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Abstract

Solar sailing is a novel way of propelling space probes. It takes advantage of the acceleration produced by photons impacting upon
a body, the so-called Solar Radiation Pressure (SRP). Unlike traditional thrusters, the acceleration is continuous and unlimited. We are
interested in understanding the dynamics of a spacecraft endowed with a solar sail in the Earth-Moon system. The most commonly used
model is a modified version of the Restricted Three Body Problem (RTBP) which includes the effect SRP. Instead, We use the Quasi-
Bicircular Problem (QBCP) as a basis model which also includes the gravitation effect of Sun. The resulting model depends on two
parameters describing the effectivity and the orientation of the sail. Moreover, the system is a Hamiltonian periodic perturbation of the
RTBP. Our goal is to understand how the simplest invariant objects change with respect the sail parameters. We focus on the periodic orbits
that replace the Lagrangian equilibrium points as well as the resonant orbits that come from the Lyapunov and Halo families related to the
mentioned equilibria.

1 Introduction

The dynamics of the Earth-Moon systems has received increas-
ing interest along the last years. A number of missions that will
take place in the vicinity of the Earth and the Moon are being
planned. Of special importance is the translunar point i.e. the
geometrically defined L2 Lagrangian point. The mentioned lo-
cation is flawless for either Moon scientific observation or to
establish permanent communication with the Earth from a hy-
pothetical station in the far side of the Moon. To this purpose a
special type of trajectories, the Halo orbits [1, 2, 3] have been
the classic basis for mission design. This is because a spacecraft
following a Halo orbit can, typically, communicate with Earth
avoiding the obstruction of Moon’s body. There are, neverthe-
less, other approaches to follow. Solar sailing is among the most
promising ones.

The idea behind solar sailing is to endow a spacecraft with a
large and highly reflecting surface, the sail. When photons
impact upon the sail, some momentum is transferred and the
spacecraft receives an acceleration. Despite the variation of ve-
locity due to the sail is much smaller than the ones achieved
by a traditional propeller, it is continuous and only limited

by the lifespan of the sail. Mathematically, to put a sail in
a spacecraft means to modify a classical restricted model by
including the effect of Solar Radiation Pressure (SRP), see
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] for works concern-
ing the Earth-Moon system and [18, 19, 20] for the Sun-Earth.
SRP modifies the natural dynamics of the model, the invariant
structures change their shape, their linear normal behaviour and
move around the phase space. Playing with the parameters of
the sail, its effectivity and orientation, one can find out different
dynamical conditions that can be used for, otherwise inconceiv-
able, mission concepts. For the case of the Earth-Moon system,
the most commonly repeated approach is to extend the Earth-
Moon Restricted Three Body Problem (RTBP) to include the
effect of SRP upon the sail. However, there are several works
[21, 22, 23, 24, 25, 26, 27] putting the scientific community on
notice of the important effect of Sun’s gravity in the Earth-Moon
system. The changes on the dynamics, after Sun’s gravitational
potential addition, are specially important near the translunar
and triangular points. Hence, a study involving the translunar
point must include Sun’s gravity. There is, moreover, another
good reason to include Sun’s gravity when studding the motion
of a solar sail in the Earth-Moon system: it does not increase
the dynamical complexity of the model. Indeed, SRP depends
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periodically in time, and it does it with the same period as Sun’s
gravitational potential.

There are several ways to introduce Sun’s gravity in the Earth-
Moon system but, in seek of simplicity, the most suitable ones
are the Bicircular Problem (BCP) and the Quasi-Bicircular Prob-
lem (QBCP) (see also a model based in the Hill Problem in [27]).
The BCP, the simplest among the two, assumes Earth and Moon
to revolve along a circular orbit around their common centre of
masses and, at the same time, the Earth-Moon barycentre and
Sun to revolve along another circular orbit around the whole
system’s barycentre. The units and the frame of reference are
usually chosen as in the Earth-Moon RTBP so the BCP can be
written as a periodic perturbation of the RTBP. Notice that the
BCP is not a coherent model i.e. the motion prescribed to the
primaries does not follow Newton’s laws. Moreover, the BCP is
specially weak model for our purposes because it does not count
with a dynamical equivalent of the translunar point [21, 28]. The
QBCP is a model conceived to be a coherent version of the BCP.
Whether the disappearance of the translunar dynamical structure
is caused by the non-coherence of the BCP or not, the fact is that
this inconvenient is fixed for the QBCP. The QBCP is, therefore,
the model for the motion of the primaries we use.

In this work we care about the motion around the libration points
L1 andL2 of a spacecraft endowed with a solar sail. To do so, we
examine how key periodic orbits, with the same period as Sun,
change with respect to the parameters of the Sail. These param-
eters are the effectivity, β, and the pitch angle δ. Summarizing:
Section 2 gives a deep explanation on the model we use to under-
take this study. The model is obtained by modifying the QBCP
to include the effect of SRP upon a perfectly reflecting sail. Sec-
tion 2 is splitted in two subsections. The first one collects some
basic facts about the QBCP and the second one explains how to
include the SRP acceleration. Section 3 is devoted to some pre-
liminaries. The aim of this section is to facilitate the reading of
the paper pointing out the nature of the orbits we study, the tools
and the notation we use. In section 4 we cope with the motion
around L1: We study how nearby orbits change with respect to
the parameters of the sail. Section 4 is splitted in two parts: con-
tinuation with respect to β and continuation with respect to δ. In
these subsections we produce characteristic curves by means of
a continuation method that help us to understanding how the dy-
namics is changed with the parameters. Section 5 is devoted to
the study of the dynamics around L2: We proceed analogously
to the case of L1 and split the section in two parts correspond-
ing to the continuation with respect to β and with respect to δ.
Section 6 pays attention on how the SRP helps to reduce (some-
times, dramatically) the large hyperbolicity of some orbits. This
stabilization effect make these orbits particularly appealing for
mission design as time between station keeping maneuvers can
be increased significantly. In Section 7 we point out the effect
of Sun’s gravity has on the motion of sail dynamics in the Earth-
Moon system. Section 8 is devoted to conclusions and further
work and Section 9 deals with some specific technical details.

2 The model

The problem of describing the motion of a solar sail in the Earth-
Moon system has a natural and unavoidable non-autonomous
formulation. Indeed, a suitable model has to take into account
the gravitational potential of the Earth and the Moon as well as
the position of the Sun. The last is mandatory to describe how
Solar Radiation Pressure changes with the motion of the Sun.
Without further considerations, a model involving the mentioned
properties has to be, at least, periodic in time.

