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Abstract

In this paper, we introduce a simplified model to understand the location of
Saturn’s F ring. The model is a planar restricted five-body problem defined
by the gravitational field of Saturn, including its second zonal harmonic J2,
the shepherd moons Prometheus and Pandora, and Titan. We compute accu-
rate long-time numerical integrations of (about 2.5 million) non-interacting
test-particles initially located in the region between the orbits of Prometheus
and Pandora, and address whether they escape or remain trapped in this re-
gion. We obtain a wide region of initial conditions of the test particles that
remain confined. We consider a dynamical stability indicator for the test
particles’ motion defined by computing the ratio of the standard deviation
over the average value of relevant dynamical quantities, in particular, for
the mean-motion and the semi-major axis. This indicator separates clearly
a subset of trapped initial conditions that appear as very localized stripes
in the initial semi-major axis and eccentricity space for the most stable or-
bits. Retaining only these test particles, we obtain a narrow eccentric ring
which displays sharp edges and collective alignment. The semi-major axis of
the accumulation stripes of the stable ring-particles can be associated with
resonances, mostly involving Prometheus’ outer Lindblad and co-rotation
resonances, but not exclusively. Pandora’s inner Lindblad and co-rotation
resonances as well as low-order three-body resonances typically coincide with
gaps, i.e., regions of instabilities. Comparison of our results with the nominal
data for the F ring shows some correspondence.
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1. Introduction

Saturn’s F ring is a fascinating narrow ring with a rich time-varying
structure, which has puzzled dynamical astronomers since its discovery by
the Pioneer 11 team in 1979 (Gehrels et al., 1980). It is located outside
Saturn’s A ring, close but beyond Roche’s limit for ice, and is believed to be
the result of the ongoing action of competing accretion and disruptive pro-
cesses (Barbara and Esposito, 2002). The F ring is narrow, non-circular and
inclined, has azimuthal dependent properties which may change on time, and
displays certain localized radial structures (Porco et al., 2005). It consists of
a dense core (1−40 km) embedded in a broader belt of dust (∼ 700 km), with
additional separated dusty components named strands, the most prominent
form one-arm kinematic spirals on either side of the core (Charnoz et al.,
2005). It also contains an underlying belt of forming moonlets (Cuzzi and
Burns, 1988) that produce the observed “fan” structures (Murray et al., 2008;
Beurle et al., 2010), and whose collisions with the core manifest as jets (Mur-
ray et al., 2008). For recent reviews see Colwell et al. (2009, sect. 13.5) and
Charnoz et al. (2009).

The F ring is perturbed by the shepherd moons Prometheus and Pandora,
that orbit on either side of the ring. The discovery of these moons (Smith
et al., 1981, 1982) was initially interpreted as the success of the confine-
ment produced by the shepherding mechanism, proposed by Goldreich and
Tremaine (1979). Yet, the torques from the shepherd moons do not balance
out at the location of the ring (Showalter and Burns, 1982). Moreover, the
shepherd moons orbit around Saturn on seemingly chaotic orbits (Poulet
and Sicardy, 2001; French et al., 2003; Goldreich and Rappaport, 2003a,b).
While it is clear that Prometheus and Pandora play an important role on
the dynamics and structure of the ring (Showalter and Burns, 1982; Winter
et al., 2007), it is not clear what is the actual mechanism that keeps the ring
confined at its location (Esposito, 2006).

Some of the structural phenomena described above have been analyzed
previously through numerical simulations. For instance, using independent
test particle models with periodic boundary conditions along the azimuthal
direction, Giuliatti Winter et al. (2000) integrated the equations of motions
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of the circular restricted three-body problem of Saturn and Prometheus up
to a few tens of revolutions. They showed that, after a close approach with
this moon, ring particles initially located at the strands of the F ring were
scattered inwards and outwards, forming gaps and waves; these were later
confirmed by Cassini, and were named channels (Porco et al., 2005). These
calculations were taken further (Murray et al., 2005), concluding that stream-
ers and channels are part of the same phenomenon and can be understood
in terms of the gravitational interaction with this moon and its eccentric
motion. Other calculations considered the effect of Pandora during 160 yr,
and concluded that the motion of embedded moonlets in the the ring is likely
chaotic, removing it from the F ring region (Giuliatti Winter et al., 2006).
Charnoz et al. (2005) discovered a kinematic spiral strand and interpreted it,
based on numerical simulations spanning 2000 orbital periods, as the effect
of interactions with small satellites in the F ring region. More complex inte-
grations, including 14 massive Saturn moons and spanning tens of thousands
of Prometheus periods, were conducted by Cuzzi et al. (2014), and led them
to the conclusion that certain regions of stability arise because the pertur-
bations induced by an encounter with Prometheus are counter-balanced by
subsequent encounters with the same shepherd.

While these investigations have clarified the influence of the shepherd
moons in the variations on the structure of the F ring, the question of its
confinement remains unanswered. The question can be restated in terms
of the location of the ring. The fact that the shepherd moons move on
chaotic trajectories makes this problem more interesting since, strictly speak-
ing, it breaks the periodicity of the perturbations. With regards to this, it
is worth quoting Tiscareno (2013), who points out that, despite the time-
varying clumpy and kinky structure, the F ring core “maintains over decadal
timescales the shape of a freely precessing eccentric inclined ellipse; the
orbital solution formulated to account for Voyager and other pre-Cassini
data (Bosh et al., 2002) has, somewhat surprisingly, remained a good predic-
tor of the core’s position through the Cassini mission”.

In this paper we address the question of the confinement and location of
Saturn’s F ring within an independent (non-interacting) test particle model.
We consider a simplified planar restricted five-body model and follow the dy-
namics of a large number of test particles (∼ 2.5 millions) up to 6×106 orbital
revolutions of Prometheus, slightly more than 10000 years. The model in-
cludes the gravitational field of Saturn with its second gravitational harmonic
J2, Prometheus, Pandora and Titan; preliminary results appear in (Benet
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and Jorba, 2013). We find a broad set of test-particle initial conditions that
remain trapped within the region between Prometheus and Pandora. Within
this set, there are initial conditions that remain well-localized and correspond
to the more stable ones with respect to their radial excursions. A projection
onto the X −Y space of a snapshot of this stable subset yields a narrow and
eccentric ring with collective alignment, whose location properties and width
can be compared with the observations.

The model we consider is simple in the sense that it does not include
contributions which are important for a detailed realistic description, such
as the J4 gravitational harmonic or the gravitational interaction of other Sat-
urn moons. The assumption of non-interacting test particles is equivalent to
neglecting any ring particle collisions and self-gravity. While the assump-
tions are rather strong, in particular for the time-span of our integrations,
our view is that the physics of the existence of the F ring, or other phenom-
ena, is not related to matching very specific parameters, but because certain
necessary conditions are fulfilled. In the present case, the important property
is the existence of phase-space regions where the radial diffusion is strongly
suppressed.

The paper is organized as follows: In section 2 we describe of our general
approach and introduce the simple model that we study. Section 3 describes
the numerical results obtained, where we focus first on the test particles
that remain trapped up to a maximum time, and then classify them dy-
namically according to their stability. The stability analysis is based on a
dimensionless dynamical indicator related to the radial excursions. Filtering
the orbits that do not satisfy a stability condition yields a narrow, eccen-
tric, sharp-edged ring, whose semi-major axis and width are then compared
with the observations. We relate the accumulation in the semi-major axis of
the ring particles, and the gaps between them, to orbital resonances, which
involve mainly Prometheus outer Lindblad and co-rotation resonances, but
not exclusively. Finally, in section 4 we summarize our approach and results.

