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This paper explores the capability of solar sails to transfer a probe from the displaced
L1 and L2 libration points to the region of practical stability (RPS) around the triangular
equilibrium points L4 and L5. If the sailcraft arrives inside the RPS with zero synodical
velocity, it will remain there with no need for station keeping maneuvers. Moreover, the
location of the RPS is ideal for space weather missions as the Sun can be observed from a
different angle compared to spacecraft orbiting the L1 point. The solar sail unstable mani-
folds of the displaced L1 and L2 points come close to these regions providing opportunities
for natural transfer trajectories. By varying the solar sail orientation along the manifold,
the dynamics are altered and simple transfer trajectories that reach the RPS with few sail
maneuvers are enabled. However, these trajectories are not optimal from a transfer time
perspective, but they are used in this paper as an initial guess in a direct optimization
method to find minimum-time transfers between the displaced L1 and L2 points and the
RPS at L4 and L5.

I. Introduction

Solar sails are a type of low-thrust propulsion system that take advantage of the Solar Radiation Pressure
(SRP) to accelerate a small probe by means of a highly reflective surface. To date, there have been three suc-
cessful solar sail demonstration missions: IKAROS by JAXA (May 2010), NanoSail-D by NASA (December
2010) and LightSail-1 by The Planetary Society (June 2016). These successes have sparked further interest
in solar sailing, resulting in more scheduled demonstration missions for the upcoming two years: LightSail-2
(the follow-up of LightSail-1 by The Planetary Society) and NASA’s proposed NEA Scout mission.

The unique selling point of solar sailing is the fact that its propulsive capabilities do not rely on an
on-board reaction mass, which makes solar sailing the preferred option for a range of challenging mission
concepts such as hovering along the Sun-Earth line sun-ward of the L1 point (also known as the Sunjammer
mission concept1), displacing the L1 point above the ecliptic plane for high-latitude observations of the
Earth (the pole-sitter concept2), precessing an elliptical Earth-centered orbit for long residence times in the
Earth’s magnetotail (the GeoSail mission concept3), and even low-cost multi-rendezvous NEO missions.4

The purpose of the current paper is to complement this extensive list of solar sail enabled mission concepts
with a preliminary study on the feasibility of solar sail transfers from the L1 and L2 points of the Sun-Earth
Restricted Three Body Problem (RTBP) to the vicinity of the L4 and L5 points.

The Sun-Earth RTBP is a well-known reference model in astrodynamics and has been extensively studied
in the past. It is also well known that the system exhibits five equilibrium points (L1, . . . , L5) whose position
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can be artificially displaced when including a solar sail acceleration and changing its orientation.5 Due to
their strategic location close to the Earth and their dynamical properties, periodic and quasi-periodic orbits
around L1 and L2 have been used as reference orbits for several mission in the past such as SOHO, Genesis,
GAIA, and Hershel-Plank. However, despite the fact that the orbits around L4 and L5 are stable and no
station keeping is required, they seem to have been forgotten for mission applications as they are hard to
reach. However, recent studies6,7 show that by adding a solar sail to accelerate the satellite, the vicinity of
the L4 and L5 points can be reached in a reasonable amount of time.

Besides the interest from an astrodynamics perspective, the L4 and L5 points also hold great scientific
interest as they provide a unique “side-on” view of the Sun. Such a view will be crucial in furthering the
understanding of the initiation and propagation of space weather events as well as improving current space
weather event forecasting capabilities. In particular, through the side-on view, the speed of coronal mass
ejections (CMEs) can be measured with greater accuracy and, from L5, the part of the Sun’s surface that is
about to rotate towards the Earth can be observed to provide a “sneak preview” of the CMEs.

This paper is part of an on-going project which intends to study the feasibility of solar sails as a propulsion
system to transfer a satellite from the vicinity of the Earth to the vicinity of L4/L5. One of our goals is to
use the natural dynamics of the system, taking advantage of the invariant manifold structure around L1 and
L2,8 to design transfer orbits to the practical stability region around L4/L5.9,10 In the literature we find
papers by Llanos11 and Sood6 who study this problem from a different point of view. In both papers, they
proposes to depart from a parking orbit around the Earth and reach a stable periodic orbit around L4/L5, a
different approach than ours. Despite the differences, we intend to compare some of our results in the near
future. We must note that Sood also considers solar sails as a propulsion system, while the work by Llanos
considers chemical propulsion.

We propose to use the L1 and L2 points as gate-ways to transfer a probe to the practical stability regions
around L4/L5. These two regions are ideal final destination as the trajectory of a probe starting inside the
region with zero velocity in synodical coordinates, will not escape for more than 1000 years. Furthermore,
we will employ a two-step process to obtain time-optimal transfers. The first step consists of generating
transfer orbits from the vicinity of L1 and L2 to a suitable neighborhood of the L4/L5 points by means of
the unstable invariant manifolds of the former equilibria. These trajectories are sub-optimal from a transfer-
time perspective due to the assumptions taken during the design process. However, they are excellent initial
guesses to solve the optimal control problem of finding time-optimal transfers between L1/L2 and the L4/L5

stability regions. The second step consists of solving the optimal control problem, using the software tool
PSOPT,12 which is a particular implementation of a direct pseudo-spectral method in C++.

In both steps, finding the initial guess and the optimization process, we consider the classical RTBP as
the dynamical model, accounting for the SRP acting on the solar sail (RTBPS from now on), where the sail
acceleration will depend on 3 parameters: the sail lightness number, β, (accounting for the sail efficiency),
and two angles, α and δ (accounting for the sail orientation).

This paper is organized as follows, in Section II we introduce the RTBPS and describe the main parameters
of the system (β, α and δ). In Section III we describe the non-linear dynamics around the two regions in the
phase space that play an important role during the design process of the transfer trajectories. These are,
the invariant manifold structure around the displaced L1 and L2 equilibrium points (subsection III.A) and
the practical stability region around L4/L5 (subsection III.B). In Section IV we address the main goal of
the paper of finding transfer trajectories between L1/L2 and L4/L5, where subsection IV.A explains how we
explore the phase space to find a piece-wise transfer trajectory and subsection IV.B takes these initial guesses
to find optimal-time transfers. Some conclusions and future work are described at the end in Sections V
and VI respectively.

II. Equations of Motion

We consider the Circular Restricted Three Body Problem (RTBP) including the effect of Solar Radiation
Pressure (SRP) due to the solar sail (RTBPS) as a model to describe the motion of a solar sail in the
Earth - Sun system. We recall that in the RTBPS we assume that the Earth and Sun are both point masses
moving around their common center of mass in a circular way due to their mutual gravitational attraction.
The solar sail, on the other hand, is a mass-less particle that does not affect the motion of the two primaries,
but is affected by their gravitational attraction as well as by SRP.

We normalize the units of mass, distance and time, so that the total mass of the system is 1, the Earth -
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Sun distance is 1 and the period of its orbit is 2π. In these units the universal gravitational constant is
G = 1, the Earth’s mass is µ = 3.0034806× 10−6, and 1−µ is the mass of the Sun. We consider a synodical
reference system, where the origin is at the center of mass of the Earth - Sun system and both Earth and Sun
are fixed on the x-axis (with the positive x-axis pointing towards the Earth). The z-axis is perpendicular
to the ecliptic plane and the y-axis completes an orthogonal positive oriented reference system.13 On the
left-hand side of Figure 1 a schematic representation of the main forces in the RTBPS is provided.