As a first approximation and, in order to keep the model as sim-
ple as possible, one uses to consider a modified version of the
Restricted Three Body Problem. The modification consists in
adding to the equations of motion a term corresponding to the
SRP. This additional term depends on the position of the Sun
and is periodic in time. The influence of Sun’s gravity might
be added as well. There are two main reasons to do such thing.
First, there are several works reporting a remarkable impact due
to Sun’s gravity in the Earth-Moon system. Second, to add the
effect of Sun’s gravity (remind that SRP is to be considered)
does not increase the dynamical complexity of the system. Let
us be more precise on what we mean. In an autonomous prob-
lem, the simplest invariant objects are equilibrium points, in pe-
riodic models, the simplest invariant objects are periodic orbits.
As long as one keeps increasing the number of frequencies in the
vectorfield, the dimension of the simplest invariant objects keeps
increasing. In our case, since SRP is already a perturbation with
the same period as the Sun, it does not matter if Sun’s gravity is
included or not, the simplest invariant objects are periodic orbits
with the same period as the Sun.

2.1 The Quasi-Bicircular Problem

The Quasi-Bicircular Problem (QBCP) is a restricted version of
the Four Body problem. The model, introduced by C. Simó, is
a coherent version of the Bicircular Problem. To construct the
model, one prescribes a motion to the primaries which is a solu-
tion of the general Three Body Problem for the Earth-Moon-Sun
parameters. The strategy is to look for a solution that, at the ini-
tial time, the three masses are aligned and impose them to repeat
this configuration after a synodical month. We refer to [21] for
a deep explanation of the procedure. Also to [29, 30] where the
Sun-Jupiter-Saturn case is considered. With respect to the cited
works, we point out that the corresponding authors follow differ-
ent strategies to find this particular solution of the Three Body
Problem. In [21] the authors build a specific algebraic manipula-
tor to find directly the Fourier coefficients (up to a certain order).
In [29] the approach is to use a continuation method to go from
an easy to compute solution of the Two Body Problem to the
desired one by moving the mass of Saturn.

The quasi-bicircular solution of the Earth-Moon-Sun system is
planar i.e. the three bodies move in the same plane. After the
quasi-bicircular solution is computed one can write the equations
of motion of the test particle, prescribing the quasi-bicircular so-
lution as motion for the primaries. It is usual to compute the
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quasi-bicircular solution in the Jacobi frame, however, if one has
the purpose of describing the dynamics in the Earth-Moon vicin-
ity, it is suitable to use the frame of reference corresponding to
the Earth-Moon RTBP. To do so, one has to perform three differ-
ent transformations. First, one has to use a translation to move
the origin from the global barycentre to the Earth and Moon
centre of masses. Second, one has to use a rotating (synodic)
frame to keep the Earth and the Moon fixed on the horizontal
axis. Third, the unit of length is scaled so the distance between
the Earth and the Moon is equal to one. The units of mass and
time which are usually selected in the Earth-Moon RTBP can
be imposed already in the Jacobi formulation of the Three Body
Problem.

The resulting model is a Hamiltonian system with three and a
half degrees of freedom. The Hamiltonian function can be writ-
ten as

H =
1

2
α1(p

2
x + p2y + p2z) + α2(pxx+ pyy + pzz)

+ α3(pxy − pyx) + α4x+ α5y

− α6

(
1− µ
rpe

+
µ

rpm
+
mS

rps

)
,

(1)

where, r2pe = (x−µ)2+y2+z2, r2pm = (x−µ+1)2+y2+z2,
r2ps = (x− α7)

2 + (y − α8)
2 + z2, and for i = 1, . . . , 8 αi is a

real-valued periodic function. That is,

αi(θ) = ai0 +
∑
k≥0

aik cos kθ +
∑
k≥0

bik sin kθ.

Here, θ = ωSt and ωS is the frequency of Sun. We name TS
the period of Sun. It holds TS = 2π/ωS . The periodic function
αi is odd for i = 1, 3, 4, 6, 7 and even for i = 2, 5, 8. Ob-
viously one can only have a numerical approximation of these
functions. In this case, we take advantage on the computations
done in [21] and take the same values for the Fourier coefficients
of the periodic functions αi’s. These periodic functions are the
manifestation of several features of the model. Concretely,

(i) (α7, α8, 0) is the position of Sun in the plane of motion of
the primaries.

(ii) α1, α2, α3 and α6 capture the fact that the distance be-
tween Earth and Moon is not constant.

(iii) α4 and α5 take into account the Coriolis effect due to the
rotating frame of reference.

It is easy to see that the Hamiltonian function (1) has the symme-
try (θ, x, y, z, ẋ, ẏ, ż) 7→ (−θ, x,−y, z,−ẋ, ẏ,−ż), ẋ = px+ y,
ẏ = py − x, ż = pz .

2.2 Modeling SRP

The Solar Radiation Pressure (SRP) is the pressure exerted by
the impact of photons upon a body. While the incidence of this

effect is negligible in our everyday experience, SRP has a re-
markable impact in the Solar System and some phenomena can-
not be explained without it. Perhaps two of the most relevant
ones are the existence of comet tails and the motion of interstel-
lar dust. In both cases SRP acts together with the solar wind.
The idea behind solar sailing is to take advantage on this effect
to move a spacecraft. The concept of this type of thrust is rad-
ically different from the traditional ones, hence solar sails have
to be used in different contexts. The main advantage of solar
sailing is that the propellant is unlimited (the only limitation is
the lifespan of the sail). The main inconvenient is that the accel-
eration given by SRP is much smaller than the one achieved by
a traditional thruster. The force exerted by SRP can be derived
from any theory consistent with the fact that light (as a particle)
can push matter. In [31] the author describes how the action of
SRP is derived from both quantum mechanics and electromag-
netic point of view. It holds that, as a first approximation, the
pressure on some point at distance r to the Sun is given by

P =
WE

c

(
RE
r

)2

, WE =
LS

4πR2
E

.

where, RE is the Earth-Sun distance, LS is the solar luminosity
and c is the speed of light. Notice that this is an inverse square
law, fact that eases to compare SRP and Solar gravitation. This
law considers the Sun as a punctual mass, if one takes into ac-
count the angular size of the solar disk, the expression for P
becomes more sophisticated [31]. We stress that, if the photons
impact on a perfectly reflecting surface, the observed pressure
is twice this value of P (due to the action-reaction law). Con-
sider now a solar sail with area A and mass m. Suppose also
that the sail is perfectly reflecting. The force exerted upon the
spacecraft by SRP is given by

FSS = 2PA〈~r, ~n〉2~n,

where ~r is the Sun-sail vector and ~n a the unitary normal vector
to the surface of the sail. As we already have pointed out, the so-
lar sail acceleration can be written in terms of Sun’s gravitational
acceleration

~aSS = β
Gms

r2PS
〈~r, ~n〉2~n, (2)

wheremS is the mass of the Sun,G is the universal gravitational
constant and β is the so-called lightness number of the Sail. The
lightness number is the ratio between SRP and Sun’s gravita-
tional acceleration. It is used to quantify the effectivity of the
sail. Real solar sails in space have achieved the following val-
ues: β = 0.001 (IKAROS), β = 0.08 (Nanosail) and β = 0.011
(LightSail-1). When β = 1 the magnitude of SRP acceleration
(if the sail is perpendicular to the Sun) is the same as Sun’s grav-
itational acceleration but with opposite direction. Indeed,

β =
σ∗

σ
, σ∗ =

LE
2πGmSc

≈ 1.53g/m2.