2. A simplified model for Saturn’s F ring: the scattering approach

A complete description of the dynamics of Saturn’s F ring must con-
tain the gravitational interactions of Saturn including its flattening, the in-
fluence of all Saturn’s moons including in particular the shepherd moons,
Prometheus and Pandora, and the interactions among the ring particles
themselves. The latter involves non-trivial processes associated with physical
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collisions among the particles of the ring, such as accretion and fragmentation
processes (Attree et al., 2012, 2014), which are particularly relevant because
the F ring is located near the edge of the Roche zone (Canup and Esposito,
1995). Needless to say, the understanding of such a system is difficult. Here,
we shall study a simpler model with the hope that it may clarify some aspects
of the confinement of Saturn’s F ring.

Our approach is based on the observation that some test particles even-
tually “escape” from the proximity of the ring, while others remain trapped;
the latter are those we observe. This is the essence of the scattering approach
to narrow rings (Benet and Seligman, 2000; Merlo and Benet, 2007). Con-
sider the planar motion for the ring particles, which are assumed independent
massless test particles, i.e., mutual collisions are neglected. For a short-range
potential moving on a circular orbit around the central planet, one can prove
that there exist stable periodic orbits in phase space (Benet and Seligman,
2000). The linear stability of such orbits and KAM theory (de la Llave,
2001) in a two degrees of freedom system suffice to show that initial condi-
tions which are close enough to the stable periodic orbits are dynamically
trapped. Initial conditions beyond certain distance, essentially given by the
invariant manifolds of a central unstable periodic orbit in the vicinity, will
escape along scattering trajectories. The whole region of trapped motion in
phase space, which includes different values of the conserved quantity (Ja-
cobi constant), is of central interest. In particular, the projection of this
region onto the X − Y space forms a narrow ring; its narrowness follows
from the actual (small) region of trapped orbits in phase space. The ring
may be eccentric, since it mimics the projection of the central stable peri-
odic orbit in the X − Y space, which in general is non-circular. Non-circular
motion of the short-range potential implies an extended phase-space, due
to the explicit time-dependence of the Hamiltonian, which may produce a
richer structure, e.g., multiple components and arcs (Benet and Merlo, 2008,
2009). For small enough perturbations, the stable organizing centers of the
dynamics are preserved, which in turn preserves the region of trapped motion
in phase space that sustains the ring. The scattering approach is, in that
sense, robust (Benet and Seligman, 2000).

The starting point of our model (Benet and Jorba, 2013) is to consider the
motion of an ensemble of non-interacting massless test particles, defined by
the initial conditions which are in the proximity of the location of the F ring.
Their time evolution shall determine whether a test particle remains (dynam-
ically) trapped and hence belongs to the ring, or if it simply escapes away.
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Certainly, this starting point entails a number of non-realistic assumptions,
which lead to some simplifications. Considering non-interacting test particles
allows us to treat each particle independently, i.e., we may consider a one-
particle Hamiltonian; different initial conditions represent different particles.
In doing this, we neglect any effects due to mutual collisions or related to
their actual shape and size. These properties are important for a detailed
understanding of the fine structure and life-time of the ring (Poulet et al.,
2000; Murray et al., 2008; Charnoz et al., 2009). We shall also disregard the
influence of the whole ring in the motion of any of the major bodies or of
the particles of the ring; this is tantamount of having massless test particles.
We assume for simplicity that the motion of all bodies takes place in the
equatorial plane of Saturn. These assumptions allow us to consider a planar
restricted (N + 1)-body problem, where a test particle is influenced by the
motion of N massive bodies.

The model is naturally divided into two parts. First, the motion of the
N -interacting massive bodies is given by the many-body Hamiltonian

HN =
N−1∑
i=0

1

2mi

(P 2
xi

+ P 2
yi

)−
N−1∑
i=1

Gm0mi

Ri,0

(
1 +

J2

2

R2
S

R2
i,0

)
−

N−1∑
1≤i<j

Gmimj

Ri,j

. (1)

Here, ~Ri is the position vector of the i-th body with respect to the origin of
an inertial frame, ~Pi denotes the canonically conjugated momentum and mi

its mass. We denote by Ri,j = |~Ri − ~Rj| the relative distance between two
bodies and use the convention that i = 0 represents Saturn, and its moons
are ordered increasingly with respect to their nominal semi-major axis.

In our calculations we use Saturn’s mass m0 = 5.68319 × 1026 kg as
the unit of mass (Jacobson et al., 2006), Saturn’s equatorial radius RS =
60268.0 km as the unit of distance (Seidelmann et al., 2007)1, and Prometheus
period TProm = 0.612986 days (Seidelmann et al., 2007) as 2π units of time

1Note that RS corresponds to the 1 bar surface equatorial radius of Saturn (Seidelmann
et al., 2007), and was naively retrieved from the JPL-Horizons Physical Data and Dynam-
ical Constants table for the planets (http://ssd.jpl.nasa.gov/?planet_phys_par).
This value was used to scale out the semi-major axis (obtained from the J2 first order cor-
rections and the observed mean motion) to set-up our numerical calculations. This value
is not the standard one used in the planetary rings literature; the latter is R′S = 60330 km
and is also the nominal value used to compute the zonal harmonics of Saturn (Nicholson
and Porco, 1988; Jacobson et al., 2006), in particular, the value for J2 that we use. Below,
whenever we convert a distance back to km for comparisons with the actual data, we use
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(i.e., Prometheus’ mean motion is unity). In these units, the numeric value
of the gravitational constant is G ∼= 12.311.... In Eq. (1) we have included the
first zonal gravitational coefficient of Saturn, J2 = 16290.71 × 10−6 (Jacob-
son et al., 2006), since we are interested in somewhat long-time integrations.
Higher-order zonal harmonics have been ignored, since they do not create
new resonances and slow down significantly the numerical calculations; yet,
these corrections are important for realistic models (Renner and Sicardy,
2006; El Moutamid et al., 2014). As a side remark, we mention that in-
cluding the flattening of Saturn actually allows to apply KAM theory in the
context of the scattering approach, since the shift in the frequencies lifts up
the degeneracy of the dominating two-body Kepler problem.

The second part of the model is related to the motion of the test particles.
The Hamiltonian for the massless test-particles reads

Hrp(t) =
1

2
(p2

x + p2
y)−

Gm0

r0(t)

(
1 +

J2

2

R2
S

r2
0(t)

)
−

N−1∑
i=1

Gmi

ri(t)
, (2)

where ri(t) = |~r− ~Ri(t)| is the relative distance of the test particle and the i-th
body, ~r denotes the position vector of the ring particle and ~p its momentum.
Because of the explicit appearance of time in Eq. (2), the energy of a test
particle is not conserved.

