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Abstract

The authors have recently introduced an extension of the classical one dimen-
sional (doubling) renormalization operator to the case where the one dimensional
map is forced quasiperiodically. In the classic case the dynamics around the fixed
point of the operator is key for understanding the bifurcations of one parameter
families of one dimensional unimodal maps. Here we perform a similar study of the
(linearised) dynamics around the fixed point for further application to quasiperiod-
ically forced unimodal maps.

1 Introduction

Given a one-dimensional dynamical system, one can consider a quasiperiodic forcing of
its dynamics, given place to quasiperiodically forced one dimensional map of the form

F : T× R → T× R(
θ
x

)
7→

(
θ + ω
f(θ, x)

)
where T = R/Z, f ∈ Cr(T × R,R) with r ≥ 1 and ω ∈ T \ Q. In other words, a skew
map where the dynamics on one of its component is given by a solid rotation of angle ω.
Therefore, a map of this form can be identified with a pair (ω, f) with ω and f as before.

We are interested in quasiperiodic forced maps as perturbations of one dimensional
maps [15, 4, 5, 6, 9, 8]. The paradigmatic example is a two parametric map f(θ, x) =
f(θ, x, α, ε) with

f(θ, x, α, ε) = g(x, α) + εh(θ, x, α, ε),

∗Work supported by the MEC grant MTM2012-32541 and the AGAUR grant 2014 SGR 1145.
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where g and h are C∞ functions. Typically, it is assumed that the one-parameter family
g(·, α) has a cascade of period doubling bifurcations. Between each of these bifurcations, a
superstable periodic orbit is known to exist. An example of such a family is the well-known
Logistic Map g(x, α) = αx(1− x).

In [16] we showed the existence of some universality and self-renormalization properties
in the parameter space of the Forced Logistic Map, although the phenomena of universality
and self-renormalization are a bit different with respect to the one-dimensional case.
Concretely, the rotation number is shown to have a crucial role. In [7] we introduced an
extension of the classical one dimensional (doubling) renormalization operator to cover the
quasiperiodic forcing of the map. In the classic operator the dynamics around the fixed
point of the operator plays a crucial role to understand the bifurcations of one-parametric
families of one dimensional unimodal maps [2]. Here we perform an equivalent study of the
(linearised) dynamics around the fixed point for further application to quasiperiodically
forced unimodal maps.

In the remainder of this section we review the extension of the operator introduced
in [16]. In Section 2 we study, both analytically and numerically, the properties of the
linearized operator. Section 3 is devoted to a numerical study of the dynamics of the
linearised operator. If the dynamics is projected on the unit sphere (of the corresponding
function space) it seems that there exists an attractor that looks like a dyadic solenoid.
A detailed study is actually work in progress.

1.1 A setup for the 1D renormalization operator

Let us review the definition of the 1D renormalization operator in a set up that is suitable
for introducing a quasiperiodic perturbation to the 1D map.

Given a small value δ ≥ 0, letMδ denote the space of Cr (r ≥ 1) even maps ψ of the
interval Iδ = [−1− δ, 1 + δ] into itself such that

M1. ψ(0) = 1,

M2. xψ′(x) < 0 for x 6= 0.

Set a = ψ(1), a′ = (1 + δ)a and b′ = ψ(a′). We define D(Rδ) as the set of ψ ∈ Mδ

such that

D1. a < 0,

D2. 1 > b′ > −a′,

D3. ψ(b′) < −a′.

Conditions M1 and M2 require the map to be unimodal with 0 as the critical point.
Conditions D1, D2 and D3 ensure that the intervals [−a′, a′] and [b′, 1] do not overlap and
each one is mapped into the other. In Figure 1.1 we include a schematic plot of a map in
Mδ where the geometric meaning of the values a, a′ and b′ is shown.
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Figure 1: Schematic plot of a map in Mδ. The geometric meaning of the values a, a′, b′,
δ and η are shown.