The quotient σ = m/A is the sail loading parameter and
parametrizes the performance of the Sail. In Table 1, a numer-
ical relation between the lightness number, the loading param-
eter, the characteristic acceleration and the area of a sail with
fixed mass is provided.
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Table 1: Relation between β, the sail lightness number, σ
the inverse of the area-to-mass ratio of the satellite, a0, the
characteristic acceleration and A, the sail area requirements
for 10 kg of total mass [32].

β σ (g/m2) a0 (mm/s2) Area (m2)
0.01 153.0 0.059935 ≈ 8× 8
0.02 76.5 0.119869 ≈ 12× 12
0.03 51.0 0.179804 ≈ 14× 14
0.04 38.25 0.239739 ≈ 16× 16
0.05 30.6 0.359608 ≈ 20× 20

Let us take a look again to expression (2). The term GmS/r
2
PS ,

depends on the position of the sail in the Earth-Moon system.
However, this dependence is negligible compared to the depen-
dence on the position of Sun. Hence, it is usual [9, 33, 14, 13, 15]
to perform the following simplification:

mS

r2PS
≈ mS

x2S + y2S
.

Here, the vector (xS , yS , 0) stands the position of Sun in the
plane of motion of the primaries. Therefore, it is assumed that, in
terms of the characteristic acceleration, the sail can be regarded
as frozen at the centre of masses of the Earth-Moon system.

Now we can adjust the SRP acceleration to the features of the
QBCP. In the first place, the characteristic acceleration is modi-
fied to take into account the non-constant distance between Earth
and Moon, that is,

α6
mS

α2
7 + α2

8

= α6
mS

D2
,

whereD2 = α2
7+α

2
8. We only have to determine the orientation

of the sail. The unitary vector ~r is taken as the unitary Sun-Earth-
Moon barycentre direction, that is

~r = (α̃7, α̃8, 0) =
(α7, α8, 0)

D

Let us choose ~γ orthogonal to ~r i.e. ~γ = (−α̃8, α̃7, 0). Finally,
~n = R~γδ~r, where R~γδ stands for the rotation matrix of angle δ
along ~γ i. e. ~n = c δ + α̃2

8(1− c δ) −α̃8α̃7(1− c δ) α̃7 s δ
−α̃8α̃7(1− c δ) c δ + α̃2

7(1− c δ) −α̃8 s δ
−α̃7 s δ −α̃8 s δ c δ

 ·
 α̃7

α̃8

0


=

 α̃7 c δ
α̃8 c δ
s δ

 .

To avoid heavy notation, we use c δ to indicate cos δ and s δ to
denote sin δ.

Now, taking into account that, by construction, the angle be-
tween ~r and ~n is δ, 〈~r, ~n〉 = cos δ, the acceleration due to SRP

is

~aSS = α6β
mS

D2
cos2 δ

 α̃7 cos δ
α̃8 cos δ
sin δ

 .

The resulting model is a three and a half degrees of freedom
Hamiltonian system whose dynamics is given by the following
function:

H =
1

2
α1(p

2
x + p2y + p2z) + α2(pxx+ pyy + pzz)

+ α3(pxy − pyx) + α4x+ α5y

− α6

(
1− µ
rpe

+
µ

rpm
+
mS

rps

)
− βmS

a2S
〈~ss,~e〉.

(3)

Here, the vector ~ss is given, component by component, as:

ssx = cos3 δα̃7,

ssy = cos3 δα̃8,

ssz = cos2 δ sin δ,

and ~e = (x, y, z)T . It is easy to see that the Hamiltonian function
(3) has the symmetry

(θ, x, y, z, ẋ, ẏ, ż, β, δ) 7→ (−θ, x, y,−z, ẋ, ẏ,−ż, β,−δ), (4)

ẋ = px + y, ẏ = py − x, ż = pz .

On the orientation of the sail: The parameter δ (the pitch an-
gle) defines the orientation of the sail in space. The angle δ pro-
vides out-of-plane acceleration if δ 6= 0. In the case when δ = 0
there is no out-of-plane acceleration. Therefore, the orbits that
are confined in the plane of the primaries stay confined when the
sail is added. To study these confined motion one can dispense
with the vertical motion and the system can be considered a two
and a half degrees of freedom Hamiltonian system. It is easy to
see that, for a fixed value of β, the magnitude of SRP acceler-
ation is maximized at δ = 0, while the maximum out-of-plane
acceleration is given by ±δmax = ± sin−1(1/

√
3). The pitch

angle has physical sense when δ ∈ [−π/2, π/2]. If one of the
pitch angle is set to π/2 or −π/2, SRP vanishes.

3 Preliminaries: The Resonant orbits of the QBCP

Let us set our mind in the context of the RTBP and remind that,
as application of the Lyapunov centre theorem, we know that
a family of periodic orbits (which can be parametrized by the
period) grow along each elliptic direction related to each La-
grangian equilibrium point. Both, L1 and L2 have two of these
elliptic directions.

When the perturbation due to the gravity of Sun is considered,
almost all (in the measure theory sense) these periodic orbits are
replaced by two-dimensional invariant tori. Essentially, the peri-
odic orbits gain the frequency of Sun. Anyhow, there is a group
of these periodic orbits that remains being periodic when Sun’s
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gravitational potential is considered. These orbits are the ones
whose period is a (rational) multiple of the period of Sun. These
orbits are called resonant orbits.

Summarizing, there is a set of periodic orbits of the RTBP, close
to the Lagrangian points L1 and L2, that can be continued as
a TS-periodic orbits to the QBCP. These computations can be
found in [21]. In this work the authors set labels for the orbits
depending on the Lagrangian points which they are related to
and their properties. When these orbits are continued from the
RTBP to the QBCP several bifurcation points appear. That is,
it is usual that a resonant orbit of the RTBP has several related
orbits in the QBCP. The orbits of the QBCP are labeled taking
into account these relations.