What massive bodies shall we include in a simplified model for the F
ring? Clearly, we must include the shepherd moons Prometheus and Pandora,
which are known to influence the dynamics of the ring, though they do not
confine it completely (see Esposito, 2006). Since the masses of the shepherd
moons are exceedingly small, their influence on the test particles is essentially
local: Test particles in the region between the shepherds, experiencing the
gravitational field of Saturn and the shepherds, move along precessing Kepler
ellipses which are locally perturbed by the shepherds. The time scale for the
test particles to escape is extremely large, if finite at all. We shall include the
interaction of another Saturn’s moon with the hope that it helps promoting
radial excursions and thus escapes; the model is then a planar restricted
(4 + 1)-body problem.

There is no obvious choice for the third moon in the model; see Table 1
for a comparison of the orbital parameters of the main candidates and the

for the conversion factor R′S = 60330 km used in the literature. The reader is warned
about this subtle inconsistency.
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F ring. Two obvious candidates are Titan and Mimas: Titan is the most
massive moon of Saturn’s satellite system, MTitan ≈ 2.3669 × 10−4MS, and
moves on a slightly eccentric orbit, but it is located rather far away from the
ring, aTitan = 1221.47×103 km. In turn, Mimas is the major moon of Saturn
closest to the F ring. Moreover, Mimas could play an important role, since
Pandora is close to a 3 : 2 co-rotation eccentric resonance with Mimas. Its
orbital eccentricity is smaller but comparable to that of Titan. Yet, its mass
is rather small, MMimas ≈ 6.6×10−8MS. The force exerted by Titan on a test
particle at the nominal semi-major axis of the F ring, aFring = 140221.6 km ≈
2.324243... R′S, (Bosh et al., 2002), is about 4 times larger than the force
exerted by Mimas, when Titan is at the location furthest from the particle
and Mimas is at the closest one. In addition, Cuzzi et al. (2014, see Appendix
B) remark that numerical integrations without Titan shift the location and
order of the Prometheus’ outer Lindblad resonances, which play an important
role, as we shall also show. To keep the model simpler as possible, we shall
consider only the influence of Titan on a precessing Kepler elliptic orbit. We
are thus assuming that Titan’s mass and eccentric motion helps to create
instabilities in the region of the ring that promote escapes from that region,
though allowing for the existence of regions of stable motion. Numerical
calculations with and without Titan show that Titan indeed promotes radial
excursions, though the actual effect is weak; see Appendix A. Due to the
small mass ratio between Titan and Saturn and the shepherds and Titan,
we shall simplify the numerics by computing the precessing motion of Titan
due to the gravitational attraction of Saturn and its J2 coefficient only, and
for the shepherds we include the additional perturbations by Titan. We also
consider that Saturn remains at the origin.

We are interested in the existence of regions of trapped motion for test
particles between the orbits of the shepherd moons. The conditions for escape
are defined as follows: A test particle escapes if it leaves the region defined by
the orbits of the shepherds, i.e., if it is not located within the region defined by
the innermost radial position of Prometheus and the outermost of Pandora;
these distances are defined from their nominal locations; c.f. Table 1. In
addition, we consider that a test particle collides with a shepherd moon if it is
located within Hill’s radius of the moon, that is, ri < RHi

= ai(mi/(3m0))1/3

(with i = 1, 2 for Prometheus and Pandora respectively). In this case, the
test particle shall also be treated as an escaping particle, since such an event
corresponds to a physical collision with one of the shepherds (Ohtsuki, 1993).
In either case, the integration of the orbit is terminated and the test particle
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Table 1: Saturn’s moons and F ring data, taken from the JPL Horizons’s ephemerids web
interface. The semi-major axis and eccentricity of the F ring, which we shall consider as
the nominal values, are taken from Bosh et al. (2002, fit 2 of Table III).

Object a (103 km) e m (1019 kg)

Prometheus 139.35 0.0024 0.014
F Ring 140.2216 0.0025 ?
Pandora 141.70 0.0042 0.013
Mimas 185.54 0.0196 3.75
Encedalus 238.04 0.0047 10.805
Tethys 294.67 0.0001 61.76
Dione 377.42 0.0022 109.57
Rhea 527.07 0.001 230.9
Titan 1221.87 0.0288 13455.3
Hyperion 1500.88 0.0274 1.08
Iapetus 3560.84 0.0283 180.59
Phoebe 12947.78 0.1635 0.8289

is disregarded. On the other hand, if the test particle does not fulfill any of
these requirements before the end of the numerical integration at t

end
, the

test particle is said to be a trapped particle and, in that sense, a particle of
the ring. We shall see below that an additional dynamical criterion related
to the stability properties of the orbit must be imposed, which accounts for
the possibility of a future escape. We rely on numerical simulations to study
the dynamics of the test particles.

3. Numerical results

The results presented below were obtained using a high-order Taylor’s
integration method (maximum order of the Taylor expansion was 28) for
the numerical integration (Jorba and Zou, 2005). The absolute error of the
largest of the two last terms of all Taylor expansions in every integration
step, which is used to determine each step size of the integration, was fixed
to ε = 10−21. The accuracy of the integrations is such that the energy and the
angular momentum of Titan’s Kepler motion, in absolute terms, is conserved
throughout the whole integration below 2× 10−14.
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Figure 1: Projection onto the semi-major axis a and eccentricity e plane of the initial
conditions of test particles that remain trapped for at least t

end
= 2.4 × 106 TProm. The

color code is the stability index ∆f associated with the mean motion in logarithmic scale
(see text). Notice that there are two localized regions in the a−e plane, where the particles
exhibit an enhancement of the stability index (blue-purple stripes). The lower a-axis is
expressed in Saturn radius units RS and the upper one is expressed in 103 km.

3.1. Initial conditions and trapped orbits

We first define the initial conditions for this problem. Since the model
assumes independent test particles, each particle is represented by an inde-
pendent initial condition of the Hamiltonian (2). The initial conditions for
each test particle are fully characterized by its semi-major axis a, its eccen-
tricity e, and two angles that define the orientation of the initial ellipse ω
with respect to an arbitrary direction, the argument of pericentre, and the
actual position M along the ellipse, the mean anomaly. We shall focus in
the phase-space region defined by a ∈ [2.318, 2.345], e ∈ [0, 1.45 × 10−3],
and ω,M ∈ [0, 2π]. This region, when projected onto the coordinate space,
spans the (planar) region between the orbits of Prometheus and Pandora.
Hence, the orbital elements of the particles of Saturn’s F ring are included
in this phase-space region (under the assumption of planar orbits), though
we emphasize that this region is not restricted only to such orbital elements.
As we shall show, the dynamics of this system selects, through the escaping
mechanism and a further stability condition, a specific subset of these initial
conditions.
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With regards to the initial conditions of the massive bodies, these will
be fixed to an arbitrary but fixed value for all integrations. The case we
have considered is rather artificial, all moons are initially aligned at their
pericentre, with their orbital elements corresponding to the nominal ones
(see footnote 1). As we shall show below, the results for this particular
situation have a good correspondence with the observations; this illustrates
the robustness of the proposed approach.

In Figure 1 we display the initial conditions for the test particles that
remain trapped for at least t

end
= 2.4×106 periods of Prometheus, projected

onto the semi-major axis a and eccentricity e plane. In these simulations,
the orientation of the initial Kepler ellipses was varied considering 10 equally
spaced values for ω for M = 0; the semi-major axis and the eccentricity was
set on a grid of 256× 256 points for each value of ω. Leaving aside the color
code for the moment, which will be explained below, the results shown in this
figure indicate that the trapped particles occupy a rather wide and connected
region for both a and e. This statement holds for other initial values of ω
and M .