With these assumptions, the equations of motion in the synodical reference frame are:

ẍ− 2ẏ =
∂Ω

∂x
+ ax, ÿ + 2ẋ =

∂Ω

∂y
+ ay, z̈ =

∂Ω

∂z
+ az, (1)

where Ω(x, y, z) =
1

2
(x2 + y2) +

1− µ
rps

+
µ

rpe
, rps =

√
(x+ µ)2 + y2 + z2 and rpe =

√
(x+ µ− 1)2 + y2 + z2

are the Sun-sail and Earth-sail distances, respectively, and as = (ax, ay, az) is the acceleration due to the
solar sail, where as depends on the reflectivity properties of the sail given by the sail’s lightness number (β)
and the reflectivity coefficient (ρs); and the solar sail orientation, which is determined by the cone and clock
angles (α, δ respectively).

Figure 1. Left: Schematic representation of the RTBPS model. Right: Schematic representation of the
reference frame used to define the sail orientation α, δ.

A. Solar Sail acceleration

The solar sail acceleration is produced by the impact of the photons emitted by the Sun on the surface
of the sail, which will be reflected and absorbed by the sail material.5,14 For a solar sail with an area
A, the force due to reflected photons is given by Fr = 2PA〈rs,n〉2n while the force due to absorption is
Fa = PA〈rs,n〉rs, where rs is the Sun-sail direction, n is the normal direction to sail surface (both unit
vectors), and P = P0(R0/R)2 is the SRP at a distance R from the Sun (with P0 = 4.563 N/m2 the SRP at
R0 = 1 AU). If we denote ρa as the absorption coefficient and ρs as the reflectivity coefficient (which satisfy
ρa + ρs = 1), the sail acceleration is given by:

as =
2PA

m
〈rs,n〉

(
ρs〈rs,n〉n +

1

2
(1− ρs)rs

)
. (2)

We note that ρs = 1 corresponds to a perfectly reflecting solar sail, and ρs = 0 to a solar panel, where
the only effect is the absorption of the photons by the panels. According to Ref. 14 a solar sail with a highly
reflective aluminum-coated side has an estimated value of ρs ≈ 0.88. In this paper we assume the solar sail
to be flat and perfectly reflecting (ρs = 1). In future studies we plan to include the imperfections on the
solar sail material and see how this affects the transfer trajectories.

1. Sail Lightness Number

We note that the SRP is proportional to the inverse square of the distance to the Sun (i.e. P = P0(R0/R)2).
It is therefore common to rewrite 2PA/m in Eq. 2 as a correction of the Sun’s gravitational attraction:
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β(1−µ)/r2ps, where β corresponds to the sail lightness number and accounts for the sail’s efficiency. Following

McInnes5 we can see that, β = σ∗/σ, where σ∗ = 2P0R
2
0/Gmsun = 1.53 g/m

2
and σ = m/A is the solar sail

mass-to-area ratio. One can also interpret β as the ratio between the Sun’s gravitational attraction and the
solar sail acceleration. Another parameter used to describe the sail efficiency is through the characteristic
acceleration (a0), which represents the acceleration experienced by the sailcraft at 1 AU when the sail is
perpendicular to the Sun-sail line. The characteristic acceleration and the sail lightness number are related
by: a0 = βGmsun/R

2
0.

Table 1 presents for different values of the sail lightness number (β), the corresponding mass-to-area ratio
(σ), the characteristic acceleration (a0) and the required solar sail size for 10 kg of total sailcraft mass. Near-
term solar sail demonstration missions LightSail-1 and NEA-Scout have a sail lightness number of β = 0.011
and β = 0.01, respectively, while long-term mission concepts like Sunjammer require β = 0.036.

Table 1. Relation between the sail lightness number β and: the satellite’s mass-to-area ratio (σ), the charac-
teristic acceleration (a0), and the sail area required for a satellite with 10 kg of total mass.

β σ (g/m2) a0 (mm/s2) Area (m2)

0.01 153.0 0.059935 ≈ 8× 8

0.02 76.5 0.119869 ≈ 12× 12

0.03 51.0 0.179804 ≈ 14× 14

0.04 38.25 0.239739 ≈ 16× 16

0.05 30.6 0.359608 ≈ 20× 20

2. Sail Orientation

The sail orientation is given by the normal direction to the surface of the sail (n) and is parameterized by
two angles α and δ that measure the displacement between n and the Sun-sail direction rs = (x−µ, y, z)/rps.
Following McInnes,15 we consider the orthonormal reference frame, {rs,p,q}, centered at the sailcraft center

of mass, with p = rs×z
|rs×z| and q = (rs×z)×rs

|(rs×z)×rs| , and define n = cosα rs + sinα cos δ p + sinα sin δ q, where

α corresponds to the pitch angle (angle between n and rs) and δ is the clock angle (angle between q and
the projection of n in a plane orthogonal to rs). Figure 1 (right) shows a schematic representation of the
definition of the two sail angles.

Following the definitions given above, the explicit expressions for the solar sail normal direction, n =
(nx, ny, nz), are given by:

nx =
x− µ
rps

cosα− (x− µ)z

r2rps
sinα cos δ +

y

r2
sinα sin δ,

ny =
y

rps
cosα− yz

r2rps
sinα cos δ − x− µ

r2
sinα sin δ,

nz =
z

rps
cosα+

r2
rps

sinα cos δ,

(3)

where r2 =
√

(x− µ)2 + y2. Notice that n cannot point towards the Sun, hence 〈n, rs〉 = cosα ≥ 0, which
implies that α ∈ [−π/2, π/2] and δ ∈ [0, π].

B. Properties of the RTBPS

From a mathematical perspective the Earth-Sun-sail RTBPS is as a perturbation of the Earth - Sun RTBP,
where the perturbation depends on the sail parameters (β, ρs, α, δ). If we consider a perfectly reflecting solar
sail (ρs = 1), we can rewrite Eq. (1) as:

ẍ− 2ẏ =
∂Ω̃

∂x
+ β

1− µ
r2ps

cos2 α

(−(x− µ)z

r2rps
sinα cos δ +

y

r2
sinα sin δ

)
,

ÿ + 2ẋ =
∂Ω̃

∂y
+ β

1− µ
r2ps

cos2 α

( −yz
r2rps

sinα cos δ − x− µ
r2

sinα sin δ

)
,

z̈ =
∂Ω̃

∂z
+ β

1− µ
r2ps

cos2 α

(
r2
rps

sinα cos δ

)
,

(4)
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where Ω̃(x, y, z) =
1

2
(x2 + y2) + (1− β cos3 α)

1− µ
rps

+
µ

rpe
.