In Table 2 we summarize the given information. The orbits are
labeled according to [21]. In the left column we show the la-
bel of each resonant orbit of the RTBP. Notice that these labels
start with a zero. The first character of each label indicates the
libration point the orbit is associated with. The second charac-
ter refers to the type of family: numbers identify orbits in the
Lyapunov family and letters do it for orbits in the Halo family.
For instance 12 is a Lyapunov trajectory near to L1 while 2A+

is a Halo orbit related to L2. The ± sign as super-index only ap-
pears in the Halo orbits. The + stand for trajectories of the Halo
family whose initial condition lie above the plane. The sign −
denotes the symmetric counterpart below the plane.

In the central columns, we show the order of the resonance and
the number of bifurcating orbits appearing during the continua-
tion. Lastly, in the right column, we show the orbits correspond-
ing to the QBCP.

Table 2: Continuation of the low order resonant orbits from
the RTBP to the QBCP. The first column contains the label
of the orbits corresponding to the RTBP. The second col-
umn contains the order of the resonance. The third columns
contains number of bifurcating orbits. The fourth column
contains the label of the orbits corresponding to the QBCP.
See [21] for more details. See text for the color code.

RTBP RES BIF QBCP
012 1 : 2 2 12, 13
014 1 : 1 4 14, 15, 16, 17
018 1 : 1 4 18, 19, 1A±, 1B±

01C 1 : 3 2 1C±, 1D±, 1N±

01E 1 : 3 2 1E±, 1F±

022 1 : 2 4 22, 23, 24, 25
026 1 : 6 4 26, 27, 28, 29
02A 1 : 2 4 2A±, 2B±, 2C±, 2D±

02E 1 : 3 2 2E±, 2F±

026 1 : 4 2 2G±, 2H±

On the color code: We have added a color code to indicate
the linear normal behaviour of each orbit. Labels in red stand
for orbits of type saddle×centre×centre. Labels in green denote

linear character of the kind saddle×saddle×centre. Names in
cyan denote totally hyperbolic orbits. The color black denotes
totally elliptic orbits. The continuation for the orbits in yellow
do not reach the homotopy level of the QBCP and, therefore,
are not considered. This color code will be maintained during
the whole manuscript. In the plots showing continuation curves,
the points are colored according to this pattern. Notice that in
other plots such as the ones in which we plot trajectories of the
flow, we use different colors and they do not denote any kind of
normal behaviour.

Dynamical equivalents of the libration points: The libration
points L1 and L2 are no longer equilibria in the QBCP. These
points are replaced by periodic orbits with the same period as
Sun. Usually, in the literature, these orbits are refereed as the
dynamical equivalents of the Lagrangian points L1 and L2.
Through this work, we shall referee to these equivalent orbits
by the name of the corresponding equilibrium point.

Orbits to be followed: In this work we do not keep track on
how all the orbits of Table 2 evolve with respect to the parame-
ters of the sail. We focus on the most relevant ones. Let us give
some words on how we choose them. First of all most of the bi-
furcating orbits end up having trajectories which are close (in the
phase space) to each other for any time. From these orbits which
are similar, we select just one. On the other hand, there are or-
bits that are close to collision with one of the primaries (maybe
both). These orbits lack of great interest as the effect of SRP
is to drive them closer to the primaries but without a substantial
change on their shapes. These quasi-colliding orbits are: 14, 15,
16, 17, 18, 19, 1A±, 1B±, 1E±, 1F± 26, 27, 28, and 29 . We
focus on the orbits L1, 12, 1C±, 1N±, L2, 22, 2A±, 2E± and
2G±. The orbits which have not been mentioned are skipped as
their trajectories are similar to one of the studied orbits.

The Stroboscopic map: The dynamical system studied in this
work is Hamiltonian with three and a half degrees of freedom,
that is, the Hamiltonian function has three degrees of freedom
and also depends periodically on time. Moreover, all the orbits
we keep track on have the same period as the Hamiltonian. A
suitable tool to study this kind of systems is the so-called Stro-
boscopic map, i.e. the map obtained from evaluating the flow
at the period of the Hamiltonian. As the differential equation is
Hamiltonian, the stroboscopic map is symplectic. The periodic
orbits with the same period as the vectorfield appear as fixed
points of the Stroboscopic. The coordinates of the fixed points
represent an initial condition of each orbit in the flow. The sta-
bility of the fixed points is given by the differential of the Stro-
boscopic map and coincides with the monodromy matrix of the
corresponding periodic orbit. We shall refer to these invariant
object as periodic orbits or fixed points indistinctly.
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4 Motion near L1

In the present section we focus on how the periodic orbitsL1, 12,
1C± and 1N± change with respect to the parameters of the sail.
We perform a continuation of each of these orbits with respect
to the parameter β for a perpendicular sail. Then we move the
pitch angle for fixed values of the β.

4.1 Continuation with respect to β

The following set of simulations, fixes the orientation of the sail
perpendicular to Sun and continues the periodic orbits L1, 12,
1C± and 1N± with respect to β. Let us check, first, how the dy-
namical equivalent of L1 changes. As the sail is perpendicular
to Sun, there is no out-of-plane acceleration due to SRP. There-
fore, L1 remains being a planar orbit for all values of β. As the
value of β increases, the trace of the orbit becomes larger. Even
though the trajectories get bigger in size, the growth with respect
to β is slow.

In Figure 1 we show trajectories corresponding to the contin-
uation of L1 (purple) and 12 (green) with respect to β. The
continuation is started at β = 0 and it is stopped at the value
β = 1. This maximal value of β is chosen in the seek for a
clearer picture of the situation. As we mentioned, Figure 1 also
shows the dynamical equivalents of 12 for the same values of β.
Here the situation is slightly different. First of all, the trajecto-
ries grow, becoming larger. Notice that this growth is limited by
the presence of the primaries. For some value of β the dynam-
ical equivalents of 12 start to decrease in size and, in fact, until
they meet L1 (at a value of β much larger than what is permitted
taking into account the current technology).

We do not show a characteristic curve for this continuation as
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Figure 1: Trajectories corresponding to the continuation of L1
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the dynamical equivalents of L1 and the green trajectories cor-
respond to the dynamical equivalents of 12. The blue curve de-
notes the trajectory 12.
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Figure 2: Continuations with respect to β of 1C+ and 1N+ for
the fixed values of δ = −0.2,−0.5,−1 and 0. The angles are
measured in radians.

in other cases because the interesting phenomena in this contin-
uation occurs for extremely large values of β. It is enough to
mention that the periodic orbits L1 and 12 are connected with
respect to β through a saddle-centre bifurcation.