These results seem deceiving at first sight: In general, the inclusion of
Titan in the model promotes more extended radial excursions of the test
particles. These radial excursion may induce collisions with the shepherds or
escape from the region between the shepherds. However, for the integration
times considered so far, the result is a wide region in the semi-major axis
occupied by the trapped test particles. That is, Titan does not confine the
trapped test particles to a narrow region in a, where a (narrow) ring could
be located and compared with the observations.

The fact that Titan promotes more extended radial excursions without
clearing out efficiently (in a short-time scale) the region between the shep-
herds motivates to explore the stability properties of the motion of the test
particles (Benet and Jorba, 2013). We shall do so considering a variation of
the frequency analysis (Laskar, 1990). To be more specific, we characterize
the variation of a given frequency, or an action, along the whole integrated
orbit using a stability index defined by the standard deviation of the fre-
quency (or action) normalized by its average value. In particular, in Figure 1
we considered the stability index ∆f = σf/f associated with the mean mo-
tion f . In terms of ∆f , periodic or quasi-periodic motion implies ∆f = 0.
Therefore, large-enough non-zero values of ∆f indicate clear departures from
stable or quasi-periodic motion.

From the numerical integration for each test particle, we computed the
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Figure 2: Projection onto the semi-major axis a (close to the region where the F ring
is observed) and eccentricity e plane of the initial conditions of test particles that remain
trapped at least up to t

end
= 3.2× 106 TProm. For this figure the whole M and ω domains

were considered. The stability index has been coded with respect to ∆a, the normalized
standard deviation of a, in logarithmic scale. Note that the scales differ from those in
Figure 1, and include the region with Saturn’s F ring is actually observed. The lower
horizontal scale is expressed RS , and the upper one is given in 103 km.

12



Figure 3: Projection onto the space of angles ω − M of the same initial conditions
depicted in Figure 2. The distribution of stable trajectories seems quite homogeneous,
indicating that that the stability index ∆a (in logarithmic scale) is independent of the
angular components of the initial conditions.

main frequencies every 200 revolutions of Prometheus, using a collocation
method for the Fourier analysis (Gómez et al., 2010). The color code used
in Figure 1 corresponds to log10(∆f). Taking into account the color code,
we note the appearance of localized stripes in the semi-major axis at certain
locations, around a ∼ 2.325, and a ∼ 2.340. These locations are particu-
larly stable in terms of ∆f . Below we shall show, using longer numerical
integrations, that a large proportion of particles whose stability index is in
the orange-yellow region are escaping orbits, while a minor quantity behaves
alike in the blue–purple region.

It is interesting to note that the first group of blue–purple stripes men-
tioned above, located around a ∼ 2.325, is close to the nominal semi-major
axis of Saturn’s F ring; cf. Table 1. We shall focus on this region from now
on, due to its correspondence with the nominal orbital data of Saturn’s F
ring. We note that in Figure 1, as well as in Figures 2, 4 and 6 displayed
below, we have included an upper scale for the radial distances given in km,
which may be used to compare with the nominal data. For the conversion we
use R′S = 60330 km, since this value is used to obtain the nominal value for
aFring during the data reduction and fitting processes (see Bosh et al., 2002;
Cooper et al., 2013; Cuzzi et al., 2014). Yet, our main interest is not on the
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Figure 4: Same projection as in Figure 2 for test particles that stay trapped at least up
to t

end
= 6.0 × 106 TProm. Notice the appearance of a white background indicating that

some test particles have escaped. The majority of the initial conditions of the escaping
test particles have stability indexes in the orange-yellow region. The lower horizontal scale
is expressed RS , and the upper one is given in 103 km.

correspondence to this value but on a generic mechanism that yields a narrow
ring. We note though that, using this factor yields a better comparison of our
results with the nominal data than using the value of RS from Seidelmann
et al. (2007) which we used to scale out the physical units in our numerical
simulations. The differences in the scale are below 0.2% due to the difference
in the RS values. For a ∼ 2.324, this difference amounts to ∼ 140 km.

Figure 2 illustrates the projection of the trapped orbits around this region
for longer integrations (t

end
= 3.2 × 106 TProm); the initial conditions are

taken from the whole M and ω domains. In this case, the stability index
has been computed with respect to ∆a, i.e., with respect to the normalized
standard deviation of the semi-major axis of the test-particle’s orbit, which
was calculated using an averaging extrapolating method to achieve rapid
convergence (Luque and Villanueva, 2014). Clearly, ∆a is a measure of the
radial excursion of the test particle. Again, groups of blue–purple stripes
appear localized around certain values of the semi-major axis. Regarding
the angular correlations of the trapped test particles, Figure 3 shows that
the initial angles M and ω do not display any prominent structure with
respect to the stability index.
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In Figure 4 we display the projection into the a − e space of the initial
conditions that remain trapped at least up to t

end
= 6.0 × 106 TProm. The

structure resembles that of Figure 2, except that many initial conditions
that were trapped in Figure 2 have now escaped. The vast majority of the
escaped particles correspond to test particles in the orange-yellow region of
the stability index ∆a displayed in Figure 4. An example of this can be easily
noticed by the white regions appearing on the middle-left of Figure 4, which
were before occupied mainly by orange-yellow dots.

The last observation confirms the naive expectation that only the most
stable particles will remain trapped, in the sense that their radial excursions
are strongly limited (Benet and Jorba, 2013; Cuzzi et al., 2014). While
this statement may sound trivial, we emphasize that the Hamiltonian (2)
is explicitly time-dependent, and its time dependence reflects the dynamics
of the N -body Hamiltonian. Moreover, we recall that the shepherd moons
move along seemingly chaotic orbits (Poulet and Sicardy, 2001; French et al.,
2003; Goldreich and Rappaport, 2003a,b).

3.2. Statistical properties of the stability index and rings

Figure 5 displays the frequency histograms of the logarithm of ∆a for the
trapped test-particles considering the two distinct integration times. The
empty histograms corresponds to the data used in Figure 2 for t

end
= 3.2 ×

106 TProm, and the filled histograms to Figure 4 for t
end

= 6.0 × 106 TProm.
From Figure 5, we observe that the trapped test particles clearly display
two well-separated scales according to ∆a. These scales correspond, for a
test particle with a ' 2.324, to radial excursions in the kilometer scale for
∆a . 10−5 (blue-purple region), or from tens to hundreds of kilometers for
∆a & 10−4 (orange-yellow region).