It is well known that the classical RTBP (no solar sail) is Hamiltonian, but when we include the perturba-
tion due to the solar sail, the Hamiltonian structure of the system breaks down. The system is Hamiltonian
only for α = 0 (i.e., the solar sail is oriented perpendicular to the Sun-sail line) and α = ±π/2 (i.e., no sail
effect). The system is time reversible for α 6= 0, δ = 0 (i.e., the orientation of the solar sail varies vertically
with respect to the Sun-sail line).16 In these two particular cases, for a fixed sail orientation, we can ensure
the existence of families of periodic and quasi-periodic orbits around an equilibrium point.17,18

As in the RTBP, we define the Jacobi function as:

Jc = ẋ2 + ẏ2 + ż2 − 2Ω̃(x, y, z), (5)

where for β = 0 (i.e., no sail) and for β 6= 0, α = 0 (a sail perpendicular to the Sun-sail line), this function
corresponds to the Jacobi constant of the RTBP or RTBPS (Hamiltonian case). If α 6= 0 this function is
not constant but it can still be used to classify types of motion.16,19

We note that the system also satisfies the following symmetries:

S1 : (t, x, y, z, α, δ) 7→ (−t, x, −y, −z, −α, δ),

S2 : (t, x, y, z, α, δ) 7→ (−t, x, −y, z, α, −δ),
(6)

which we can take advantage of when we compute equilibrium points and periodic orbits or when we describe
the dynamics of the system.

1. Equilibrium Points

It is well known that when we discard SRP (β = 0) the Earth-Sun RTBP has five equilibrium points,13 and
that all of them lie in the ecliptic plane (z = 0). Three of them, known as the collinear points L1,2,3, are
on the line joining the two primaries (y = 0). The other two, known as the triangular points L4,5, lie in
the ecliptic plane, and form an equilateral triangle with the two primaries (i.e., their distance to both Earth
and Sun is 1). The three collinear points are all linearly unstable (saddle×center×center), whereas the two
triangular points are linearly stable (center×center×center).

If the sail is oriented perpendicular to the Sun-sail line (α = 0) the system presents a similar phase
space portrait as for β = 0. We also have five equilibrium points SL1,...,5 in the ecliptic plane, siblings to
the classical L1,...,5 but displaced towards the Sun.15 The three collinear points (SL1,2,3) still lie on the
Earth-Sun line, and are linearly unstable (saddle×center×center), while the two triangular points (SL4,5) no
longer form an equilateral triangle: their distance to the Earth is 1, but the distance to the Sun behaves as
(1− β)1/3. SL4,5 are also linearly stable for all β.

We recall that there is no explicit expression for the three collinear equilibrium points, but that their
position can be found by solving a quintic. We can define, γ1,2 as the distance from SL1,2 to the Earth, and
γ3 as the distance from SL3 to the Sun. It can be seen that γi is the only positive solution to the quintic
equation:13,15

γ51 + (3− µ)γ41 + (3− 2µ)γ31 − (µβ − β + µ)γ21 − 2µγ1 − µ = 0, (7)

γ52 − (3− µ)γ42 + (3− 2µ)γ32 + (µβ − β − µ)γ22 + 2µγ2 − µ = 0, (8)

γ53 + (2 + µ)γ43 + (1 + 2µ)γ33 − (1− µ)(1− β)γ23 − 2(1− µ)(1− β)γ3 − (1− µ)(1− β) = 0, (9)

and SL1 = (1− µ− γ1, 0, 0), SL2 = (1− µ+ γ2, 0, 0) and SL3 = (−µ− γ3, 0, 0). On the other hand, there is
an explicit expression for the triangular points for all β:

SL4,5 = (x4,5, y4,5, 0) :=

(
−µ+

(1− β)2/3

2
,±(1− β)1/3

[
1− (1− β)2/3

4

]1/2
, 0

)
. (10)

Finally, if we change the sail orientation (α 6= 0 or/and δ 6= 0) we artificially displace the position of
the equilibrium points. For instance, if we take δ = ±π/2 and vary α, we displace the equilibrium points
to one side or the other of the Sun-sail line inside the ecliptic plane; while if we take δ = 0, π and vary α
we displace the equilibrium points above or below the ecliptic plane, where all the displaced equilibria lie in
a plane perpendicular to z = 0 containing Li and SLi. When we take any other fixed value of δ = δ∗ and
vary α, we displace the equilibrium points on an inclined plane with respect to the ecliptic containing Li
and SLi.

16,20,21
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III. Non-Linear dynamics around equilibria

We recall that the main goal of this paper is to find feasible transfer orbits to the L4 and L5 vicinity.
For this purpose we propose to use the unstable invariant manifolds around the displaced SL1 and SL2

equilibrium points. It is true that the unstable invariant manifold structure around the libration point is
more complex and one should also consider the different families of periodic and quasi-periodic orbits. But
including the solar sail parameters already broadens the range of possibilities and for this preliminary work
we only focus on them. As for the vicinity of L4 and L5, it is well know that there is a large practical
stability region where trajectories starting there will remain in the region for more that 1000 years with no
need of station keeping maneuvers, which makes this location ideal for a space-weather observatory.

In this section we will analyze the non-linear dynamics around the different equilibrium points and how
these are affected by the different sail parameters: β, α and δ.

A. SL1 and SL2 equilibrium point

Let us focus on the dynamics close to the displaced collinear points SL1 and SL2, which we recall are
equilibrium points for β 6= 0 and α = 0 (solar sail oriented perpendicular to the Sun-sail line). We already
mentioned that as β increases these equilibrium points are shifted towards the Sun, and that the linear
dynamics for SL1 and SL2 are always center×center×saddle. Table 2 summarizes the position and the
eigenvalues of SL1/SL2 for β = 0.01, . . . , 0.05. As the system is Hamiltonian for α = 0, the two center
direction give rise to two families of periodic orbits, the well-known planar and vertical Lyapunov orbits.
Moreover, the coupling between the two oscillatory motion gives rise to the Lissajous and Halo family of
orbits. All these orbits are also known as Libration Point orbits (LPOs).

Nevertheless, in this paper we want to focus on the dynamics given by the saddle component, as it gives
rise to the stable and unstable manifolds which together with the stable and unstable manifold of the LPOs
configure the set of reentry and escape trajectories related the equilibrium points vicinity. Notice that as β
increases the instability rate of SL1 decreases while the instability rate of SL2 increases, which has a direct
effect on the rates of escape from the vicinity of the equilibrium point.

Table 2. For different values of β, position of the displaced equilibrium points SL1 and SL2, and values of the
three pair of eigenvalues ±λ, ±iω1 and ±iω2.

β SL1 λ ω1 ω2 SL2 λ ω1 ω2

0.01 0.98873101897 2.13994 1.8517 1.7749 1.00908250142 2.88718 2.3061 2.2399

0.02 0.98716671573 1.78196 1.6484 1.5679 1.00827979413 3.30472 2.5719 2.5113

0.03 0.98525423949 1.46959 1.4821 1.4010 1.00762463476 3.72982 2.8482 2.7927

0.04 0.98299017728 1.20876 1.3536 1.2762 1.00708319765 4.15761 3.1307 3.0797

0.05 0.98040996743 9.98326 1.2586 1.1886 1.00662972805 4.58492 3.4162 3.3691

The unstable manifolds of the displaced SL1 and SL2 equilibria are the perfect candidates to provide
trajectories to reach the L4/L5 neighborhood. To illustrate this we have computed the stable and unstable
manifolds related to SL1 and SL2 for different values of β. This will give us an idea of the general trend of
the invariant manifolds, and how the efficiency of the solar sail affects them. Figure 2 shows the stable and
unstable manifolds for β = 0 (left), 0.01 (middle) and 0.03 (right). A general view and their relative position
with respect to a subset of the practical stability region appears in the top plots. The bottom plots show
a zoomed-in image close to the Earth. We note that all these invariant manifolds have been computed up
to tf = 10 years. Hence, the longer the unstable manifold path is, the faster the transfer to L4/L5 can be.
These results are consistent with the values presented in Table 2.