Let us see now how SRP affects the Halo orbit 1C+ and 1N+

(the situation of 1C− and 1N− is completely symmetric). In
Figure 2 it is displayed the continuation of 1C+ with respect
to β for different values of δ. Notice that, each curve crosses
the homotopy level {β =}0 twice: 1C+ is the crossing point at
the bottom, the one at the top is 1N+. The characteristic curves
show several bifurcations. At the beginning the curves (red) start
with saddle×centre×centre bifurcation. There is a period dou-
bling bifurcation and the curves turn into saddle×saddle×centre.
After a transition not seen in Figure 2, due to the scale, the
curves switch to centre×complex saddle (magenta). Then
the curve turns again into saddle×centre×centre. After a
saddle-centre bifurcation the linear character switches finally to
saddle×saddle×centre.

4.2 Continuation with respect to δ

Let us study how the fixed point corresponding to the periodic
orbit L1 changes with respect to δ. In Figure 3 we show ten
characteristic curves for fixed values of β from β = 0.01 to β =
0.1 (with constant step 0.01). The behaviour of all these curves
is the same: First, the z value grows for δ ∈ (−π/2,−δmax).
After reaching the homotopy level {δ = −δmax}, the z value
starts to decrease, crossing the plane of motion of the primaries.
When the continuation curve reaches {δ = δmax} the z value
increases until {δ = π/2}, where the curve meets again L1.
This is the typical effect of SRP on the trajectories when the
orientation of the sail changes, at least for small values of β. If
we look at the trajectories in the whole phase space, we notice
that, for negative values δ, the trajectories are confined above the
plane of motion of the primaries, while, for positive values, they
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Figure 3: Continuations with respect to δ of L1. The parameter
β is fixed for values between 0.01 and 0.1. The stability type is
saddle×centre×centre for all the fixed points.

lie below. The linear behaviour is the same for all the values of
δ and all the characteristic curves: saddle×centre×centre. The
maximal eigenvalue does not change substantially in any of these
curves. We remark that the planar orbits near the geometrically
defined L1 are highly unstable, i.e. the maximal eigenvalues
have extremely large moduli, in this case, it is of order 108 (see
Table 3). The effect of SRP on the stability of the orbits is treated
in a more deep way in Section 6.

We discuss now the fate of 12 as the parameter δ changes. In
Figure 4 we show ten characteristic curves for fixed values of β
from β = 0.01 to β = 0.1 (with constant step 0.01). The first
thing to be said is that the plot shown in Figure 4 can be mis-
leading. We observe that, the fixed point corresponding to 12
is driven below the plane of motion of the primaries for nega-
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Figure 4: Continuations with respect to δ of 12. The parameter
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Figure 5: Trajectories corresponding to the characteristic curve
of Figure 4 for β = 0.01. The blue curve at contained in {z =
0} is the trace of orbit associated to δ = 0. The green curve
corresponds to the trajectory with δ = −δmax. The purple curve
to the trajectory with δ = δmax. See text for more details.

tive values of δ while one expects the contrary. In Figure 5 we
show the trajectories corresponding to the characteristic curve
for β = 0.01. The curve in green is the one with δ = −δmax,
the solid one in blue corresponds to δ = 0 (it is contained in
the plane) and the purple one corresponds to δ = δmax. The
blue dashed solid curves are a sample of the curves correspond-
ing to the rest of the initial conditions in the characteristic curve.
Notice that, even if the initial condition of the green curve lies
below the plane, the trajectory is tilted up. Analogously, the
purple curve is tilted down while the initial condition is above
the plane. The interesting thing about this behaviour is that, the
green and purple curves have a lot of the desirable properties of
Halo orbits but lie much closer to the plane. Again, for reason-
able values of β the impact of SRP is not strong enough to pro-
duce bifurcations. Henceforth, the stability type of all the fixed
points of Figure 4 (and the corresponding associated trajectories
in Figure 5) is saddle×saddle×centre. Let us analyze the contin-
uation with respect to δ of the Halo orbits 1C+ and 1N+. The
situation of their symmetric counterparts, 1C− and 1N− is com-
pletely analogous. For small enough values of β, the effect of the
sail’s orientation is to move the orbits upwards (for negative val-
ues of δ) and downwards (for positive values of δ). Anyhow for
β > β∗ ≈ 0.078 the situation is different. Indeed, if such is the
case, the periodic orbits 1C− and 1N− are connected by con-
tinuation with respect to the parameter δ. In Figure 6 we display
the characteristic curves for β = 0.01, 0.02 and 0.03 (we only
show three curves because to put more does not add relevant in-
formation but, due to the superposition of the curves, makes the
picture harder to read). One can observe that the curve is splitted
in two connected components. The first of these two components
is obtained by continuation for negative values of δ (continuation
forwards). Indeed, if we start at 1C+ and δ = −π2 , we find fixed
points for some range δ ∈ [−π2 , δ

1
tp(β)], where δ1tp(β) is a value
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of δ, depending on β, for which the curve has a turning point (a
saddle-centre bifurcation) and the continuation curve goes back
to the homotopy level {δ = −π2 }. Numerical evidences suggest
that |δ1tp| is an increasing function of β. The stability type of the
orbit changes along the curve. Orbit 1C+ is of type saddle ×
centre × centre, while 1N+ is of type saddle × saddle × centre.
There is also a relevant range of δ-values for which the stability
type of the curves is complex saddle × centre. Another stability
type appears to fulfill transitions between saddle×centre×centre
and complex saddle× centre (and viceversa): the totally elliptic.
However it appears for ranges so small it cannot be observed in
Figure 6. The second connected component is obtained by con-
tinuing 1C+ from {δ = π

2 } to smaller values of δ (continuation
backwards). We obtain new fixed points for δ ∈ {δ2tp(β), π2 }.
Again δ2tp is a value of δ for which the characteristic curve en-
counters a turning point. The transition between stability types is
similar to the one described for the first component of the curve.
The simulations show, as well, that δ2tp is an increasing function
of β. We would like to notice that both pieces of the curve are,
in fact, two different loops (there is a part of each component
which does not appear in Figure 6 because they take physically
meaningless values of δ /∈ [−π2 ,

π
2 ]). The connected component

obtained by continuation backwards, the one on the right in Fig-
ure 6, is larger, and if β is small enough (as the values we show
in Figure 6) it crosses {δ = 0}. Notice that there are no fixed
points for δ ∈ (δ1tp, δ

2
tp). The length of this interval increases

with β.

A geometrical point of view: To reach a better understanding
of the situation described for the continuations of 1C+ and 1N+

we switch to a more geometrical point of view. As we move the
parameters β and δ, we create a surface of fixed points. This
surface is compact, with boundary, and embedded in the six-
dimensional phase space. It also contains the fixed points 1C+

and 1N+ corresponding to the QBCP. This surface has a geo-
metric saddle point. In Figure 7 we show several level curves in
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Figure 6: Continuations with respect to δ of 1C+ and 1N+. The
parameter β = 0.01, 0.02 and 0.03..
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β (continuation curves with respect to δ). Notice that the values
of the horizontal axis range between −1.3 and 0. The saddle
point is clearly observed.