A test particle moves along a perturbed precessing ellipse with a lim-
ited radial excursion. Titan’s eccentric orbit promotes more extended radial
excursions (see Appendix A) which may be amplified by local encounters
with the shepherd moons (c.f. Figure 8 in Cuzzi et al., 2014). These com-
bined perturbations create conditions which result in a larger change in the
semi-major axis and eccentricity. The net result is a more extended radial
excursion of the test-particle orbit, and hence a comparatively large value of
∆a, which could lead to the escape of the test particle. Test particles that
somehow experience these large radial excursion but remain trapped at time
t

end
, correspond to the orange–yellow points in Figures 2 and 4, i.e., to some-

what large values of ∆a. The blue-violet dots in those figures correspond to
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Figure 5: Frequency histogram of log10(∆a) corresponding to the data used in Figure 2
for t

end
= 3.2 × 106 TProm (empty histograms) and to the data of Figure 4 for t

end
=

6.0 × 106 TProm (filled histograms). Note that the number of initial particles with larger
stability index (orange-yellow region) shrinks in a larger proportion than the region of
smaller ∆a (blue-purple region).

test particles that have experienced very few or no abrupt changes in their
semi-major and eccentricity, and therefore, the associated ∆a value remains
very small. Figure 5 shows that the test-particles in the orange-yellow region
are more prone to abandon the region between the shepherds than those in
the purple-blue region.

It is only matter of time before test particles in the orange–yellow region
will eventually escape. This statement does not preclude that test particles
with very small values of ∆a (measured at a given time) also escape, though
it suggests that the typical time scale needed for them to escape may be
much longer. Note that, as soon as there is an important radial excursion,
the value of ∆a increases, which reflects the instability of the motion in the
radial direction.

The structure of Figure 5 suggests, on dynamical grounds, to filter the
trapped test particles according to their stability index, which in a way mim-
ics performing longer time integrations. We thus retain as the actual parti-
cles of the ring those whose stability index is small enough. In particular,
we consider that the ring particles satisfy ∆a < 10−5. Using this dynamical
filtering, in Figure 6 we present the projection of the ring particles onto the
X − Y space using a polar representation; Figure 6(a) corresponds to the
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Figure 6: Snapshots of the ring particles, in polar coordinates, after the dynamical filtering
at (a) t = 3.2×106 TProm and (b) t = 6.0×106 TProm. In both frames, the blue middle line
corresponds to the Keplerian ellipse fit considering all the particles of the ring; the outer
green lines are the same ellipse shifted upwards or downwards by δr = 0.002 ≈ 120.5 km,
and permit to obtain a rough estimate of the width of the ring. The left vertical scale is
given in RS units, and the right one in 103 km.
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snapshot taken at t = 3.2 × 106 TProm and 6(b) to the snapshot taken at
t = 6.0× 106 TProm, respectively. The ring obtained in each frame is narrow
and slightly eccentric.

The rings of Figure 6 have a well-defined collective orientation, despite of
the fact that each ring particle has independent and randomly chosen initial
conditions; this is another consequence of the dynamical filtering employed,
i.e., to the radial stability criterion. This collective orientation suggests that
the ring displays apse alignment, though we have not proven it; we shall
come back to this later. An estimate of the instantaneous orbital elements
is obtained by fitting a Keplerian ellipse of the form

r =
a(1− e2)

1 + e cos(φ− φ0)
, (3)

to all particles of the ring at a given time. For the data in Figure 6(a) we
obtain for the semi-major axis a

fit
≈ 2.3241 ≈ 140213 km and the eccentricity

e
fit
≈ 2.9× 10−4, using φ0fit ≈ −3π/4. For the data of Figure 6(b) we obtain

essentially the same semi-major axis (differences appear beyond the fourth
decimal, yielding 140210 km) and e

fit
≈ 1.5 × 10−4 using φ0fit ≈ 2.6. The

corresponding fits are displayed in Figure 6 by the (middle) blue lines. The
outer green lines correspond to the same fitted ellipse shifted upwards and
downwards by δr = 0.002, which is approximately equivalent to 120.5 km.
These limits include over 90% of the ring particles in each snapshot. Hence,
these curves provide a rough estimate of the width of the ring, which is given
by 2δr ≈ 0.004 ≈ 241 km.

Note that, the surface density of test particles decreases very fast. In more
quantitative terms, in Figures 7 we present the histogram of ring particle
radial positions corresponding to the rings of Figures 6. The red curve in
the histograms corresponds to a Gaussian distribution that uses the mean
and the variance computed from the radial positions. This shows that the
surface density of ring particles decays at least as a Gaussian. It is in this
sense that we state that the ring obtained displays sharp edges.

The semi-major axis of the ring afit given above is in correspondence
with the observations for Saturn’s F ring, namely, aFring = 140221.6 km ≈
2.324243...R′S (Bosh et al., 2002; Cooper et al., 2013). Differences exist
though, that are attributed to the simplicity of the model. With respect
to the width, we note that our definition is similar to the definition of the
core employed by French et al. (2012). Our estimate for the width is consis-
tent with the Voyager 1 results, though it is about half of the mean-width
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Figure 7: Frequency histograms of the radial positions of the ring particles of Figures 6 at
(a) t = 3.2×106 TProm and (b) t = 6.0×106 TProm. The red curves correspond to Gaussian
distributions with the same mean and variance of the data; these curves are included as
a guide for the tails of the distribution, which leads us to conclude that the tails have at
least a Gaussian decay. The vertical lines correspond to the shifts by δr used to estimate
the width of the ring (green lines in Figures 6). The lower horizontal axis scale is given in
RS , and the upper one in km.
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obtained from the photometric analysis of Cassini’s data, which is wider than
Cassini’s occultation data (see French et al., 2012). It is also consistent with
the simulations performed by Cuzzi et al. (2014, cf. figure 18), and the total
extent of the F ring reported in Bosh et al. (2002, see the discussion of Sect. 6
and Fig. 7). Yet, the value largely overestimates the width associated with
the core, which is in the range of 1 − 40 km. Note that, while we have ob-
tained an eccentric ring, the values of the eccentricity obtained are about an
order of magnitude smaller than the observations (Bosh et al., 2002; Albers
et al., 2012; Cooper et al., 2013). This may be a consequence of neglecting
the larger bodies in the ring, collisions among the ring particles, or to the
overall simplicity of our model.

Similar to the fits based on Eq. (3) performed above for the snapshots in
Figures 6, in Figures 8 we plot the fitting parameters afit, efit and φ0fit, as a
function of time, for three data sets. Each data set spans a time window of
200 time-units at t

end
= 1.6×106 TProm (blue data), t

end
= 3.2×106 TProm (red

data) and t
end

= 6.0× 106 TProm (green data). The fitted parameters display
spurious short-time oscillations, whose periodicity is related to the period of
Prometheus in this stroboschopic map (200/(2π) ≈ 32). For afit and efit we
observe a longer time-scale variations, which we attribute to secular effects.
Note that, while this secular time-scale is clear for efit in each individual data
set, for afit it appears only by comparing the three data sets.

Regarding φ0fit, the slope of the linear trend is an estimate of the apse-
precession rate. We have fitted each data set to a straight line (for the green
data, this was done using the last 20 points). The average slope is an esti-
mate for the precession rate; the black lines displayed in Figure 8(c) have this
average slope. We obtain $̇fit ≈ 0.003867 rad/time-units, which corresponds
to 2.27105 deg/day. This estimate can be compared with the nominal preces-
sion rate of the F ring which corresponds to $̇Fring = 2.7001 deg/day (Bosh
et al., 2002). The difference can be attributed to the simplicity of our model,
in particular the fact that we only considered the J2 zonal harmonic. The
similarity in the slopes of the three data sets gives further support to the
claim that the ring displays apse alignment.