We define the (1D doubling) renormalization operator Rδ : D(Rδ)→Mδ as

Rδ(ψ)(x) =
1

a
ψ ◦ ψ(ax).

with a = ψ(1). Let Dn(Rδ) denote the set of functions which are n times renormalizable:

Dn(Rδ) =
{
f0 ∈Mδ

∣∣ fi = Ri
δ(f0) ∈ D(Rδ), for i = 0, . . . , n− 1,

}
The setup for the renormalization operator given above is a small modification of

the one introduced in [12], which is recovered for δ = 0. The modification done here is
to ensure that one dimensional maps can be quasiperiodically perturbed further on and
remain well defined. In [7] it is shown that the operator Rδ is well defined, and that any
fixed point of R0 extends to a fixed point of Rδ for δ small enough.

1.2 The quasiperiodically forced case

Consider a quasiperiodically forced map, with its domain restricted to the compact cylin-
der T× Iδ:

F : T× Iδ → T× Iδ(
θ
x

)
7→

(
θ + ω
f(θ, x)

)
,

(1)
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with ω an irrational number, f a Cr function and Iδ = [−(1 + δ), 1 + δ]. Given F = (ω, f)
a quasiperiodically forced map, its renormalization R(F ) is defined as an affine transfor-
mation applied to F 2 = F ◦ F (the self-composition of F ). The map F 2 is of the form
(2ω, f 2), with f 2(θ, x) = f(θ+ ω, f(θ, x)). The extension of the renormalization operator
proposed in [7] is of the form R(F ) = (2ω, Tω(f)), with Tω(f) an affine transformation of
f 2. In other words, the affine transformation applied to F 2 is just a multiplication by two
in the ω-component. With this definition we obtain an operator that preserves the skew
structure of the maps.

We introduce now some notation for the definition of Tω(f). Let us identify Cr(Iδ, Iδ)
with its natural inclusion in Cr(T × Iδ, Iδ) defined as [i(f)](θ, x) = f(x) for any f ∈
Cr(Iδ, Iδ). With this identification Cr(Iδ, Iδ) is a subspace of Cr(T × Iδ, Iδ) and the
operator

p0 : Cr(T× Iδ, Iδ) → Cr(Iδ, Iδ)

f 7→
∫ 1

0

f(θ, x)dθ,

defines a projection. Then, we can considerMδ and D(Rδ) as sets in both Cr(Iδ, Iδ) and
Cr(T× Iδ, Iδ) depending on the context. Consider also Xδ, the set defined as

Xδ = {f ∈ Cr(T× Iδ, Iδ)| p0(f) ∈Mδ}.

Given a function g ∈ Xδ, we define the (quasiperiodic doubling) renormalization of g
as

[Tω(g)](θ, x) :=
1

â
g(θ + ω, g(θ, âx)), (2)

where â =

∫ 1

0

g(θ, 1)dθ.

The operator Tω restricted to the set D(Rδ) coincides with the operatorRδ. Therefore,
any fixed point of Rδ extends to a fixed point of Tω. Consider the set D(Tω) = {g ∈
Xδ | Tω(g) ∈ Xδ}, then the renormalization operator Tω is defined from D(Tω) to Xδ.
Actually, D(Tω) contains an open neighbourhood (in Xδ) of D(Rδ), where the operator is
well defined [7].

At this point we can go back to the definition of R, the renormalization operator for
a quasiperiodically forced map F = (ω, f) like (1).

Consider

X = {(ω, f) ∈ T× Cr(T× Iδ, Iδ) | f ∈ Xδ} ,
D(R) = {(ω, f) ∈ T× Cr(T× Iδ, Iδ) | f ∈ D(Tω)} .

We define the quasiperiodically forced renormalization operator as

R : D(R) → X
(ω, f) 7→ (2ω, Tω(f)).
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Let Dn(R) denote the domain of maps (ω, f) which are n-times renormalizable, in
other words

Dn(R) =

{
(ω0, f0) ∈ X

∣∣∣∣ fi ∈ D(Tωi
), for i = 0, . . . , n− 1,

where (ωi, fi) := R(ωi−1, fi−1)

}
.

Consider Φ the Feigenbaum fixed point of Rδ given by [12]. Then Φ is also fixed by
Tω and the set T × {Φ} is invariant by R and the dynamics in ω is determined by the
expansive map ωn+1 = 2ωn.