5 Motion near L2

In the present section we focus on how the periodic orbits L2,
22 , 2A±, 2E± and 2G± change with respect to the parameters
of the sail. As in the section devoted to L1, we first measure the
effect of the SRP when the sail is perpendicular to Sun. To do so,
we perform a continuation of each of these orbits with respect to
the parameter β for a perpendicular sail. Then we move the pitch
angle for fixed values of the β.

5.1 Continuation with respect to β

We focus first in the planar orbits. Let us fix δ = 0 and continue
L2 and 22 with respect to β. As we pointed out before, the per-
pendicularity of the sail keeps these orbits to be planar for all the
values of β. Unlike the case of L1 and 12, the fixed points are
not connected by continuation with respect to β (at least, for the
values studied in this work). L2 can be continued, however, to
the orbit 24 of Table 2. We recall that orbit 24 bifurcates from
22 when it is continued from the RTBP to the QBCP and that
their traces remain close for all time. In practical effects, they
can be considered the same orbit. Again, the value of β is too
large to be considered to practical purposes (around 4.2). Being
realistic on the values of β considered, we can only state that the
SRP changes the size and the shape of the periodic orbits L2. In
the case of 22 we have continued it for large values of β see-
ing small changes in the orbits besides becoming slightly larger.
Similarly, the SRP has not a remarkable impact on the halo or-
bits 2A± when the sail is perpendicular to Sun. Not even the
size of the orbit is change substantially. We do not provide plots
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of these continuations as nothing interesting happens for realis-
tic values of β. The case of the halo orbits 2E± and 2G± is a
not much more interesting. Let us do, however, some comments.
First of all, let us notice that these Halo orbits reach much higher
values above (below) the plane of motion of the primaries than
the orbits 2A±. Second, they pass much closer to Moon. With
these two points under consideration, is to be expected some dif-
ference. Indeed, the SRP acts in 2E± and 2G± displacing the
orbits towards the position of Moon and making their traces pass
even closer. In fact, with relatively low values of β we can pro-
duce colliding trajectories from 2G±. The linear character o the
orbits L2, 22, 2E± and 2G± remains unchanged for all the ex-
plored values of β when the sail is perpendicular to Sun.

5.2 Continuation with respect to δ

We focus now on the continuation curves obtained by fixing β
and changing δ. Let us start with L2. As in the case of L1, the
effect of SRP to the fixed point L2 is to move it above the plane
(for negative values of δ) and below the plane (for positive val-
ues of δ). See Figure 8 for a sample of ten characteristic curves
with β ranging from 0.01 to 0.1 with constant step-size. There
we see how the fixed points corresponding to L2 increase its z
value, reaching a maximum at δ = −δmax, then they decrease,
crossing the plane at δ = 0, reaching a minimum at δ = δmax.
Finally the fixed points return to the plane of motion of the pri-
maries to meet the QBCP L2 at the homotopy level π

2 . The
stability type of all the curves in Figure 8 is saddle× centre ×
centre. Let us describe the continuations of 22, 2A+ and 2A−.
Notice that, in this case, 2A+ and 2A− are named separately.
For sufficiently large values of β, the three orbits are related by
continuation and the characteristic curve is splitted in three con-
nected components. We take a look first at Figure 9. This picture
is a magnification of Figure 10 and shows the continuation for-
wards of 22. We show a sample of ten characteristic curves for
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Figure 8: Continuation of the orbit L2 with respect to δ for fixed
values of β. These values of β range between 0.01 and 0.1 with
constant step.

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

-1.5 -1.4 -1.3 -1.2 -1.1 -1

z

δ

Continuation of 22 w.r.t. δ

β=0.01β=0.1

SxCxC

SxSxC

Figure 9: Continuation of the orbit 22 and 2A− with respect to δ
for fixed values of β. These values of β range between 0.01 and
0.1 with constant step.

which the qualitative behaviour is the same: The method finds
fixed points for δ ∈ (−π2 , δ

3
tp(β)). Again, |δ3tp| increases with

β. The turning point corresponds to a saddle-centre bifurcation
and the linear behaviour switches from saddle×saddle×centre to
saddle×centre×centre. After the turning point, the continuation
curve returns back to the homotopy level {δ = π

2 }. Again we
see that the initial conditions of 22 move below the plane when
we expect to move above and, again, it is a matter of initial con-
ditions. The trajectories are, in fact, tilted up. Moreover, this
continuation sets an homotopy from a planar orbit to a Halo one,
which makes this particular continuation interesting.

Figure 10 shows the complete picture. The small component
on the left are the curves represented in Figure 9. The other
small component is the symmetric counterpart: A set of contin-
uation curves (with β between 0.01 an 0.1) connecting 22 with
2A+ but by continuation backwards. Let us focus on the long
component i.e. the continuation of 2A+ forward. These are
the ten curves in Figure 10 crossing from the homotopy level
{δ = −π2 } to the homotopy level {δ = π

2 }. Again, the fixed val-
ues of β range from 0.01 to 0.1 with constant step-size. The
qualitative behaviour of all these curves is the same. Let us
describe it. The characteristic curves start for δ = −π2 at the
QBCP 2A+. The z coordinate of the fixed points increases its
value as δ ∈ (−π2 ,−δmax). For δ ∈ (−δmax, 0), the z value
decreases but it is still positive. For δ = 0 the characteristic
curves cross the plane and meet a planar orbit. This planar or-
bit can be obtained also continuing 22 with respect to β when
the sail is perpendicular to Sun. Notice that, before the charac-
teristic curve crosses the plane, there is a saddle-centre bifurca-
tion and the stability type changes form saddle×centre×centre
to saddle×saddle×centre. After the characteristic curve crosses
the plane, the z value keeps decreasing (it encounters another
saddle-centre bifurcation) until it reaches the homotopy level
{δ = δmax}. These continuations establish homotopies between
the orbits 2A+ and 2A− i.e. the characteristic curves do not
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Figure 10: Continuation of the orbit 22, 2A+ and 2A− with re-
spect to δ for fixed values of β. These values of β range between
0.01 and 0.1 with constant step.

cross the plane of motion of the primaries again, it ends up at
2A−. As in the case of the continuations of 1C+ and 1N+, there
is a geometrical interpretation of the shape of the continuation
curves connecting 22, 2A+ and 2A−. There is a compact with
boundary surface of fixed points that contains 22, 2A+ and 2A−.
This surface has also a geometric saddle point at {z = 0, δ = 0}.
However, in this case, the saddle point is degenerated due to the
symmetry of the vectorfield given in (4).