While our results show certain agreement with the observations, we should
emphasize that this a posteriori consistency does not prove the dynamical
filtering that we have employed. It is through longer numerical integrations,
or a thorough understanding of the relevant invariant phase space structures,
that we can prove if the filtered particles indeed escape and if the retained
ones do not. With this proviso in mind, the comparison with the observations
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Figure 8: Ring fitting parameters (a) afit, (b) efit and (c) φ0fit as a function of time,
spanning 200 time-units (200/(2π)TProm) close to three epochs: t = 1.6× 106 TProm (blue
data), t = 3.2×106 TProm (red data) and t = 6.0×106 TProm (green data). The left vertical
scale of (a) is given in RS and the right one in 103 km. The black straight-lines in (c)
correspond to a precession rate $̇fit ≈ 0.003867 rad/time-units.
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is rewarding.

3.3. Orbital resonances

So far, we have shown numerically that, among the trapped particles (up
to 6.0× 106 TProm), the most stable ones according to the stability indicator
∆a yield a narrow and eccentric ring. Here, we shall consider the orbital
resonance structure in the region where the ring is located (2.321 < a <
2.3275, c.f. Figure 4), considering all Saturn moons of our model, the test
particle and the J2 zonal harmonic of Saturn.

We are interested in the semi-major axis a of test particles that satisfy a
resonance condition (Morbidelli, 2002), which can be written as

4∑
i=1

[
kiλ̇i − li$̇i

]
=

4∑
i=1

[
kifi + (ki − li)$̇i

]
= 0. (4)

Here, all ki and li are integer coefficients, λ̇i = fi + $̇i is the rate of change
of the mean longitude, fi and $̇i correspond to the mean motion and the
apsidal precession rate of Prometheus, Pandora, Titan and the test particle,
for i = 1, 2, 3, 4 respectively. We shall restrict ourselves to consider orbital
resonances with

∑
i |li| ≤ 1 (and k4 6= 0) only, since all involved eccentricities

are quite small, and the amplitude of the Fourier coefficient corresponding
to the resonance is at least proportional to e

|li|
i , with ei the eccentricity of

the i-th body (Murray and Dermott, 2000).
We locate the resonances as follows: We fix the frequencies for the moons

(from our numerical integrations, though similar results are obtained using
the nominal data) and use two fixed intervals, If4 and I $̇4 , for the possible
frequencies of the particle of the ring. These intervals contain the possible
values of the frequencies that are compatible with a semi-major axis a4 in
the interval Ia4 = [2.321, 2.3275]; these intervals are given by f4 ∈ If4 =
[0.990365, 0.994541] and $̇4 ∈ I $̇4 = [4.470, 4.498] × 10−3. Then, for a
given set of integer coefficients ki and li that satisfy d’Alambert’s relation,∑

i(ki−li) = 0 (Morbidelli, 2002), we check if zero is contained in the interval
obtained from Eq. (4). If zero is not in the interval, we conclude that there
is no resonance with the specific integer coefficients tested. If the resulting
interval does contain zero, we use Newton’s method to compute the test
particle’s semi-major axis that corresponds to the zero of Eq. (4) together
with the associated resonant frequencies. To first order in J2, the mean-
motion and the horizontal epicyclic frequency in terms of the semi-major
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Figure 9: Frequency histogram (using 80 bins) of the semi-major axis of the ring particles
(∆a < 10−5) for the the numerical integrations up to t

end
= 3.2× 106 TProm (light purple

histogram) and t
end

= 6.0×106 TProm (dark purple histogram). The vertical lines indicate
the location of some resonances: green lines correspond to Prometheus’ outer Lindblad and
co-rotation resonances, red lines to Pandora’s inner Lindblad and co-rotation resonances,
and blue lines to low-order orbital resonances involving the mean-motion of both shepherds
and the ring-particles only. The lower horizontal axis scale is given in RS and the upper
one in km.

axis are given by (Lissauer and Cuzzi, 1982)

n2 =
Gm0

a3

[
1 +

3

2
J2

(RS

a

)2]
, (5)

κ2 =
Gm0

a3

[
1− 3

2
J2

(RS

a

)2]
. (6)

From these frequencies, the apsidal precession rate is obtained, $̇ = n− κ.
In Figure 9 we show the histogram of the ring particle’s semi-major axis,

using the numerical integrations displayed in Figures 2 (light purple) and 4
(dark purple). The histograms have been constructed using 80 bins in the
semi-major axis interval Ia4 . The histograms show the decrease in the ring
particle number for the longer integrations mentioned above.
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The vertical lines displayed in Figure 9 correspond to different resonances
found within the semi-major interval of interest; Figures 10 show the same
results using 400 bins in the construction of the histogram on If4 ; note that
Figure 10(b) spans the region where the nominal semi-major axis of the F
ring is located. With the method described above, we located all low-order
resonances defined by the condition

∑
i(|ki| + |li|) ≤ 40. The maximum

order was set to 40 for convenience; low order resonances are often preferred
since the amplitude of the Fourier coefficients decreases with the order of the
resonance. The blue vertical lines in Figures 9 and 10 are, among these low-
order resonances, those that only involve the mean motions, i.e.,

∑
i |li| = 0.

It turns out that, up to the order calculated, these resonances involve the
mean motion of both shepherd moons and the particle of the ring.

In addition to those resonances, the vertical green lines correspond to
Prometheus’ outer Lindblad and co-rotation resonances, −j1f1 +(j1 +1)f4 +
$̇4 = 0 and −j1f1 + (j1 + 1)f4 + $̇1 = 0, respectively, with 102 ≤ j1 ≤
179. Likewise, the red lines correspond to Pandora’s inner Lindblad and co-
rotation resonances, −(j2 + 1)f2 + j2f4 − $̇4 = 0 and −(j2 + 1)f2 + j2f4 −
$̇2 = 0, respectively, with 50 ≤ j2 ≤ 62. These pairs of resonances lie
so close together that it is difficult to distinguish them; only few doublets
of Pandora’s resonances are apparent in Figures 10. During the computa-
tion of these resonances, we noticed the proximity of other resonances with
nearby values of j1 (j2) which involved the mean-motion of Prometheus (Pan-
dora), the mean-motion of the particle of the ring and the apse precession
of Pandora (Prometheus), or even Titan. While the former lie very close to
Prometheus (Pandora) outer (inner) Lindblad and co-rotation resonances,
those that involve Titan’s precession rate are well separated. In Figures 10
we have included the resonances of the form −j′1f1 + (j′1 + 1)f4 + $̇3 = 0
and −(j′2 + 1)f2 + j′2f4 − $̇3 = 0, that involve Titan’s precession rate, as
dotted-green and dotted-red vertical lines, respectively. The latter are the
only resonances displayed in Figures 9 and 10 that involve Titan; some of
them may be relevant for the location of the ring, as we point out below.
There are other resonances in this region which also involve Titan; yet, those
resonances are three-body resonances, and their significance is not clear.