1.3 Differentiability of the operator and its tangent map

Given φ ∈ D(Tω), φ ∈ Cr+s, there exists an open neighbourhood U of φ in D(Tω) in the
Cr+s topology, such that Tω : U → Xδ with the Cr topology is a Cs operator [7]. This
gives place to an obvious “loss of differentiability”. An alternative to fix this problem is
to consider a setup of the operator on the analytic functions.

Let Bρ be a complex band of width ρ around the real numbers (Bρ = {z = x +
iy ∈ C such that |y| < ρ}) and W be an open, bounded and simply connected set in C
containing the real interval Iδ. Consider B(Bρ,W ) the space of functions f : Bρ×W → C
such that:

1. f is holomorphic in Bρ ×W and continuous in the closure of Bρ ×W .

2. f is real analytic (it maps real numbers to real numbers).

3. f is 1-periodic in the first variable, i. e. f(θ+1, z) = f(θ, z) for any (θ, z) ∈ Bρ×W .

The space B(Bρ,W ) endowed with the supremum norm is a Banach space.
Let us define B(W ) as the space of real analytic functions that are holomorphic in W

and continuous in its closure, equipped with the supremum norm. This is the one dimen-
sional counterpart of B(Bρ,W ), and we can understand B(W ) as a subset of B(Bρ,W ).

We want to consider the operator Tω in the new topology of B(Bρ,W ). Given f ∈
B(Bρ,W ), a necessary condition to have Tω(f) well defined is that f(Bρ × â(f)W ) ⊂ W
(where aW =

⋃
z∈W{az}). In [12] it is shown that there exist a set W and a function Φ

such that Φ ∈ D(R0) ∩ B(W ) and Φ is a fixed point of R0 (hence a fixed point of Tω as
well). In [7] it is shown that, for a sufficiently small ρ, there exists U ⊂ B(Bρ,W ), an
open neighbourhood of Φ, such that Tω(Ψ) is well defined for any Ψ ∈ U . It is also shown
that Tω is Fréchet differentiable for any Ψ ∈ U and its derivative is equal to

[DTω(Ψ)h](θ, x) =
1

a
(∂xΨ)(θ + ω,Ψ(θ, ax))h(θ, ax) +

1

a
h(θ + ω,Ψ(θ, ax))

+
b

a
(∂xΨ)(θ + ω,Ψ(θ, ax))(∂xΨ(θ, ax))x− b

a2
Ψ(θ + ω,Ψ(θ, ax)),

with a =

∫ 1

0

Ψ(θ, 1)dθ and b =

∫ 1

0

h(θ, 1)dθ.
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One of the reasons to introduce the (quasiperiodically forced) renormalization operator
is to study the image by R of functions of the form F = (ω0, f0) + ε(0, h0) where ω0 is
a Diophantine number, f0 ∈ D(Rδ), ε is a small parameter and h0 ∈ Tω0,f0X. In other
words, we are interested only in (infinitesimal) perturbations δF ∈ TFX that preserve
the skew product structure of maps like (1). For this reason we will only consider tangent
vectors of the form δF = (0, δf). We can incorporate this in the tangent bundle of X and
(re)define it as:

TX =
{

(ω, f, h) | (ω, f) ∈ X, (0, h) ∈ T(ω,f)X
}
.

We can define now S, the tangent map associated to R, in the Cr topology as

S : D(S) → TX
(ω, f, h) 7→ (2ω, Tω(f), DTω(f)h),

(3)

with D(S) := {(ω, f, h) ∈ TX | (ω, f) ∈ D(R) and f ∈ Cr+1(T× Iδ, Iδ)}.

2 Properties of DTω
2.1 Fourier expansion of DTω
Let Ψ be a function in a neighbourhood of Φ (the fixed point of Tω) where the operatorTω
is differentiable. Additionally, assume that Ψ ∈ D(Tω).

Given a function f ∈ B(Bρ,W ) we can consider its complex Fourier expansion in the
periodic variable

f(θ, z) =
∑
k∈Z

ck(z)e2πkθi,

with

ck(z) =

∫ 1

0

f(θ, z)e−2πkθidθ.