Figure 11 shows the continuation of 2G+ (the situation of 2G−

is analogous by symmetry) with respect to δ. Again the values
of β range from 0.01 to 0.1 with constant step-size. The charac-
teristic curve starts, for δ = −π2 , at the QBCP 2G+. The z value
of the characteristic curve increases for δ ∈ [−π2 ,−δmax]. A
number of period doubling-halving processes take place in these
curves. We name a period doubling-halving process the mecha-
nism for which a curve of fixed points undergoes a period dou-
bling bifurcation and two families of 2-periodic points branch
out and, after, the two branched families join together with the
main one. All the changes of the stability type in Figure 11 are
produced by this kind of process. Notice that, for β = 0.01, the
characteristic curve only undergo to a single period doubling-
halving process near to the homotopy level {δ = δmax}. As β
increases, a second process can appear, in Figure 11 it can be ob-
served already for the curve corresponding to β = 0.03. For suf-
ficiently small values of β we see the repeated pattern for which
the z-value reaches its maximum at δ = −δmax. However as
β gets larger, the characteristic curve gets flat near δ = −δmax.
the curve corresponding to β = 0.1 even displays a local mini-
mum. Notice that, while the z value of the fixed point is actually
increasing, the maximal z value of the trajectory is not. This is
because the lower part of these orbits is close to Moon and this
is an obstacle for the orbits to be moved up. After reaching the
plateau around the homotopy level {δ = −δmax} the charac-
teristic curve decreases its z value until it reaches {δ = δmax}
(passing through a period doubling-halving process). Then, it
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Figure 11: Continuation of the orbit 2G+ with respect to δ for
fixed values of β. These values of β range between 0.01 and 0.1
with constant step. The situation for 2G− is analogous.

returns back to the original orbit for δ = π
2 . We show, in Fig-

ure 12, the trajectories corresponding to the characteristic curve
with β = 0.1. The solid blue curve corresponds to δ = ±π2
and it is the trajectory of 2G+ in the QBCP. The green trajec-
tory is the one with δ = −δmax while the purple curve is the
one with δ = δmax. We observe how the size and the shape of
2G+ changes with respect to δ. Notice the difference in size be-
tween the green and purple trajectories. The magnitude of the
SRP acceleration is the same one for both.

We do not show any continuation with respect to the Halo orbits
2E± because it is even more misleading than the ones in Figure
11. Instead of that, we take a look at the trajectories directly.
In Figure 13 we show the trajectories corresponding to the con-
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Figure 12: Trajectories corresponding to the characteristic curve
with β = 0.1 of Figure 11. The purple curve corresponds to
δ = δmax and the green one to δ = −δmax. See text for more
details.
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tinuation with respect to δ for the fixed value β = 0.04. The
orange trajectory represents 2E+, the green trajectory is the one
with δ = −δmax and the purple curve is the one with δ = δmax.
For all the values of β explored, the continuation takes 2E+ to
itself. The orbits in this homotopy are large and pass close to
the Moon (depicted in Figure 13 as a black point). We do not
observe changes in the stability type, it is totally elliptic for all
the values of β and δ explored in this work.

6 On the stabilizing effect of SRP

We have been analyzing the different kind of resonant orbits and
how they evolve with respect to the parameters of the sail. This
study gives insight on potential usage of some of the orbits ap-
pearing in it, in view of hypothetical mission design. As almost
all these orbits are unstable, the feasibility of such missions re-
lies on station keeping. A reasonable station keeping strategy
requires the time span between maneuvers to be as large as pos-
sible. High hyperbolicity represents a thread to station keeping.
The maximal eigenvalue of the Monodromy matrix (also called
maximal Floquet exponent) related to each orbit gives an esti-
mation on how small errors in the initial conditions of the orbits
are propagated in a period of Sun. The larger the maximal Flo-
quet exponent is, the more number of maneuvers in one period of
Sun (around 29 days) are required to control the probe. The nat-
ural motion around the Earth-Moon L1 and L2 points is highly
unstable. In Table 3 we show the eigenvalues of the periodic or-
bits replacing L1 and L2 (of order 108 and 106 respectively) in
the QBCP. Obviously, it would be mandatory to perform a large
number of maneuvers to overcome such instability. Similar val-
ues hold for the maximal Floquet exponents of the planar res-
onant Lyapunov orbits 12 and 22. However, the resonant Halo
orbits have much smaller maximal Floquet exponents. These
out-of-plane orbits seem, in principle, more appealing as natural

trajectories in which missions could be based on.

Table 3: Eigenvalues of the dynamical equivalents of L1

and L2. We only put three for each orbit. The rest are given
by their inverses due to the symplectic character of the stro-
boscopic map.

L1 (real) (imag)
1 460182151.57 0
2 −0.987151 0.159784
3 −0.963639 0.267205

L2 (real) (imag)
1 2397196.84 0
2 0.995818 0.0913562
3 0.917527 0.3976716

The parameters of the sail establish connections between some
of these orbits and, naturally, also does it with the correspond-
ing Floquet exponents. In Figure 14, we display the log10 of
the maximal Floquet exponent related to the fixed points of the
characteristic curve in Figure 2 (the one with δ = 0). The curve
cuts the axis {β = 0} in two points corresponding to the maxi-
mal Floquet exponent of 1C+ (the crossing between 1 and 1.5)
and the maximal Floquet exponent of 1N+ (the crossing point
between 2 and 2.5). The curve connects these two values and
it reaches the horizontal axis where the maximal Floquet expo-
nent is one. This range of parameters for which the log10 of the
maximal Floquet exponent is zero represents, first the transition
to complex saddle (totally elliptic points) and also the complex
saddle points. Notice that the points with complex saddle linear
type are also unstable but they are complex and the modulus is
close to 1. We stress the dramatic decay of the maximal Floquet
exponent appears for rather large values of β (larger than 0.1),
maybe too large for the current technological capabilities. Any-
how, in our opinion, the values are not too large and should be
taken into account for future missions: A solar sail permit us to
find out-of-plane orbits with small instability. Let us stress that,
in Figure 14 the sail is perpendicular to Sun.

To illustrate the effect the orientation of the sail has on the max-
imal Floquet exponents of orbits near L2, we take the continu-
ation curve of Figure 10 corresponding to β = 0.1. This char-
acteristic curve connects 2A+ and 2A−. Figure 15 shows how
the log10 of the maximal Floquet exponent changes with respect
to δ. The crossing of the curve with {δ = −π2 } is the maxi-
mal Floquet exponent of 2A+ while the crossing with {δ = π

2 }
corresponds to the maximal Floquet exponent of 2A−. By sym-
metry, the values of these two eigenvalues is the same. What
Figure 15 reveals is that being away from the plane gives bet-
ter stabilization of the sail. For orientation close to −δmax and
δmax the log10 of the maximal Floquet exponent falls blow 4
which means to lose two digits of accuracy less at each period
of Sun. On the other hand, the orbits close to the plane are more
unstable and the solar sail cannot prevent that. Indeed, at the
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Figure 14: log10 of the maximal eigenvalue of the characteristic
curve with δ = 0 appearing in Figure 2.

centre of Figure 15, for δ close to zero, we see how the log10 of
the maximal Floquet exponent grows again to values as large as
the ones associated to the original orbit and even bigger. Again,
the value of β is taken a bit large for the current technology, but
it is still suitable to illustrate the stabilizing effect of SRP near
L2.