It is interesting to note that, for β = 0 (i.e., no sail), we can only reach L4 from L2 and L5 from L1. But
the extra effect due to the solar sail (β 6= 0) allows us to reach L4 and L5 from L1. This is very convenient
for the mission scenario where we consider two satellites, one aiming for L4 and the other for L5, as we could
use the same launch vehicle to reach the L1 invariant manifolds. On the other hand, from L2 for all values
of β we can only reach L5 as the unstable invariant manifolds get trapped around the Earth.

As solar sails are orientable surfaces, we have checked how an initial change in the sail orientation can
affect the trajectory of an initial condition starting along the unstable manifolds that we have just shown.
We recall that, when we change the sail orientation we displace the equilibrium point as well as the saddle
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Figure 2. Stable (blue) and Unstable (red) manifolds of SL1 and SL2 for β = 0, 0.01 and 0.02 and α = 0. Top:
general view and relation with the practical stability (black). Bottom: zoom of these manifolds close to the
Earth.

position.7,22 Hence, the trajectories will escape along the new unstable direction. This can have interesting
implications on the trajectories of initial conditions close to SL1 and SL2 unstable manifolds. In Figure 3
we show the trajectories for different values of α of the same two initial condition p0 along the unstable
direction of the SL1 equilibrium point (i.e. p0 = SL1 ± hvu

1 and h = 10−4). As we can see, for each of
the sail orientations the final trajectories are completely different. For instance, for α = 20◦ (middle) the
behavior is quite similar to the one for α = 0 (Figure 2 middle) where each leg of the the unstable manifolds
leads to different regions of the phase space, in particular L4 and L5. On the other hand, for α = 15◦ (left)
the two legs of the unstable manifolds come close to the Earth and then move towards L5, and for α = −25◦

(right) the two legs of the unstable manifolds are directed towards L4. This shows us how rich the dynamics
around the equilibrium points can be when changing the sail orientation.
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Figure 3. For β = 0.01, propagation of an initial condition on the SL1 unstable manifold for α = 15◦ (left),
α = 25◦ (middle) and α = −25◦. We only show the vicinity of the Earth and the two collinear points.

Figure 4 shows the same analysis for initial conditions p0 along the SL2 unstable manifold (i.e. p0 =
SL2 ± hvu

2 and h = 10−4). Here we notice that for different values of α, the trajectories can either go
towards the Earth, or lead towards L5. As SL2 gets closer to the Earth as β increases, it is harder to find
escape trajectories towards L4 as one of the legs gets entangled in the Earth’s vicinity, where the dynamics
are very chaotic. This does not mean that there are no transfers from SL2 to L4, this only implies that there
is a small set of sail orientations that enables such paths.

7 of 21

American Institute of Aeronautics and Astronautics



β=0.01, α=−25◦

y
(A

U
)

x (AU)

SL1 SL2

W u(SL2)

Earth

0.01

0

−0.01
0.99 1 1.01 1.02

β=0.01, α=25◦

y
(A

U
)

x (AU)

SL1 SL2

W u(SL2)

Earth

0.01

0

−0.01
0.99 1 1.01 1.02

Figure 4. For β = 0.01, propagation of an initial condition on the SL2 unstable manifold for α = 25◦ (left) and
α = −25◦. We only show the vicinity of the Earth and the two collinear points.

B. Determination of a target region

Recall that for the Earth-Sun RTBPS, the triangular Lagrangian points SL4/SL5 are totally elliptic equilibria.
Under generic conditions, the KAM theorem applies around these kind of points and most of the initial
conditions in a small enough neighborhood of SL4/SL5 lie on 3D invariant tori. That is, a region of stability,
understood in a practical sense, is expected to be found close enough to SL4/SL5.

Here we are going to study the regions of practical stability (RPS from now on) around SL4/SL5 for
β = 0.01, 0.02, . . . , 0.05. An initial condition (initial position of the probe) close to SL4/SL5 with zero
synodical velocity ẋ = ẏ = ż = 0 is regarded as practically stable if the corresponding trajectory remains close
to SL4/SL5 for a large time span. The RPS is the set of practically stable points, and can be mathematically
defined as the subset of a box R (in appropriate coordinates) that contains SL4/SL5 such that if we propagate
the orbit starting at R with ẋ = ẏ = ż = 0, it does not leave a larger set R′ after a large number of years
T � 0. In Figure 5 we show the choice of R and R′ for the problem we are dealing with.Here the boundary
of R′ defines the escaping criterion: if an orbit crosses this boundary we consider that it does not belong to
the RPS. Note that, since we are assuming that the trajectories start with zero synodical velocity, the RPS
is a 3D set. But for the purposes of this contribution, we restrict ourselves to the section of the RPS to the
ecliptic plane z = 0.

Despite the available theory of Hamiltonian dynamical systems gives very valuable information about
the evolution of the system around SL4/SL5, it fails when it comes to describe the shape of the full region
where invariant tori lie. Furthermore, the description of the invariant objects that conform the boundary of
this region is still an open and hard mathematical problem.10 Even with the techniques available nowadays,
only brute-force explorations have been useful to give the most basic descriptions.

To study the RPS in concrete problems, one relies on simulation and for that, one has to fix a maximal
number of years T . Of course, the shape and size of the detected RPS depends strongly on T . Since we
will deal systematically with numerical approximations with some fixed resolution, one expects to be able
to find, for each choice of the values of the parameters of the system, a value of T = Tmax such that the
differences with the detected RPS for Tmax and for any T > Tmax are negligible. For the sets of parameters
we have studied here we had to reach Tmax = 104 years. Recall that a generic orbit close to a totally elliptic
equilibrium point of a Hamiltonian system with three or more degrees of freedom will eventually escape due
to the so-called Arnold diffusion, but it would take exponentially long times. This concerns the mathematical
problem within, but for mission applications, a study for T = 103 years is more than enough.

1. Approximation of the RPS

Due to the symmetries of the system, it is sufficient to study the RPS around one of the two triangular
equilibria, so in the following we are going to restrict ourselves to the dynamics around SL4.

The most efficient way to approximate the RPS in sections z = 0 is using a brute-force exploration of
a region close to SL4 for some value of T = T0, and perform a sequence of refinements for larger values of
T > T0 by only checking again the boundary of the first approximation. Due to the shape of this region in
x, y coordinates, see Figure 6 left, it is convenient to change to polar coordinates (r, θ) ∈ (−(1− β)1/3,∞)×
[−0.5, 0.5) (measured in AU and rad/(2π), respectively) whose origin of coordinates corresponds to the
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position of SL4:

x = µ+ (r + r4) cos(2πθ + θ4), y = (r + r4) sin(2πθ + θ4), (11)

where r4 =
√

(x4 + µ)2 + y24 , θ4 = arctan(y4/(x4 + µ)) are the polar coordinates of SL4, see Eq. 10. Note
that positive angles are counted counterclockwise. So, the points in the RPS closest to the Earth correspond
to the smallest (negative) values of θ.