Then we have that DTω “diagonalizes” with respect to the complex Fourier expansion,
in the sense that we have

[DTω(Ψ)f ] (θ, z) = [DRδ(ψ)c0](z) +
∑

k∈Z\{0}

(
[L1(ck)](z) + [L2(ck)](z)e2πkωi

)
e2πkθi, (4)

where
L1 : B(W ) → B(W )

g(z) 7→ 1

a
ψ′ ◦ ψ(az)g(az),

and
L2 : B(W ) → B(W )

g(z) 7→ 1

a
g ◦ ψ(az),

with ψ = p0(Ψ) and a = ψ(1).
An immediate consequence of this diagonalization is the following.
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Proposition 2.1. Consider

Bk := {f ∈ B| f(θ, x) = u(x) cos(2πkθ) + v(x) sin(2πkθ), u, v ∈ B(W )}, (5)

then we have that the spaces Bk are invariant by DTω(Ψ) for any k > 0. Moreover
DTω(Ψ) restricted to Bk is conjugate to Lkω where, for all α ∈ R, Lα is defined as a map
Lα : B(W )⊕ B(W )→ B(W )⊕ B(W ) such that

Lα :

(
u
v

)
7→
(
L1(u)
L1(v)

)
+

(
cos(2πα) − sin(2πα)
sin(2πα) cos(2πα)

)(
L2(u)
L2(v)

)
. (6)

Proof. Let f be a function in Bk, then f(θ, x) = u(z) cos(2πkθ)+v(z) sin(2πkθ). Consider

the function c(z) = u(z)+iv(z)
2

. Using formula (4) on the function u(z) = c(z) + c̄(z) and
doing some algebra it is easy to see that

[DTω(Ψ)](u(z) cos(2πkθ)) = [L1(u)](z) cos(2πkθ)

+[L2(u)](z) cos(2πkω) cos(2πkθ)

−[L2(v)](z) sin(2πkω) sin(2πkθ),

and, doing a similar calculation for v(z) = i(c(z)− c(z))

[DTω(Ψ)](v(z) sin(2πkθ)) = [L1(v)](z) sin(2πkθ)

+[L2(u)](z) sin(2πkω) cos(2πkθ)

+[L2(v)](z) cos(2πkω) sin(2πkθ).

Finally, due to the natural isomorphism between Bk and B(W )⊕ B(W ), it is easy to
see the conjugacy between DTω(Ψ) and Lkω.

2.2 Spectrum of Lω

In the previous section we have shown that the operator DTω(Ψ) “diagonalizes” into
the infinite sum of operators Lα with α = ω, 2ω, 3ω, ... plus the differential of the 1D
renormalization operator. Therefore the understanding of Lα with respect to α is crucial
for the understanding of the derivative of the (quasiperiodically extended) renormalization
operator. This section is devoted to the study of the spectral properties of Lω.

Given a value γ ∈ T, consider the rotation Rγ defined as

Rγ : B(W )⊕ B(W ) → B(W )⊕ B(W )(
u
v

)
7→

(
cos(2πγ) − sin(2πγ)
sin(2πγ) cos(2πγ)

)(
u
v

)
.

(7)

Then we have the following result.

Proposition 2.2. For any ω, γ ∈ T we have that Lω and Rγ commute.
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Proof. It follows from L1 and L2 being linear and the fact that any pair of rotations
commute.

This proposition has the following consequences on the spectrum of Lω.

Corollary 2.3. For any eigenvector (u, v) of Lω we have that Rγ(u, v) is also an eigen-
vector of the same eigenvalue for any γ ∈ T.

Proof. Suppose that (u, v) is an eigenvector of eigenvalue λ, we have λ(u, v) = Lω(u, v).
Composing in both parts by Rγ and using the last proposition the result follows.

Corollary 2.4. Let λ be a real eigenvalue of Lω different from zero and with finite geo-
metric multiplicity. Then, the geometric multiplicity of λ is even.

Proof. Assume that λ has geometric multiplicity odd. Then its eigenspace is generated
by n vectors y1, y2, . . . , yn, with n odd. We can consider Rγyi for any i, which will also be
in the eigenspace of the eigenvalue. Since the vector Rγyi is linearly independent with yi
but it is in the eigenspace, we have that it is generated by the other eigenvectors. Then
one of the original vectors can be replaced by Rγyi. Rearranging the vectors if necessary
we can suppose that y2 = Rγy1. Doing this process repeatedly we will end up with an
even number of vectors.