As shown in Figures 10, many of the accumulation regions of the ring par-
ticles can be associated with some resonances, and mostly with Prometheus’
outer Lindblad and co-rotation resonances (green lines). We note that, to
each such pair of resonances there is, within the same region of ring-particle
accumulation, a nearby resonance of the form −j′1f1 + (j′1 + 1)f4 + $̇3 = 0
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Figure 10: Details of two regions of Figure 9, using 400 bins to construct the histograms;
note that the vertical scales differ. Some resonances are located at the gaps between
two nearby regions of ring particle accumulation; most Pandora’s inner Lindblad and co-
rotation resonances (red lines) lie in these gaps. Some of Prometheus’ outer Lindblad
and co-rotation resonances (green lines), and resonances involving Prometheus’ mean-
motion and Titan’s apse precession (dotted green lines), appear within the same region of
accumulation of ring particles. The lower horizontal scales are given in RS and the upper
ones in km. 25



which involves Titan’s apse precession. The most prominent peak, c.f. Fig-
ure 10(b), located at a = 2.32529... ≈ 140284.7 km can be associated with
Pandora’s inner Lindblad and co-rotation resonances with j2 = 57; these
resonances are flanked by Prometheus’ outer Lindblad and co-rotation res-
onances with j1 = 119 and their partner involving Titan’s apse precession
(j′1 = 120). Other Pandora’s inner Lindblad and co-rotation resonances (red
lines) as well as most low-order three-body orbital resonances (blue lines) ap-
pear in gaps between regions of accumulation of ring particles. This is illus-
trated in Figure 10(b) by two of the gaps in the accumulation region close to
the semi-major axis 2.324. One exception to this is the three-body resonance
−11f1−6f2+17f4 = 0, which is located around a ∼ 2.3263 ≈ 140345.7 km; cf.
Figure 9. The region close to a = 2.3255 ≈ 140297.4 km seems to be related
to the proximity of the low-order three-body resonance −2f1 − f2 + 3f4 = 0
and Prometheus’ outer Lindblad and co-rotation resonances (with j1 = 117),
including the corresponding partner resonance involving Titan’s apse preces-
sion (j′1 = 118).

From the observations described above, we may conclude that the accu-
mulation regions where the ring particles are found can be essentially as-
sociated with Prometheus’ Lindblad and co-rotation resonances and their
companion resonance which involves the precession rate of Titan. Yet, not
all Prometheus’ outer Lindblad and co-rotation resonances coincide with a
region of accumulation of ring particles. Similarly, Pandora’s inner Lindblad
and co-rotation resonances as well as the low-order three-body resonances
seem to be related to gaps rather than regions of accumulation of test par-
ticles, but exceptions exist. If these resonances somehow induce dynamical
instabilities, we may expect that as time passes the ring particles found in
the accumulation regions crossed by these resonances will escape; this as-
sertion may be proved by considering even longer integrations. The explicit
mechanism is not clear at this point.

4. Summary and conclusions

In this paper we have studied a simple model for the location of Saturn’s
F ring. The model includes the gravitational influence of Saturn with its J2

zonal harmonic, Prometheus, Pandora and Titan, on massless point particles,
and assumes that the dynamics takes place in the equatorial plane. The ini-
tial conditions of the test particles are randomly chosen, imposing only that
they are within the region between Prometheus and Pandora at the initial
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time of our simulations. We have computed accurate long-time numerical
integrations that show that there is a wide region, in the initial condition
space, of test particles that stay in the region between Prometheus and Pan-
dora, i.e., that do not escape from that region nor collide with the shepherds
up to the final integration time. Among these trapped test particles, we
uncovered a clear scale separation according to the value of the dynamical
stability indicator ∆a. The most stable ones, which correspond to ∆a < 10−5

with a maximum excursion . 1.5 km, are located around specific values of
the semi-major axis, defining localized stripes in the semi-major axis and
eccentricity plane. Retaining only the most stable test-particles, i.e., those
particles whose dynamics do not display extended radial excursions, their
projection onto the X − Y plane forms a narrow eccentric ring which, as
time passes, maintains a collective elliptic shape.

Fitting the whole ring to a Keplerian ellipse yields a semi-major axis that
is comparable to the observations. The fitted value for the eccentricity is
about an order of magnitude smaller, and the width of the ring is ∼ 241 km,
comparable to some observations and simulations, but largely overestimating
a core of 1 − 40 km. Using various snapshots spanning ∼ 30 periods of
Prometheus at different epochs, we obtain consistent values for the apse
precession rate, which are somewhat smaller than the observations, but of
the same order of magnitude. In that sense, the ring obtained displays apse
alignment. We emphasize that, in the context of our simulations, it cannot
be attributed to the mass of the ring; the actual mechanism that yields apse
alignment remains unclear.

Note that the actual value for the semi-major axis obtained from fit-
ting the rings of Figures 6 to a Keplerian ellipse, afit ≈ 2.3241RS, does not
match the location of any of the (most populated) ring-particle accumula-
tion regions; c.f. Figure 10. This remark is trivial, in the sense that the
fitting procedure is collective and involves the position of all ring particles
with equal weight. Yet, it emphasizes the fact that the whole set of stable
trapped ring particles has to be considered. This indicates also that orbital
fits of individual objects (which a priori are located within a ring-particle ac-
cumulation region) may not match the fitting parameters for the ring. This
agrees with results of Cooper et al. (2013) that show that local variability of
the ring is compatible with a consistent solution for the whole ring. It also
suggests that the orbital elements fitted to some bright features that have
been observed, represent a region where stable ring-particles accumulate.

Cuzzi et al. (2014) addressed similar questions considering a more real-
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istic model (14 Saturn moons and including J2, J4 and J6 Saturn’s zonal
harmonics) and shorter time integrations, up to 20000 Prometheus periods.
As a measure of the stability of test particles they considered the semi-major
axis RMS deviation during the time spanned by the integration. In their
Figure 9, they obtain a one to one correspondence of the trapping stripes
with the Prometheus’ outer Lindblad and co-rotation resonances. (The aim
of that figure was to show the robustness of the calculations with respect
to changes of the zonal harmonics.) While we also find an association of
the regions of ring-particle accumulation to such Prometheus resonances,
our results show that not all Prometheus resonances are associated with a
ring-particle accumulation region. In this case, the difference is attributed to
the facts that Pandora was not included in those calculations and the inte-
grations are rather short (5000 Prometheus periods for their Fig. 9). Other
calculations that include Pandora (Cuzzi et al., 2014, Figures 14–16, up to
20000TP ) show that Pandora’s resonances influence the stability of the tests
particles, rendering them less stable, i.e., larger semi-major axis RMS devi-
ations are observed. Our results are similar with respect to the semi-major
axis, though ∆a defines naturally the stability through a scale separation.
We also observe more sensitivity with respect to the eccentricity of the ring
particles, which in our case are smaller than the values considered in Cuzzi
et al. calculations; this may be related to the much longer integration times
we considered. Despite of the specific differences of the models and meth-
ods, the results are consistent. We interpret this as the robustness of the
approach.

The quantity ∆a seems to be a good dynamic indicator to address if a
test particle escapes or not, depending on whether or not its value is large
enough. In our numerical results, there is a natural scale separation defined
by the statistics of ∆a for the trapped particles. However, some ring-particles
with a small value of ∆a may escape at later times. In our model, escape is
the result of the accumulation of small radial excursions due to the combined
action of the moons considered in the model, which are enhanced by impulsive
encounters due to the proximity of the shepherd moons.