Now we describe briefly the method we used to approximate the RPS. We refer to Ref. 10,23 for a more
detailed exposition. For each value of z = 0 we proceed as follows:

Step 1: First approximation. Fix T = T0 and an equispaced grid of points in some adequate box R in
(r, θ). Each point in the grid defines an initial condition (x(r, θ), y(r, θ), 0, 0, 0, 0) according to Eq. 11,
and these are integrated for T = T0 years. The escaping criterion here is to cross the hypersurface
y = −0.524 (see Figure 5). So, if for some t < 2πT0 it happens that y < −0.5, we will consider that
the initial condition does not belong to the RPS. If we manage to integrate until t = 2πT0 without this
happening, we consider that the initial condition belongs to the RPS.

0

0

1

1

−1

−1

x (AU)

y
(A

U
) R

R′

SL1

SL2

SL3

SL4

SL5

Figure 5. Schematic view of the phase space. The Sun and the Earth are close to the origin of coordinates and
are not distinguishable at the displayed scale. Here we depict the typical region where initial conditions are
chosen (R = [−0.08, 0.08]× [−0.15, 0.35]) and the region in which they have to remain for T years for them to be
considered as stable in a practical sense (R′). The escaping criterion is to cross the boundary of R′: y = −0.5.

Step 2: Successive refinements. The first refinement consists in considering T1 > T0, and in integrating
again the points in the grid that are boundary points. Boundary points are points that belong to the
RPS for T = T0 such that at least one of its adjacent neighbors escaped. These points are classified
according to the same escaping criterion but now with T1 instead of T0: if for some t < 2πT1 it happens
that y < −0.5, it is an escaping point and non-escaping otherwise. Note that every time a boundary
point escapes for T1, it changes the shape of the boundary and generates more boundary points, so
this process has to be repeated until none of the points on the boundary escapes in at least T1 years.

This process can be repeated for a sequence of increasing values of T , T2 < T3 < · · · < Tn until we
reach the desired Tmax.

This method reduces substantially the computational cost to determine the RPS, since it avoids reiterat-
ing points closer to SL4, where one expects exponentially long trapping times, and only the fastest escaping
initial conditions are studied.

Here we are interested in transfers to SL4/SL5 in the ecliptic plane. Hence, in what follows, unless stated
otherwise, we will refer to the section of the RPS in {z = 0} simply as RPS.
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2. A common target region for β ≤ 0.05

For realistic values of β, one does not expect the shape and size of the RPS to differ much from the non-sail
case β = 0. We started by studying the evolution of the RPS as β increases from 0.

To do so, we have considered a 1000 × 1000 grid in (r, θ) ∈ R = [−0.0008, 0.0008] × [−0.35, 0.15], and
β = 0.01, . . . , 0.05, see Figure 5 for a depiction of a similar region, but 100 times wider. It is worth noting
that for all these cases we had to consider Tmax = 104 yearsa. For smaller values of T the region appears to
be much larger and to have a less defined boundary. In Figure 6 we show the region for β = 0.01 and for
β = 0.05. The left panel depicts the approximation of the region in actual x, y coordinates, while the right
panel shows a detailed view of these two examples in (r, θ) coordinates. The fact that these are centered in
SL4 allows for comparison.
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Sun Earth

β=0.01
β=0.05
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0.1 0.2 0.3
−0.0008

0.0008
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r
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)

β=0.01
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Figure 6. Section in z = 0 of the RPS around L4 for β = 0.01 and β = 0.05. Left: Original coordinates x, y.
Right: Detail in (r, θ) coordinates.

A global picture of the obtained results can be described as follows: in all the studied cases, we observe
that the RPS is extremely narrow in r compared with θ. More concretely, the regions have, approximately,
a width of 0.0016 AU and a length of π AU. This is a difference of 3 orders of magnitude. Also, the region
moves towards the position of the Sun as β increases, as does the SL4 point, see Eq. 10. Moreover, for the
studied values of β, the area of the RPS seems to decrease close to linearly as β increases. This behavior is
lost once one considers larger values of β,23 see the detail in the right plot in Figure 6. We provide, for the
values of β that are of our interest, the corresponding area of the RPS in Table 3.

Table 3. Relation between the sail lightness number β and the area of the RPS computed up to T = 104 years

β Area (AU 2) Area (km 2)

0.01 0.000400 8.97×10 12

0.02 0.000399 8.93×10 12

0.03 0.000398 8.90×10 12

0.04 0.000396 8.87×10 12

0.05 0.000395 8.83×10 12

Despite these minor differences, it seems that, after translating SL4 to the origin, it makes sense to define
a region in (r, θ) coordinates that can serve as target for prospective missions, as we will study later on in
this contribution.

According to KAM and Nekhorosev theories, the RPS around SL4/SL5 are due to the presence of nested
3D invariant tori that collapse at these two equilibria. If we consider an orbit on one of these 3D tori or very
close to it, its trajectory would be seen as oscillating in the x, y projection. Of course, the amplitude of these
oscillations will tend to 0 as the chosen torus is closer to SL4/SL5. For mission applications, it therefore
makes sense to choose a target region according to the amplitude of these oscillations.

aThe computation for each value of β takes approximately 20h of CPU time.
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We measure these oscillatory motions by keeping track of how much the coordinates (r, θ) vary along the
trajectories starting from initial conditions chosen in the RPS. So, during the course of the integration, we
compute the maximal and minimal values of r and θ attained during the the orbit and denote them as rM,
rm, θM and θm. Then, the observables to take into account are

∆r = rM − rm, ∆θ = θM − θm.

For all studied values of β ∈ [0, 0.05], and all initial conditions that belong to the RPS, we observed that
∆r ∈ [0, 0.01] AU and ∆θ ∈ [0, 0.45] rad/(2π) computed among all the initial conditions that belong to the
RPS. Of course the initial conditions that led to smaller ∆r and ∆θ are those closer to r = 0 and θ = 0,
that is, closer to SL4. The outermost points of the RPS are those that experiment wider oscillations: in the
course of propagation of the initial conditions in the RPS, the r coordinate can move over 107 km and in
the θ coordinate, these points can range most of the first two quadrants in the x, y plane.
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Figure 7. Oscillations of orbits starting at the RPS for β = 0.01, computed with T = 103 years. Left: ∆r. Right:
∆θ. Each shade of gray indicates a certain interval of the oscillations: the subsets labeled with i = 1, . . . , 6
correspond to initial conditions for which ∆r ∈ [(i − 1) · 0.0017, i · 0.0017) and ∆θ ∈ [(i − 1) · 0.075, i · 0.075). The
vertical (resp. horizontal) red dotted lines correspond to θ = ±0.065 (resp. r = ±0.0002).

We represent the increase of the amplitude of the oscillations in Figure 7. There each of the 6 regions
correspond to initial conditions whose corresponding orbits oscillate in ∆r and ∆θ in some interval. These
intervals were chosen so that they had the same length.

For mission applications, one is led to consider target positions of the probe that oscillate in a controlled
manner. So, for the optimization problem in the forthcoming sections we are going to choose, as target
points, a region in the left and right panels of Figure 7 that is close to SL4: approximately the region
labeled with a 2. Up to T = 1000 years, these orbits experiment oscillations of at most ∆r < 0.034 AU and
∆θ < 0.15 rad/(2π). It appears that a good approximation of this region is the interior of the ellipse

R :

(
r

rmax

)2

+

(
θ

θmax

)2

≤ 1, (12)

where rmax = 0.0002 and θmax = 0.065. Despite being a relatively large set of target orbits, we will study
the optimization problem for a smaller set by reducing the value of θmax at the end of Sect. IV.B.