On the other hand we have the following result on the dependence of the operator
with respect to ω

Proposition 2.5. The operator Lω depends analytically on ω.

Proof. It follows from the fact that Lω is the sum of two bounded linear operators (which
do not depend on ω) times an entire function on ω.

This result allows us to apply theorems III-6.17 and VII-1.7 of [10]. These results
imply that, as long as the eigenvalues of Lω do not cross each other, the eigenvalues and
their associated eigenspaces depend analytically on the parameter ω.

We want to show that the spectrum of Lω is a countable set of eigenvalues with no
accumulation points different from zero. In other words, this is the spectrum we would
have if Lω were a compact operator (Theorem III-6.26 of [10]). In this direction, we show
that if we consider Lω acting on a space of functions defined on a smaller domain, then
it is compact.

Proposition 2.6. Assume that W1 ⊂ W is an open and simply connected set that verifies
W 1 ⊂ W , aW 1 ⊂ W1 and ψ(aW 1) ⊂ W1, where ψ = p0 (Ψ). Then the operator

Lω : B(W1)⊕ B(W1) −→ B(W1)⊕ B(W1)

is compact.

8



i λi i λi
1 +7.8412640 +1.5617754i 13 -0.0637772 +0.0000000i
2 +7.8412640 -1.5617754i 14 -0.0637772 -0.0000000i
3 -2.5029079 +0.0000000i 15 +0.0430641 +0.0435724i
4 -2.5029079 +0.0000000i 16 +0.0430641 -0.0435724i
5 +0.5114250 +0.1942111i 17 -0.0178305 +0.0165287i
6 +0.5114250 -0.1942111i 18 -0.0178305 -0.0165287i
7 +0.4881230 +0.4930710i 19 -0.0101807 +0.0000000i
8 +0.4881230 -0.4930710i 20 -0.0101807 -0.0000000i
9 -0.3995353 +0.0000000i 21 +0.0075181 +0.0069602i
10 -0.3995353 +0.0000000i 22 +0.0075181 -0.0069602i
11 -0.0982849 +0.0869398i 23 -0.0029419 +0.0027336i
12 -0.0982849 -0.0869398i 24 -0.0029419 -0.0027336i

Table 1: The first twenty-four eigenvalues of L(N)
ω , for ω =

√
5−1
2

. For the computation N
has been taken equal to 100.

Proof. Since the operators L1 and L2 are well defined, it is enough to prove that they are
compact.

Let us define the set K = W 1, which is compact since W is bounded, and the set
B = {g ∈ B(W1) | ∃ f ∈ B(W ) s. t. g = f|K}. As B contains all the polynomials with
real coefficients, we can use the Mergelyan theorem (see, for instance, [17]) to show that
B = B(W1). Then, it is enough to see that L1 and L2 are compact as operators on B (see
(11.2.9) in [3]).

Consider U the unit ball of B. To prove that Li is compact it is enough to prove that
Li(U) is relatively compact (for i = 1, 2). To use (9.13.1) in [3] we note that, for each
compact set L ⊂ W , there exists a constant mL such that |[Li(f)](z)| ≤ mL for all z ∈ L.
Taking L = W 1, (9.13.1) in [3] shows that Li(U) is relatively compact in C0(W 1,C). To
finish the proof, we note that: i) each sequence of elements of Li(U) has a convergent
subsequence to an element of C0(W 1,C); ii) a uniformly convergent sequence of analytic
functions on any compact subset of W1 converges to an analytic function on W1. This
shows that Li(U) is relatively compact in B.

2.3 Numerical computation of the spectrum of Lω

In this section we introduce a discretization of the tangent map S for its numerical study.
The discretization described here is the same used in [7], which is a slight modification of
the one introduced by Lanford in [12] (see also [13]).

As before, let W be an open set in C and consider B(W ) the Banach space of real
analytic functions, holomorphic on W and continuous on its closure, equipped with the
supremum norm.

Let D(z0, ρ) be the complex disc centred on z0 with radius ρ. Given a function ξ ∈
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Figure 2: Estimation of the errors and the radii of convergence of the first twenty-four
eigenvalues of Lω for ω =

√
5−1
2

with respect to the order of the discretization. See the
text for more details.