The ring particles accumulate in regions which seem related to occurrence
of orbital resonances, typically involving Prometheus’ outer Lindblad and
co-rotation resonances, though not all such resonances are associated with
regions of accumulation; similar results were obtained by Cuzzi et al. (2014).
We also considered the location of other resonances. Low-order resonances
in the region of the ring involve the mean motions of both shepherds and
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the particle of the ring; these resonances, as well as most of Pandora’s inner
Lindblad and co-rotation resonances, seem related to gaps where the radial
excursions are large enough, though some match ring-particle accumulation
regions.

We emphasize that we have only found a possible association between
resonance locations and the occurrence of accumulation regions and gaps,
without providing an explanation that links the specific resonance to the ac-
tual dynamics. Cuzzi et al. (2014) propose an “anti-resonance” mechanism
to explain the suppression of radial diffusion. In essence, the idea is that
at certain locations (m-th Prometheus’ outer Lindblad and co-rotation res-
onances, with m � 1) radial excursions promoted by perturbations from a
close approach of Prometheus to the ring, are counterbalanced by the next
close approach of this shepherd. Cuzzi et al. (2014) remark that the con-
dition to suppress radial diffusion within the antiresonance mechanism is
equivalent to the empirical commensurability fProm − fFring ≈ 2$̇Fring noted
by Cooper et al. (2013). While this mechanism is physically appealing, the
fact that it is equivalent to the empirical commensurability which does not
satisfy d’Alambert’s relation, suggests that something is still missing. In our
analysis we have observed that close to Prometheus’ outer Lindblad and co-
rotation resonances, resonances involving the same (Prometheus and the ring
particle) mean-motions but that the precession rate of Pandora or Titan, in
particular the latter, seem to be relevant to define the narrow regions where
the ring particles accumulate, though the actual mechanism is not clear.
It is tempting to consider these resonances to complete the anti-resonance
mechanism; this is left for the future.

Our model is rather simple and does not include many important con-
tributions for a realistic comparison with the F ring. The role of Titan, as
displayed by the resonance structure, seems marginal; yet, it influences the
actual location and order of Prometheus’ resonances (Cuzzi et al., 2014),
and some resonances involve, which somehow makes it relevant. While Ti-
tan promotes radial excursions, it seems unable to clear all trapped unstable
particles in a short-time scale; in particular, the region beyond the location
of the F ring. Interactions with other moons or ring-particle collisions may
contribute to this aspect. A point to be emphasized is that the occurrence
of narrow rings does not require very specific scenarios with regards to the
parameters, but certain stability conditions.
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Appendix A. Numerical simulations with and without Titan

Here, we present some numerical results to justify the introduction of Ti-
tan and show that it promotes radial excursions for those test particles not lo-
cated within the ring-particle accumulation stripes. To this end, we consider
similar integrations as described before, including or not the gravitational
influence of Titan. The time integrations extend up to t

end
= 1.6×106 TProm,

and the initial conditions are set in two small semi-major axis regions span-
ning δa ≈ 66.4 km; the remaining test-particle orbital elements are set as
before. The first region (a ∼ 2.32475 ≈ 140252.2 km) contains stable stripes
where ring particles accumulate, i.e., some particles belonging to the ring
of Figures 6. The second region covers larger values of the semi-major axis
(a ∼ 2.33135 ≈ 140650.3 km) which displays trapped particles, with few of
them being stable according to our criterion (∆a < 10−5). Note that t

end

in these integrations is shorter than those considered in Figures 2 and 4; we
thus expect that the particles in the second region satisfying the stability
criterion will eventually display some instabilities.

In Figures 11, we present the frequency histograms of log10(∆a) corre-
sponding to the two intervals of semi-major axis described above; the his-
tograms of simulations that include Titan correspond to the filled ones, while
those without it are the empty ones. Figure 11(a) illustrates the results for
the first region defined above. Noticeably, there are more particles trapped
when Titan is not included in the simulations, though about the same number
of particles that fulfill the stability criterion. In turn, Figure 11(b) displays
the results for the semi-major axis region around a ∼ 2.33135 ≈ 140650.3 km.
In this case, we find about the same number of trapped and ring-particles,
seemingly independently of Titan’s presence, though marginally more for
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Figure 11: Frequency histogram of log10(∆a) for two regions of the semi-major axis for
integrations up to t

end
= 1.6 × 106 TProm. Filled histograms correspond to simulations

that include Titan, the empty ones are without it. (a) Semi-major axis region around
a ∼ 2.32475 ≈ 140252.2 km, which contributes to the ring. (b) Semi-major axis region
around a ∼ 2.33135 ≈ 140650.3 km; the inset shows an enlargement for test particles
satisfying the stability criterion. Note that the vertical scales are different.
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the simulations that do not include it. Notice that for the trapped parti-
cles with ∆a > 105, the histograms without Titan (empty histograms) are
slightly shifted to the left. That is, trapped particles are more stable in the
simulations that do not include Titan.

These results show that Titan indeed promotes radial excursions for par-
ticles not satisfying our stability criterion. For semi-major axis in the region
where the accumulation stripes are found, Titan’s inclusion allows a more ef-
ficient escape mechanism. Moreover, the ring-particle accumulation regions
are slightly shifted, as noted by Cuzzi et al. (2014). For larger values of
the semi-major axis, the presence of Titan induces instabilities, though not
enough strong to swipe the trapped particles away.
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Charnoz, S., Porco, C. C., Déau, E., Brahic, A., Spitale, J. N., Bacques,
G., Baillie, K., 2005. Cassini Discovers a Kinematic Spiral Ring Around
Saturn. Science 310, 1300–1304.

Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., Murray, C. D., French,
R. G., Marouf, E. A., 2009. The Structure of Saturn’s Rings. In:
Dougherty, M. K., Esposito, L. W., Krimigis, S. M. (Eds.), Saturn from
Cassini-Huygens. Springer Netherlands, Ch. 13, pp. 375–412.

Cooper, N. J., Murray, C. D., Williams, G. A., 2013. Local Variability in the
Orbit of Saturn’s F Ring. AJ 145, 161.

Cuzzi, J. N., Burns, J. A., 1988. Charged particle depletion surrounding
Saturn’s F ring - Evidence for a moonlet belt? Icarus 74, 284–324.

Cuzzi, J. N., Whizin, A. D., Hogan, R. C., Dobrovolskis, A. R., Dones, L.,
Showalter, M. R., Colwell, J. E., Scargle, J. D., 2014. Saturn’s F Ring core:
Calm in the midst of chaos. Icarus 232, 157–175.

de la Llave, R., 2001. A tutorial on KAM theory. In: Smooth ergodic theory
and its applications (Seattle, WA, 1999). Vol. 69 of Proc. Sympos. Pure
Math. Amer. Math. Soc., Providence, RI, pp. 175–292.

33



El Moutamid, M., Sicardy, B., Renner, S., 2014. Coupling between corota-
tion and Lindblad resonances in the presence of secular precession rates.
Celestial Mechanics and Dynamical Astronomy 118, 235–252.

Esposito, L. W., 2006. Planetary Rings. Cambridge University Press, UK.

French, R. G., McGhee, C. A., Dones, L., Lissauer, J. J., 2003. Saturn’s
wayward shepherds: the peregrinations of Prometheus and Pandora. Icarus
162, 143–170.

French, R. S., Showalter, M. R., Sfair, R., Argüelles, C. A., Pajuelo, M.,
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