To illustrate how the orbits inside the RPS behave, we propagated two orbits within regionR for β = 0.01:
one starting at (r0, θ0) = (0, 0.0325) and another one starting at (r0, θ0) = (0.0001, 0). These correspond,
respectively, to the left and right panels of Figure 8. To be able to see oscillations, we had to integrate up
to T = 500 years. Since the width of the region in the x, y coordinates is very narrow, it is convenient to use
again the (r, θ) coordinates to visualize the motion of the probe.

In both panels of Figure 8 we observe that there is some regularity in the motion. It is plausible to
think that these orbits are close to a 3D KAM invariant torus. Qualitatively, these orbits display distinctive
features. On the left, we observe that the projection of orbits starting at r = 0 in the (r, θ) plane oscillate
both in r and θ always with the same amplitude, while for r 6= 0, where the amplitude of the oscillations in
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Figure 8. Examples of orbits inside the RPS for β = 0.01. Left: (r0, θ0) = (0, 0.0325). Right: (r0, θ0) = (0.0001, 0).

r changes much more along the propagation. This depends on which 3D KAM torus the orbit evolves close
to. This problem requires further investigations and is left for future contributions.

IV. Transfer to L4 and L5

As we have already mentioned, we propose to use the L1 and L2 points as gate-ways to transfers towards
the subset R in the RPS at L4/L5. We employ a two-step process to obtain time-optimal transfers. First
we generate transfer orbits taking advantage of the unstable manifolds related to the displaced L1 and L2.
These candidates trajectories are constructed as a concatenation of piece-wise arcs, where the sail orientation
is kept constant throughout each of the arcs. These solutions are then used as an initial guess to find time-
optimal transfer trajectories between the displaced L1/L2 points and a subset of the L4/L5 practical stability
regions.

A. Finding an Initial Guess

We propose a simple transfer strategy to reach R ⊂ RPS at SL4,5 which only requires three maneuvers:
(1) set α = α0 and travel along the unstable manifold related to an equilibrium point p0 from the SL1/SL2

families; (2) when we reach a given Poincaré section Σ1, we change the sail orientation to α = α1 and insert
the sail on a transfer trajectory that reaches R in the RPS around SL4,5; and (3) once we reach R we
set the sail perpendicular to the Sun-sail line (α = 0◦) to remain there. For the Poincaré section we use
Σ1 = {y = ±(x− µ)/

√
3}, a hyper-plane at the mid-distance between the Earth-Sun line and the SL4,5-Sun

line. Note that this particular hyper-plane cuts through the xy plane ±30◦ from the xz plane; other Poincaré
sections could be considered but this one is chosen as the hyper-plane is at the same distance from L1,2 as
from L4,5. In Figure 9 we have a schematic representation of this three step strategy.

To generate these transfer trajectories, we have performed a brute-force search. For a fixed β, we have
taken different initial conditions (x0) along the two direction of the unstable vector (vu

1,2) related to SL1

and SL2 respectively (i.e. x0 = SL1,2±hvu
1,2 and h = 10−5, 5× 10−5, 10−4). For each initial condition (x0)

we have considered a set of different fixed sail pitch angles αi ∈ [−65◦, 65◦], and integrated (forward in time)
until the trajectory reaches Σ1. Additionally, we take a grid of initial conditions in the subset R of the SL4,5

RPS (i.e. x = (r + r4,5) cos(2πθ + θ4,5) − µ, y = (r + r4,5) sin(2πθ + θ4,5), z = ẋ = ẏ = ż = 0 where (r, θ)
satisfy ( r

rmax
)2 + ( θ

θmax
)2 ≤ 1 and rmax = 0.0002 and θmax = 0.065). Again for each point in the region we

integrate the trajectory (backwards in time) with different fixed sail orientations (αj ∈ [−65◦, 65◦]) until the
trajectory reaches Σ1. In both cases if the trajectory comes too close to the Earth (rpe < 10−4 AU) or takes
more than 10 years to reach Σ1 we stop the integration and discard the trajectory. Finally, we compare the
two sets of points, the ones arriving from SL1,2 with those arriving from SL4,5, on the section Σ1 to determine
intersections (or quasi-intersections) in position and velocity. We will perform a first filtering process where
we discard all trajectories where the difference in position at Σ1 is larger than 5× 10−4 AU and where the
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Figure 9. Schematic representation of a 3 stage transfer strategy from the SL1,SL2 vicinity to a subset of the
SL4 and SL5 practical stability regions.

required sail orientation change (∆α) at Σ1 is larger that 60◦. All the resulting trajectories, although they
have a discontinuity at the section, are candidate trajectories to be refined with a shooting method or can
be used as an initial guess for the optimization problem.

We have performed the brute-force search process described above for β = 0.01, and the transfer trajec-
tories from: (a) SL1 to SL4, (b) SL1 to SL5, (c) SL2 to SL4 and (d) SL2 to SL5. Table 4 summarizes for each
of the 4 cases the transfers we have analyzed the transfer time tf to reach R, the required change in the sail
orientation ∆α at Σ1 and the difference in velocity ∆v at Σ1. We recall that, despite that these trajectories
have been filtered, all these trajectories have a discontinuity in position and velocities at Σ1 and a shooting
method should be performed by varying the initial conditions at SL1/SL2 and at R ⊂ RPS to eliminate this
discontinuity. Notice that there is a larger set of possible transfer orbits from SL1 to both the SL4 and SL5

than starting around SL2. There is also a larger range of different transfer times and ∆v at the section.

Table 4. For the filtered

# filtered ∆α (min-max) estimated transfer times estimated ∆v at Σ1

SL1 to SL4 15774 20◦ − 60◦ ranges from 681 to 1530 days from 270 to 600 m/s

SL1 to SL5 1557 20◦ − 55◦ ranges from 1250 to 4000 days from 500 to 150 m/s

SL2 to SL4 93 20◦ − 45◦ ≈ 3568 days ≈ 500 m/s

SL2 to SL5 1414 35◦ − 50◦ ≈ 988 days ≈ 600 m/s

From all these trajectories we have selected, from each of the SL1,2 to SL4,5 sequences, two candidate
trajectories can be used as initial guesses for solving the time-optimal problem: the one with the minimum
transfer time and the one with the minimum ∆v at the section. Figure 10 shows the candidate transfer
trajectories with minimum time from the SL1 unstable manifold to SL4 (green) and SL5 (purple). If we
look at the behavior of these trajectories close to the Earth (Figure 10 right) we notice how the trajectory
performs a fly-by close to the Earth to reach the vicinity of SL2 before it starts the excursion towards SL5.
This would explain the difference in transfer times that we see in Table 4 where the transfer trajectories
from SL1 to SL4 take between 681 to 1530 days and the transfers from SL1 to SL5 take between 1298 to
4000 days. Figure 11 shows the minimum time candidate transfer trajectory starting from the SL2 unstable
manifold to SL4 (green) and SL5 (purple). Notice that here the transfer trajectory toward SL4 performs
a long excursion passing close to SL5. This is due to how we have constructed the trajectories and due to
the fact that the first leg from the unstable manifolds around SL2 either goes towards the Earth or leaves
towards SL5. This large excursion causes the transfer times that we have in Table 4 where the transfer to
SL4 takes more than 3 times the transfer time to SL5.