B(D(z0, ρ)), we can consider the following Taylor expansion of ξ around z0,

ξ(z) =
∞∑
k=0

ξk

(
z − z0
ρ

)k
. (8)

The truncation of this Taylor series at order N induces a projection defined as

p(N) : B(D(z0, ρ)) → RN+1

ξ 7→ (ξ0, ξ1, . . . , ξN).

On the other hand we have its pseudo-inverse by the left

i(N) : RN+1 → B(D(z0, ρ))

(ξ0, ξ1, . . . , ξN) 7→
N∑
k=0

ξk

(
z − z0
ρ

)k
;

in other words i(N) ◦ p(N) is the identity on RN+1. Note also that both maps are linear.
Let W be an open set in C containing the disc D(z0, ρ). Given a map L : B(W ) →

B(W ), we can approximate its restriction to B(D(z0, ρ)) by the discretization L(N) :
RN+1 → RN+1 defined as L(N) := p(N) ◦ L ◦ i(N). If the disc D(z0, ρ) is strictly contained
in W , then it is not difficult to see that i(N) ◦L(N)(ξ) converges to L(ξ) (in the supremum
norm) as N →∞.

At this point consider the map Lω : B(W )⊕B(W )→ B(W )⊕B(W ) defined by equa-
tion (6). If we set W = D(z0, ρ) we can use the method described above in each component

of B(W )⊕B(W ) to discretize Lω and approximate it by a map L(N)
ω : R2(N+1) → R2(N+1).

Concretely in our computation we have taken z0 = 1
5

and ρ = 3
2
.

In Table 1 we have the first twenty-four eigenvalues of L(N)
ω for N = 100 and ω =

√
5−1
2

.
The eigenvalues have been sorted by their modulus, from bigger to smaller. Note that the
eigenvalues of the discretized operator are pairs of complex eigenvalues (as anticipated by
Corollary 2.3) and and accumulate to zero (as anticipated by Proposition 2.6).
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Figure 3: Numerical approximation of the spectrum of Lω for ω ∈ T. Top: projection in
the complex plane of the spectrum when ω varies in T. Bottom left: evolution of the real
part with respect to ω. Bottom right: evolution of the imaginary part with respect to ω.

Given a general linear bounded operator T , we can compute the eigenvalues of a
discretization T (N) of the operator in order to study the spectrum of T , but in general the
eigenvalues of T (N) might have nothing to do with the spectrum of T . For example an
infinite-dimensional operator does not need to have eigenvalues, but a finite-dimensional
one will always have the same number of eigenvalues (counted with multiplicity) as the
dimension of the space. For this reason we do a couple of numerical test on the results
obtained in the discretization of L(N)

ω .
Consider that we have a real eigenvalue of multiplicity two, or a pair of complex

eigenvalues which are persistent for different values of N (the order of the discretization).
The first test done to the eigenvalues is to check if the distance between the associated
eigenvectors decreases when N is increased. In the left panel of Figure 2 we have the
distance between the eigenvectors associated to the same eigenvalue of the operators L(N)

ω
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Figure 4: Estimation of the distance between eigenvectors with the same eigenvalue (left)
and estimation of the radius of convergence (right) of the first twenty-four eigenvalues of
Lω with respect to ω. See the text for more details.

and L(110)
ω as a graph of N , with N varying from 40 to 100. We have plotted this distance

for the first twenty-four eigenvalues. To compute the distance between eigenvectors we
have estimated the supremum norm of the difference between the real function represented
by each of the vectors, in other words we have computed ‖i(N)(v(N))− i(110)(v(110))‖∞ in
the interval (z0− ρ, z0 + ρ) = W ∩R. Note that the distance seems to go to zero and this
suggests that the eigenvectors, namely v(N), converge to a limit v∗. One should expect
these eigenvalues to be in the spectrum of Lω, but nothing ensures that v∗ belongs to the
domain of Lω.

Let us remark that with the numerical computations done so far, we have only checked
that the eigenvectors as elements of B(D(z0, ρ)) ⊕ B(D(z0, ρ)) converge on the segment
(z0 − ρ, z0 + ρ) ⊂ R but not on the whole set D(z0, ρ). We have done a second test to
check that the approximate eigenvectors have a domain of analyticity containing D(z0, ρ).

