by integrating the orbit in the centre manifold and sending the produced grid through the
change of variables (constructed as explained in Section 2.4). After the bifurcation, new families
appear in the Poincaré sections (e.g. Figure 4 panels (b), (c) and (d)). There appear some
hyperbolic fixed points whose stable and unstable manifolds enclose regions of quasi-periodic
invariant curves. These invariant curves are organized from the Halo orbits that appear as
fixed points of the Poincaré map. As we have already explained, these fixed points (the Halo
orbits) become two dimensional invariant tori when are sent to synodical coordinates. The
other invariant curves surrounding the fixed points that give the Halo, when sent to synodical
coordinates, are invariant tori with three frequencies. These orbits are known as Quasi-Halo in
the case of the RTBP. Here, as in the case of Lissajous orbits, Quasi-Halo gain generically the
frequency of Sun with respect to the ones appearing in the RTBP.

In Figure 6 we show a quasi-periodic Halo orbit for the energy level h = 0.4. In panel (a) we
display the projection against the x− y plane, while in panel (b) we show the projection on the
y − z plane. We recall that the quasi-periodic Halo orbit shown in Figure 6 is a periodic orbit
in the centre manifold. Once the energy is fixed and we take a Poincaré section (horizontal or
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Figure 6: Quasi-periodic Halo orbit near L1. The point denotes the coordinates the geometrically
defined L1 and the small curve represents its dynamical replacement. (a) projection against the
x-y plane. (b) projection against the y-z plane.

vertical) this Halo orbit become a fixed point. We can compute this fixed point by means of a
Newton method. Then we produce a trajectory (a periodic orbit) in the centre manifold and
use the change of variables to send the trajectory to synodic variables.

In Figure 7 we show an orbit lying on a three dimensional torus that correspond to a Lissajous
orbit. In panel (a) we display the projection against the configuration space while, in panel (b) we
show the projection against the y− z plane (this is how the orbit looks like as seen from Earth).
The figure is obtained as follows: First we fix the energy level h = 0.1 for the Hamiltonian
reduced to the centre manifold. We select an initial condition close to the origin of the centre
manifold. Generically, the corresponding trajectory corresponds to a two dimensional quasi-
periodic trajectory. We produce the trajectory integrating this initial condition in the centre
manifold. Then, the trajectory in the centre manifold is sent, by using the change of variables
to synodical coordinates. As the change is periodically time dependent, the image of the two
dimensional quasi-periodic trajectory is a three quasi-periodic trajectory and, again, the new
frequency is the one corresponding to Sun.
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Figure 7: Lissajous tori with three frequencies near L1 in synodic coordinates. (a) projection
against the x-y-z. (b) projection against the y-z plane.
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5 Conclusions and future work

In this paper we have studied the motion near the geometrically defined L1 point of the Earth-
Moon system in the Bicircular model. In this model, L1 is no longer an equilibrium point but it
is replaced by a periodic orbit with the same period as the Sun. We call this orbit the dynamical
equivalent (replacement) of L1.

We have used an approach based in the computation of the centre manifold by means of
Hamiltonian (partial) normal forms. An advantage from using the Hamiltonian approach is
that time dependence can be removed facilitating the representation of the nonlinear dynamics
near the dynamical equivalent of L1. Removing time dependence involves small divisors in the
construction of the generating functions for the changes of variables. The radius of convergence
of the centre manifold is smaller than in the case of the RTBP, where there are not small
divisors. However, the process is good enough to show that, near the dynamical equivalent of
L1, the structure of the phase space is similar to the one observed in the RTBP. In particular, the
bifurcation that give rise the Halo orbit (well known in the RTBP) has its quasi-periodic counter
part in the BCP. The trajectories in a Poincaré section of the centre manifold can be sent back
to synodic coordinates to obtain quasi-periodic invariant tori with two and three frequencies
(e.g. quasi-periodic Halo orbits and Lissajous orbits with three frequencies).

There is however some further work to be done. In the first place, we have not investigated
the motion near the translunar point L2. This is because the motion near this point is severely
affected by the indirect effect of Sun’s gravity on the particle. A better suited model such as
the Quasi-Bicircular Problem (a coherent version of the BCP) should be used to investigate this
point.

The reduction to an Area Preserving Map has been possible because we have chosen to cancel
the time dependence of the Hamiltonian. Note that, in general, this could be problematic due
to the effect of the small divisors. A consequence of the existence of these extra small divisors is
that the radius of convergence of the reduced Hamiltonian is smaller. Notice that the reduction
to the centre manifold for autonomous systems does not involve small divisors which gives large
domains of validity. We would like to remark that, in the case of the centre manifold of L1, small
divisors have not been a problem, as they appear at high order. If the radius of convergence
were too small, a possible solution could be not to remove time dependence, at least completely.
Indeed, one could choose to not kill the harmonics that lead to small divisors and reduce the
Hamiltonian only by a degree of freedom. To visualize the reduced Hamiltonian would be harder
in this case, as it would be mandatory to cope with a fourth dimensional symplectic map (the
stroboscopic map associated to the reduced Hamiltonian). However, there are some cases in
which it is not necessary a visualization, and, moreover there are techniques that permit us to
visualize phase spaces of four dimensions.