B. Optimized Solutions

While the results of Section IV.A provide valuable insights in the capability of solar sails to transfer between
the displaced L1 and L2 points and the region R at L4/L5, the obtained trajectories are sub-optimal from
a transfer time perspective due to the assumption of the piece-wise constant attitude of the solar sail. In
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Figure 10. Selected transfer trajectories from SL1 unstable manifold to the practical stability region around
SL4 (green) and SL4 (purple). Left: full trajectories, Right: zoom close to the Earth.
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Figure 11. Selected transfer trajectories from SL2 unstable manifold to the practical stability region around
SL4 (green) and SL4 (purple). Left: full trajectories, Right: zoom close to the Earth.

addition, the small discontinuity in the state vector at the Poincaré section renders the trajectories unfeasi-
ble in practice. However, these solutions do provide an excellent initial guess to find time-optimal transfers
between the SL1/SL2 points and the SL4/SL5 stability regions. For this, the accompanying optimal control
problem needs to be defined and solved. In this paper, the latter is accomplished by using PSOPT,12 which
is a particular implementation of a direct pseudospectral method in C++.

The goal is to find the time history of the states of the sailcraft, x(t) = [x, y, ẋ, ẏ]T , and its control,
u(t) = α, that minimize the transfer time from SL1 and SL2 to the stability regions around the triangular
points. The objective can therefore be defined as:

J = tf − t0 (13)

with tf and t0 the final and initial time of the trajectory. The dynamics that need to be satisfied are
those in Eq. 1, though reduced to two-dimensional form, restricting the motion to the ecliptic plane. The
start of the transfer needs to coincide with the displaced L1 or L2 points whose state vectors are given by
xdL = [xdL, 0, 0, 0]T with values for xdL given in Table 2 for a range of solar sail lightness numbers. The
boundary condition on the initial state vector can then be defined as:

x(t0) = xdL (14)
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Furthermore, the end point of the trajectory needs to coincide with theR at SL4 or SL5 and the sailcraft needs
to arrive at that point with zero synodical velocity. To allow the optimizer to select the best arrival location
within R, two static parameters are defined, p = [r, θ]T , where r and θ represent the polar coordinates of
the arrival location around the triangular Lagrange point as per the analysis in Section III.B. In order for
these polar coordinates to lie within the stability region, the following constraints are applied. First (and
equal to Eq. 12): (

r

rmax

)2

+

(
θ

θmax

)2

≤ 1 (15)

with rmax = 0.0002 and θmax = 0.065. Then, to ensure that the final state vector matches this arrival
location, the polar coordinates r and θ are transformed into Cartesian position coordinates, (xR, yR) as per
Eq. 11. This then enables the definition of the following additional constraint on the final state vector:

x(tf ) = [xR, yR, 0, 0]T (16)

Eqs. 14 to 16 form the set of event constraints.
Finally, the bounds on the states, control and parameters need to be defined where the bounds on the

states are case-specific. For example, for the transfer from SL1 to SL5 they are defined as:

[0,−1,−0.25,−0.25]T ≤ x(t) ≤ [1.2, 0.1, 0.25, 0.25]T (17)

The bounds on the control, i.e., on the pitch angle are defined as above Eq. 3:

−π/2 ≤ u(t) ≤ π/2 (18)

Note that, other than the bounds defined above, no limitations on the steering capabilities are introduced,
but will be considered in future work. Finally, the bounds on the parameters are set as:

[−rmax,−θmax]T ≤ p ≤ [rmax, θmax]T (19)

To solve the optimal control problem defined above, the minimum-time trajectories from Section IV.A
are used as an initial guess. Results have been obtained for four different sets of transfers: from SL1 to the
region R at SL4 and SL5 similarly from SL2. The first result, for a transfer from SL1 to SL4 and β = 0.01,
appears in Figure 12 with numerical values in Table 5. The transfer itself is shown in the top-left image
with a zoomed view of the initial and final conditions in the top-right image. These figures show that the
optimizer converges to a solution that targets the outer edge of the stability region closest to Earth where
p = [0, 0.065]T . This shortens the distance to be traveled and therefore minimizes the time of flight to 669
days, reducing the time of flight compared to the solution in Section IV.A by 12 days or 1.7%, see Table 5.
Details on the control are provided in the bottom two images of Figure 12 which show the solar sail normal
vector and solar sail pitch angle, respectively. Both show a relatively smooth control profile, though requiring
rapid switches to orientations where the sail is “switched off”, i.e., when α = 90 deg. As mentioned, future
investigations will explore options to constrain the solar sail steering capabilities, e.g., similar to the work
by Heiligers et al25 though such limitations will come at the cost of an increase in the time of flight.

Table 5. Initial guess and optimized transfer times

Initial guess Optimized Gain w.r.t. Optimized Optimized Optimized Optimized

β = 0.01 β = 0.01 initial guess β = 0.02 β = 0.03 β = 0.04 β = 0.05

SL1 - SL4 681 669 1.7% 458 386 336 320

SL1 - SL5 1298 986 24.1% 703 602 563 538

SL2 - SL4 3568 1430 59.9% 843 630 532 469

SL2 - SL5 988 888 10.1% 645 564 522 494

Using the result from Figure 12 as an initial guess, a continuation on the value for β can be initiated to
obtain results for lightness numbers larger than β = 0.01. Note that a change in β requires a change in the
location of the displaced Lagrange points and therefore a change in the boundary conditions in Eq. 14 and
Eq. 16. The results for the transfer from SL1 to SL4 are shown in the top row of Figure 13 and the first
row of Table 5. Especially the zoomed image on the right hand-side shows the shift in both SL1 and the
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Figure 12. Top left: Time-optimal transfer from SL1 to SL4 stability region. Top right: Details of initial and
final conditions. Bottom-left: Transfer including solar sail normal vector. Bottom-right: Control profile.

stability region around SL4 with the value of β. The trend in the time of flight as a function of β appears
in Figure 14 as a solid blue line and shows that by increasing the lightness number to a value of β = 0.05,
the transfer time can be reduced to 320 days, which is less than half the transfer time for β = 0.01 (see also
Table 5).

Conducting similar analyses for the transfers from SL1 to SL5 and from SL2 to SL4/SL5 gives the transfers
in the bottom row of Figure 13 and Figure 15 with corresponding times of flight in Table 5 and Figure 14.
Comparing the transfer from SL1 to SL4 with the one from L1 to L5 shows a significantly longer time of flight
for the latter as the optimizer only finds feasible trajectories that pass by the L2 point. A similar comparison
and conclusion can be drawn for the transfer from SL2 to SL4 that can only be achieved by passing by the
L1 point. However, still a significant reduction in time of flight can be realized compared to the initial guess:
24.1% and 59.9% for the SL1 to SL5 and SL2 to SL4 transfers, respectively. The improvement for the SL1 to
SL5 transfer is mainly due to the fact that the optimizer targets the edge of the stability region, while the
initial guess enters the stability region much closer to the SL5. Furthermore, the improvement of 59.9% for
the SL2 to SL4 transfer is due to the fact that the optimized transfer no longer has to pass by the L5 point
(see Figure 11 left) and can instead directly connect the SL2 and SL4 points. Finally, the results for varying
values for the lightness number in Figure 14 show similar reductions in times of flight between β = 0.01 and
β = 0.05 as for the transfer from L1 to L4: between 44.4% and 67.2%.