Consider that we have a function ξ holomorphic in a domain of the complex plane
containing D(z0, ρ). If the we consider the expansion of ξ given by equation (8), we have
that r the radius of convergence of the series around z0 is given as

r =
ρ

lim supn→∞(|ξn|)1/n
.

With the discretization considered here we have an approximation of the terms ξn, hence
these can be used to compute a numerical estimation of r.

Consider v an eigenvector of the operator Lω. We have that v = (v1, v2) ∈ B(W ) ⊕
B(W ). Given v

(N)
1 = (v

(N)
1 , v

(N)
2 ) a numerical approximation of the eigenvector, we can

use the procedure described above to estimate the radius of convergence of each v1 and
v2. We have done this for the eigenvectors associated to each of the first twenty-four
eigenvalues of Lω with ω =

√
5−1
2

(keeping only the smaller of the two radius obtained).
The results are displayed on the right panel of Figure 2, where the estimated radius has
been plotted with respect to N , the order of the discretization. Note that the estimations
give a radius bigger than ρ = 3

2
, which indicates that the eigenvectors are analytic in

D(z0, ρ), and continuous on its closure, for z0 = 1
5

and ρ = 3
2
.
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Up to this point, we have considered ω fixed to
√
5−1
2

, but the same computations
can be done to study the spectrum of Lω with respect to the parameter ω. In Figure
3 we display first twenty-four eigenvalues of the map with respect to ω. The set T has
been discretized in a equispaced grid of 1280 points. Recall that the operator Lω depends
analytically on ω (Proposition 2.5), therefore the spectrum also does (as long as the
eigenvalues do not collide, see Theorems III-6.17 and VII-1.7 in [10]).

For this computation we have also made the same test as before to the eigenvalues.
The results of these tests are shown in Figure 4. To estimate the convergence of the eigen-
vectors we have compared the eigenspaces of the eigenvalues of L(90)

ω with the eigenspaces
associated to L(100)

ω for each value of ω in the cited grid of points on T. The estimation
of the radius of convergence has been also done with respect to ω for N = 90. We have
plotted the estimated error and convergence radius for the first twenty-four eigenvalues
in the same figure. Both result indicate that the eigenvalues obtained are reliable.

3 A numerical aided study of the dynamics of the

operator

In the one dimensional renormalization theory it is well known that the dynamics around
Φ the fixed point of R0 plays a major roll in the bifurcations of unimodal 1D maps
[2]. For any uniparametric family of 1D maps, the accumulation ratio of consecutive
period doubling bifurcations is equal to δ, the dominant eigenvalue of DR0. By analogy,
we believe that a better understanding of the dynamics of R around Φ can help the
understanding of the bifurcations in quasiperiodically forced 1D maps [16].

Recall that, in the quasiperiodic version of the renormalization operator that we pro-
posed, instead of a fixed point we have an invariant set {(ω,Φ)}, with ω ∈ T. This set
includes fixed points and periodic orbits, but these correspond to rational values of ω,
which are not of interest.

To study the linearized behaviour around the set {(ω,Φ)} we could consider S the
associated tangent map given by (3) on points of the form (ω,Φ, h), for some h ∈ B.
We have shown before DTω(Φ) leaves the spaces Bk defined by (5) invariant. Moreover,
the operator restricted to these spaces is conjugated to Lkω, which has its dominant
eigenvalue outside the unit circle for any ω. Therefore, one can expect the map S to
have a expanding behaviour on the third component. Nevertheless, we might investigate
numerically if there exists a dominant invariant direction of expansiveness and its shape.
With this aim we consider the map A defined as:

A : T× B1 → T× B1

(ω, v) 7→
(

2ω,
Lωv
‖Lωv‖

)
.