A Appendix: Details on the implementation

In this section, we discuss the main aspects of the implementation of this methodology on a
computer program. The programs have been written in ANSI C and C++ languages adapting
the public domain software for the computation of normal forms presented in [Jor99]. We have
also used the public domain package [FJ05] to build an efficient arithmetic of Fourier series. In
general, the programs are built to be efficient allowing us to provide high order normal forms.
As most of ideas used here can be found in [Jor99], we will skip some of the technical details.
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We recommend the above-mentioned references for a deeper understanding of technical aspects.
This section is structured as follows: First we give details on the arithmetic of Fourier-Taylor
series, second we comment some aspects on the implementation of the Floquet change. The
third point to be addressed is the implementation of the main algorithm and, finally, we discuss
some tests on the software.

A.1 On Taylor-Fourier series

Here, Fourier series have complex coefficients and, hence, there are four different arithmetics
nested in each operation between two homogeneous polynomials, that is

(1) Real 7→ (2) Complex 7→ (3) Fourier Series 7→ (4) Homogeneous Polynomials.

In order to have a good performance the basic operations between the mathematical objects
involved are to be written as efficiently as possible.

A.1.1 The arithmetic of Fourier Series

Let f ∈ Cω(T,C). The Fourier coefficients of f are defined as

Ck =
1

2π

∫
T
f(s) exp(−iks)ds.

In the strong regularity condition we are assuming, it is well known that the sequence of partial
sums,

PN (θ) =
∑
|k|<N

Ck exp(ikθ),

converges, uniformly in θ when N → ∞, to f . Moreover, if f is real analytic, the sequence
{|Ck|}k∈Z converges to zero exponentially i.e. there exist positive constants M and ρ such that

|Ck| ≤M exp(−|k|ρ).

The constants M and ρ depend on f and, in particular, ρ is bounded by the distance of the
closest singularity of f (regarded as a holomorphic function) to the real line. If ρ is not too
small, the fast decay of the sequence {|Ck|}k∈Z results in the fact that just a few coefficients are
needed to describe the function f with a prescribed accuracy. When f is real-valued, it holds
that C−k = C̄k, in that case, only half of the coefficients are needed to evaluate the function.
A periodic function can be stored in a computer as a finite mesh of points or as a finite set
of coefficients. Let us fix a truncation order N , EN is defined as the space of trigonometric
polynomials of degree N , M = (2N + 1) and PM = {z = (z1, . . . , zM ) ∈ CM}. It is trivial to see
that, both, EN and PM are C vector spaces of dimension M . The Discrete Fourier transform,
ΓN : PM 7→ EM , is given by ΓN (z) = C, where

Ck =
1

N

N−1∑
j=0

zj exp

(
−ik j

N

)
,

is an isomorphism and its inverse map Γ−1
N is given by Γ−1

N (C) = z, where

zk =
1

N

N−1∑
j=0

Cj exp

(
ik

j

N

)
,
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There is an excellent public package by Frigo and Johnson [FJ05] for these operations. The
periodic functions are stored in a structure of the form

typedef struct{

int N;

double complex *C;

char mvc;

} sf;

The integer indicates the truncation order, the vector of complex numbers contains the coef-
ficients or the mesh of points and the char is a control parameter that encodes whether the
array contains points a table of values or Fourier coefficients of the function. The point of this
structure is that some operations are suited to be done with the table of values of the function,
namely the elementary operations (products, divisions, square roots, etc.) and other are better
suited to be performed with the Fourier coefficients, for instance, derivatives, evaluations and
norms. Two key functions of the arithmetic are the ones that apply the Fourier transform (or
its inverse) if it is required. The direct transformation receives and object of type sf, checks
the control character mvc. In case the array C contains points of the table of values, it applies
the Fast Fourier Transform on the object and switches the control character, otherwise, it does
nothing.

Each operation of the arithmetic is to be performed over coefficients or values, hence, the
first step is to transform between coefficients and values conveniently. After the transformation,
the operation is done and the control character of the output is set. This prevents the program
to operate objects with different control characters. This is particularly important in operations
like the sum, that can be implemented in the same way no matter if the vector contains points
or coefficients. In these special operations, we choose to transform the inputs into points as
most of the operations have to be performed over the table of values. In general, the arithmetic
is designed to perform the least possible number of transformations. In this way, any operation
between Fourier Series requires (order of) N logN operations with complex numbers if previous
transformations are required and (order of ) N operations with complex numbers if no previous
transformation is applied.