A final analysis carried out for the time-optimal transfers from SL1/SL2 to SL4/SL5 considers the ef-
fect of the size of the stability region around the triangular Lagrange points. This size can be varied by
changing the bounds on the parameter θ, see Eq. 19. Results are created in a continuation where now
the lightness number is fixed and the value of θmax is slowly reduced. The results for β = 0.01 and
θmax = [0.065, 0.06, 0.055, . . . 0.005] appear in Figure 16 for the transfer from SL1 to SL4. Note that, the
smaller the value for θmax, the smaller the stability region. The stability region for the smallest value for
θmax (θmax = 0.005) is shown in the top-right plot of Figure 16. Through the continuation, the optimizer
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Figure 13. Time-optimal transfers from SL1/SL2 to SL4 stability region. Figures on the right are close-ups of
the trajectories on the left. Top row: SL1 to SL4 transfer. Bottom row: SL2 to SL4 transfer.

Figure 14. Optimal times of flight for transfers from SL1/SL2 to stability regions at SL4/SL5. Left: as a function
of the solar sail lightness. Right: as a function of θmax.

can easily adapt to the change in stability region size and always converges to a solution where the transfer
enters the stability region at the point closest to Earth, which is clearly demonstrated in the top-right plot
of Figure 16. The effect on the time of flight appears in the bottom figure in Figure 16, which shows an
approximately linear relation between the time of flight and θmax. For θmax = 0.005 the transfer time is
increased to 806 days compared to 669 days for the nominal value of θmax = 0.065.
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Figure 15. Time-optimal transfers from SL1/SL2 to SL5 stability region. Figures on the right are close-ups of
the trajectories on the left. Top row: SL1 to SL5 transfer. Bottom row: SL2 to SL5 transfer.

Figure 16. Time-optimal transfers from SL1 to SL4 stability region with β = 0.01 for different values for θmax.
Right: Transfers for θmax = [0.065, 0.06, 0.055, . . . 0.005]. Left: Transfer for θmax = 0.005.

V. Conclusions

In this paper we have analyzed the feasibility of using solar sails to find transfer trajectories from the
L1/L2 equilibrium points to the regions of practical stability (RPS) that appear in the vicinity of L4/L5. We
have performed a preliminary analysis to study the dynamical implications on these regions due to changes
in the solar sail parameters and we have used this information to find simple trajectories that transfer from
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one region to the other. We have found time-optimal transfers by means of a pseudospectral optimization
method using these simple trajectories as initial guesses.

Looking at the dynamics around L1/L2, we have seen that when the sail is perpendicular to the Sun-sail
line, both equilibrium points, and all the invariant objects around them, are shifted towards the Sun. The
local stable and unstable manifolds display a similar qualitative behavior, but as we leave their vicinity, we
see a significant change in their behavior. For instance, in the classical RTBP (no solar sail) a branch of
the L1 unstable manifolds extends towards the L4 neighborhood, while the other branch gets trapped in the
Earth’s vicinity. This impedes to define transfer trajectories to L5 using the invariant manifold of L1. But
it is remarkable that as the sail lightness number increases we see that the branch that was trapped close to
the Earth for β = 0 now manages to escape, providing transfers towards the L5 neighborhood. Moreover, as
we change the sail orientation, the manifold behavior becomes richer and we can take advantage of it.

Concerning the dynamics around L4/L5, since these are totally elliptic equilibria for the RTBP, there is a
region of practical stability around them. That is, orbits starting close enough to L4/L5 with zero synodical
velocity remain close to these equilibria for extremely long times. Hence, no station keeping strategies are
required. We have shown that this behavior is preserved once the effect of solar radiation pressure is added.
We have studied the variation of the size of this region as β varies, and also which how orbits, that start
there, propagate. We concluded that it makes sense to define a target region that could be written in closed
form depending on the sail lightness number.

Combining the non-linear dynamics around L1/L2 and L4/L5 for β 6= 0 and α 6= 0 we can find different
two-maneuver transfer trajectories that go from one region to the other. The idea is to match a trajectory
leaving the displaced SL1 and SL2 equilibria along the unstable manifolds with a fixed sail orientation α0

with a trajectory reaching the RPS at the displaced SL4/SL5 with a fixed sail orientation α1. The change
from one orientation to the other is performed at the mid-distance between the two points (a Poincaré section
Σ1 = {y = ±(x+ µ)/

√
3}).

Using this simple approach we have been able to find, for β = 0.01, transfer trajectories joining all of the
different regions: (a) from SL1 to RPS at SL4, (b) from SL1 to RPS at SL5, (c) from SL2 to RPS at SL4 and
(d) from L2 to RPS at L5. From all the trajectories that we have explored, we have seen that there is a larger
variety of transfer options starting at SL1 towards both SL4/SL5 RPS, than from SL2. Moreover, in general
the transfer times from SL1 are smaller than from SL2, although these trajectories are not time-optimal as a
simple shooting method has been used to find them. One could easily decrease the transfer time by allowing
a continuous change on the sail orientation.

Finally, using these manifold-type trajectories as an initial guess in a direct pseudospectral optimization
method, time-optimal transfers between the displaced SL1 and SL2 points and the RPS at SL4 and SL5 are
found. All transfers converge to a solution where the sailcraft enters the RPS at the point closest to Earth
as this constitutes the shortest path. As such, improvements in the time of flight of 1.7% to 59.9% can be
achieved with respect to the initial guess, depending on which of the four transfers is considered. The largest
improvement of 59.9% is achieved for the transfer from SL2 to SL4 for which manifold-type trajectories can
only be found by passing by the SL5 point, while the time-optimal solution shows a direct transfer between
SL2 and SL4. Finally, increasing the lightness number from a near-term value of β = 0.01 to a maximum,
far-term value of β = 0.05 allows further reductions in the time of flight of 44.4% to 67.2%.

VI. Future work

In this paper we have restricted ourselves to the dynamics of the RTBPS in the ecliptic plane z = 0. Since
the full RPS is a 3D set, potential future directions of this research project is to study transfers towards
L4/L5 where the target region contains points with z 6= 0.

One expects to be able to proceed analogously, by a first exploration using the two-step strategy exposed
in Section IV.A, but using other invariant objects as gateways to a suitable 3D vicinity of SL4/SL5. We know
the natural dynamics around the two collinear equilibrium points is very rich, where we find different families
of periodic and quasi-periodic orbits. It seems reasonable to consider the unstable invariant manifolds related
to these periodic orbits as gateways towards the 3D RPS. In particular, due to their relevance in current
mission applications, we will focus on the halo-type periodic orbits around the displaced L1 and L2 points.

Concerning the vicinity of the displaced SL4/SL5 equilibrium points, a suitable strategy to approximate
the full 3D RPS is by using the method in Section III.B1 for z = constant slices. As an example, we computed
an approximation of the full 3D RPS for β = 0.01, which can be seen in Figure 17. To approximate this set,
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we had to consider Tmax = 104 or even Tmax = 105, so for smaller values of T , say for reasonable mission
time spans, the RPS would be much larger. Note that the full RPS has points whose z component is O(1),
but it is still much narrower in r than in θ.

Preliminary computations for values of β ∈ [0, 0.05] show that also in the 3D problem one can define a
vicinity of the SL4/SL5 points in the (r, θ, z) variables that serves as common target region.
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Figure 17. Complete region of practical stability around L4 for β = 0.01. Top: 3D view. Bottom left: front
view (θ − z). Bottom middle: side view (r − z). Bottom right: raised view (θ − r).
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