7 On the effect of Sun’s gravity

As we have mentioned, there is a number of works pointing out
the important role Sun’s gravity plays in the Earth-Moon sys-
tem [34, 26, 23, 28]. To take into account Sun’s gravity in the
model, we use one among the simplest ways to introduce Sun’s
gravity. Besides it is not the first time Sun’s gravity is taken into
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Figure 15: log10 of the maximal eigenvalue of the characteristic
curve connecting 2A+ and 2A− (with β = 0.1) appearing in
Figure 10.

account to study the motion of a solar sail in the Earth-Moon
system [15, 33], this is the first work utilizing the QBCP. In the
mentioned works, the basis model used is the so called Bicircu-
lar Problem (BCP). We refer to [28] for a comparison between
models. This comparison reveals that the BCP is not a good
option to describe the motion around the translunar point and
this vindicates the usage of the QBCP as a basic model for this
work. Because in the QBCP the motion of Sun is not circular and
the non constant distance between Earth and Moon is taken un-
der consideration substantial disagreements in the gravitational
forces acting on a small particle. In Figure 16 we display a com-
parison between the RTBP and the QBCP. The plot is obtained
by taking a grid in the plane of motion of the primaries (the
other variables are set to zero) and measuring the normalized
differences between vector-fields. The blue points represent the
Lagrangian points. The differences are accentuated where the
gravity of Earth do not dominate the dynamics. Is specially re-
markable the fact that, near Moon and the triangular points, the
discrepancy is large. Due to the properties of the QBCP, the ac-
celeration due to SRP upon the sail used in the present work has
a small but noticeable disagreement with the solar sail accelera-
tion used in the literature [9, 13, 14, 15]. There, the SRP changes
in time according to the assumption that Sun moves in a circular
orbit (together with the centre of masses of the Earth-Moon sys-
tem). It is out of the scope of this paper to provide a comparison
between the results of this work and the results obtained if Sun’s
gravity is not included in the equations of motion. We address
the interested reader to [15] where similar simulations (to the
ones the present paper shows) are carried out. The disagreement
between the two models for the acceleration upon the sail is of
order 10−3. This disagreement do not depend on the effectivity
of the sail.We point out that the disparity of the results should
be taken into account in future studies (according to the goals).
The topology of the surfaces of fixed points (near L1 and L2) is
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Figure 16: Comparison between the vector-fields of the RTBP
and the QBCP. The color code denotes the normalized discrep-
ancy for a grid taken in the plane of motion of the primaries. See
text for more details.
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severely affected by the way Sun’s gravity is introduced.

8 Conclusions and further work

This work studies the motion of a solar sail near the Earth-Moon
L1 and L2 Lagrangian points. In has been taken under consid-
eration Sun’s gravity. A restricted model for the motion of the
primaries, the QBCP, is augmented to include the effect of So-
lar Radiation Pressure. The resulting model is a Hamiltonian
of three degrees of freedom and periodic time dependence. The
period of the Hamiltonian is the period of Sun. As far as we
know, this is the first time in the literature this particular model
has been used. We have studied how different periodic orbits
(with the same period as Sun) of the QBCP change with respect
to the parameters of the sail. Let us stress that, these are the sim-
plest invariant objects of the system. We have used the so-called
Stroboscopic map to see these periodic orbits as fixed points. As
the sail depends on two parameters, the pitch angle and the ef-
fectivity, each of these fixed points has a surface of dynamical
equivalents embedded in the phase space. We have studied the
geometry and topology of these surfaces by computing sections.
These sections are characteristic curves obtained by using the
continuation method. We have identified two of these surfaces
with special geometric properties. In particular these particular
surfaces have a saddle point (one of them is degenerated due to
the symmetry of the vectorfield involving the pitch angle). These
geometrical properties have a deep impact in the dynamics of the
system in terms of existence, linear character and trace of each
orbit for a given value of the parameters.

We also report the effect SRP has on the maximal Floquet expo-
nent of some orbits. Among the non-planar resonant Halo orbits
we studied in this work, there is a subset of them which can be
stabilized i.e. the maximal Floquet exponent can be reduced as
much as desired using suitable parameters of the sail. The value
of the effectivity required to accomplish that is a little bit larger
than the current technological capabilities, around 0.02. The im-
pact of SRP on the large hyperbolicity of the planar orbits is not
remarkable. Therefore, these Halo orbits (besides the natural
properties that make them interesting) are the ones suitable to
be used in mission design as station keeping strategies are reli-
able. Indeed, the small instability permit to reduce the number
of maneuvers to be performed on time.

Finally we give some words on the impact that taking under con-
sideration the gravity of Sun has. We do not provide a deep com-
parison on the results depending on the inclusion of Sun’s grav-
ity but we refer to specific works where similar computations are
presented. A short survey of differences spotted is given.

There is certainly much work to be done in this model. This
study is a first stage in which we understand how the simplest
invariant objects move through the phase space when the pa-
rameters are moved. For these orbits we only study the linear
behaviour and study of an extended region of the phase space
is required. This can be accomplished by using semi-analytical
tools or purely numerical ones. For instance, the stable motion
can be decoupled from the unstable one by means of the reduc-

tion to the centre manifold, which is a semi normal form process.
These centre manifold can also be computed numerically which
can be better to understand a larger piece of the phase space.
Finally, the global aspects of the dynamics can be understood
by the computation of large pieces of the unstable manifolds re-
lated to these invariant objects. These manifolds can be linearly
approximated and numerically grown as usual or approximated
to high order by means of the parameterization method.

9 Technical details

The integrations of this work have been carried out using a Tay-
lor method [35] with variable order and step-size. The required
accuracy for the integrations has been 10−16. Due to the their
highly unstable their character, it has been mandatory to use
a multiple shooting approach to compute most of the periodic
orbits. A maximum of four sections has been required. All
the periodic orbits have been computed with accuracy higher
than 10−12. The continuation method we use is the pseudo
arclenght method with a Newton scheme as a corrector. The
differential of the Stroboscopic (necessary to compute the or-
bits and study their stability) is obtained by using Jet Transport
[36, 37]. All the programs used to perform the computations of
this work have been written in C from the scratch. Files contain-
ing the values of the parameters used in this work can be found
at http://www.maia.ub.edu/∼marc/EMQBCP/
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