A.1.2 Handling Homogeneous Polynomials

The arithmetic of Fourier series is combined with an arithmetic that operates with homogeneous
polynomials. We have used the one presented in [Jor99] and here we summarise the main ideas
involved. A homogeneous polynomial of degree k in the variables (x1, . . . , xm) is an expression

Pj =
∑
|k|=j

pkx
k,

where, as usual, k ∈ Zm+ , |k| = k1 + · · ·+km, xk = xk11 ·x
k2
2 · . . . ·xkmm and pk ∈ C. A homogeneous

polynomial of degree j has ψm(j) coefficients, where

ψm(j) =

j∑
i=0

ψm−1(i) =

(
j +m− 1

m− 1

)
.
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An homogeneous polynomial of degree j and m variables is stored inside an array of ψm(k)
components (of type sf, see Section A.1.1). The position of the coefficients inside the array
depends on the multiindex k. The relation between the position and the multiindex is handled
by suitable hash functions. Using these functions, it is straightforward to write the different
operations required for the previous algorithms.

A.2 On the implementation of the Floquet transformation

The computations in this part of the program are performed in extended accuracy. This is done
for several reasons that shall be pointed out during the discussion. We use the mpfr [FHL+07]
arithmetic and the library mpreal [Hol18] to overload the standard double precision arithmetic.
The language C++ is used for that purpose.

The first step is to refine the periodic orbit that replaces L1 with extended precision. The
eigenvalues and the eigenvectors of the monodromy matrix are computed and, with these, we are
able to construct the real reduced Floquet matrix B (see Section 2.1). On the other, we construct
the change R that casts B into real normal form JB and compute it by evaluating R−1BR. Notice
that there is no need to compute JB after computing the diagonal normalized logarithm as we
know the entries of JB. However, doing it in this way permits to test the transformation R.
We also perform other tests during the computation such as the symplecticity of the matrices
involved. If any of these tests is not passed, the program stops with a suitable message. All
these extra checks are done because the outputs of the function that computes the eigenvalues
sorts them according to their modulus. In principle we do not know in advance if there will be
real eigenvalues or not, therefore, at each run of the program, we have to select an order for the
eigenvalues to perform the subsequent computations.

Once the change R and the normal form JB are obtained, we proceed to integrate equation (3)
and the variational equation together, to obtain the Floquet transformation. These integrations
are done together so we can produce coherent meshes of the periodic orbit and the periodic
change of variables. As the dynamics around the periodic orbit is largely unstable and the
accumulation of errors is severe, the use of extended accuracy is justified.

By this stage of the process, we have computed a tabulation of the periodic orbit and
the change of variables. We do an extra computation: We perform a Fast Fourier Transform
(using our own implementation) and check the leading harmonics of each entry of the change of
variables, this is printed together with the output. If the produced change is not close enough to
constant coefficients, we rerun the program using another choice for the normalized logarithms
of the eigenvalues.

There are several parts of this program that could be implemented in a more efficient manner.
For instance, the multiple accuracy could be avoided by using a multiple shooting strategy.
However, as a few integrations (taking into account the refinement of the initial data) are
required, the loss of efficiency is not critical in terms of computing time. For the numerical
integrations with extended precision we have used a Taylor method ([JZ05]), which is very
efficient for extended precision calculations. After a successful run of this program, we end up
with a tabulation of the periodic orbit and the Floquet change with more than 16 correct digits.
Multiple accuracy shall not be used in the subsequent computations.
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A.3 Testing the software

The main test is based on the behaviour of the remainder (see [Jor99] for more details). The
idea is the following: choose an initial condition in the centre manifold coordinates at a distance,
say, h from the origin. Perform a few steps of a numerical integration (we have used a Runge-
Kutta-Fehlberg 7(8)) and send these points by means of the change of variables to the initial
synodical coordinates. Then, compute the difference of this orbit with the one obtained by direct
numerical integration of the BCP in synodical coordinates. Of course, the integration has to be
short due to the high instability of the orbit. We perform this computation for several values of
h, and we look at the behaviour of the difference between the two orbits as a function of h. If
everything is correct, this difference has to behave as hm+1, where m is the truncation order of
the flow. We have used this test for different values of m, and it has been passed successfully in
all the cases.
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À. Jorba, M. Jorba-Cuscó and J.J. Rosales 25

[FJ10] A. Farrés and À. Jorba. On the high order approximation of the centre manifold
for ODEs. Discrete Contin. Dyn. Syst. Ser. B, 14(3):977–1000, 2010.

[GDF+89] A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, and C. Simó. Effective stability
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[GJMS91] G. Gómez, À. Jorba, J. Masdemont, and C. Simó. Study refinement of semi-
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[JS94] À. Jorba and C. Simó. Effective stability for periodically perturbed Hamiltonian
systems. In J. Seimenis, editor, Hamiltonian Mechanics: Integrability and Chaotic
Behaviour, volume 331 of NATO Adv. Sci. Inst. Ser. B Phys., pages 245–252. Held
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