(9)

We can use the discretization of Lω described in Section 2.3 to study numerically the
map A. As B1 can be identified with the space B(W )⊕B(W ), we consider the coordinates
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Figure 5: Planar projections of the attractor of the map (9). Form left to right, and top
to bottom we show (ω, x0), (ω, y0), (x0, y0), (ω, x2), (ω, y2), (x2, y2), (ω, x4), (ω, y4) and
(x4, y4).
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Figure 6: Several spatial projections of the attractor of the map (9). In the left hand side
of the picture we have a plot (from top to bottom) of the projections in the coordinates
(ω, x0, y0), (ω, x2, y2) and (ω, x4, y4). The right hand side shows the image of the left side
projections taking a map that embeds the solid torus in R3 (see the text for more details).

15



of v = (x, y) given by this splitting. Following the discretization, each function x ∈ B(W )
is approximated by a vector (x0, x1, x2, ..., xN) ∈ RN+1 where xi is the i-th coefficient of
the Taylor expansion for x around 0. This also holds for y, the second component of v.
Therefore, each element v in B1 can be approximated by a vector (x0, x1, ..., xN , y0, ..., yN)
in R2(N+1). We can use this discretization to study the dynamics of A. Let A(N) denote
this approximation, and we call N the order of the discretization.

Given an initial point v0 = (x0, y0) 6= 0,we have iterated this point by the map for a
certain transient N1 and then we have plotted the following N2 iterates. Figures 5 and 6
show different projections of the resulting attracting set. The values taken to elaborate
this particular set of figures are are N = 30, N1 = 2000 and N2 = 80000. We display
the coordinates corresponding to the first even Taylor coefficients of the functions x and
y. The odd Taylor coefficients obtained were all equal to zero, so we have omitted them.
This last observation suggest that the attractor is contained in the set of even functions
(note that the subspace of B1 consisting of all the even functions is invariant by Lω).

The same computations have been done for bigger values of N leading to the same
results. This indicates that the set obtained is stable with respect to the order of dis-
cretization, therefore it can be expected to be close to the true attracting set of the original
system.

Let us remark that we have not made explicit the initial values of w0 and v0 taken for
the computations. Indeed, the results seem to be independent of these values. We have
repeated this computation taking as initial value of v0 all the elements of the canonical
base of the discretized space R2(N+1) and we have always obtained the same results. We
have also repeated the computations for several irrational values of ω0 obtaining always
the same results.

The numerical approximation of the attractor displayed in Figure 5 and Figure 6 reveal
the rotational symmetry of the attractor.

3.1 Rotational symmetry elimination and the dyadic solenoid

Given γ ∈ T, consider the following auxiliary function

tγ : B → B

v(θ, z) 7→ v(θ + γ, z).

Given a one dimensional map, the effects caused by a quasiperiodic perturbation h
and by tγ(h) should be essentially the same. This is what causes the rotational symmetry
in the attracting set of A.

Let B1 be the subspace of B defined by (5) for k = 1. Note that tγ restricted to B1
corresponds indeed to Rγ given by (7), which commutes with Lω.

Given θ0 ∈ T and z0 ∈ W ∩ R, consider the sets

B′1 = B′1(θ0, z0) = {f ∈ B1 | f(θ0, z0) = 0, ∂θf(θ0, z0) > 0}.
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Figure 7: Several planar projections of the section of attractor of the map (10). Form
left to right, and top to bottom we have the projections in the coordinates (ω, y0), (ω, x2),
(ω, y2), (x2, y2), (ω, x4), (ω, y4) and (x4, y4).
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Figure 8: Several spatial projections of the intersection of the attractor of the map (10).
Left figures correspond to the projection to the coordinates (ω, x2, y2) (top) and (ω, x4, y4)
(bottom). In the right hand side there are displayed the image of the left side projections
taking a map that embeds the solid torus in R3 (see the text for more details).
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Figure 9: Numerical approximation of the spectrum of L′ω with respect to the parameter
ω. From left to right we have the real part, the imaginary part and the modulus of the
first eight eigenvalues of L′ω with respect to ω.

Recall that any function v ∈ B1 can be written as v(θ, z) = x(z) cos(2πθ) + y(z) sin(2πθ),
with x, y ∈ B(W ). For any v such that x(z0)y(z0) 6= 0, we have that v(θ0+γ, z0) = 0 for the
values γ = arctan(−x(z0)/y(z0))/2π − θ0 and γ = arctan(−x(z0)/y(z0))/2π − θ0 + 1/2,
but only one of these two values satisfies ∂θv(θ0 + γ, x0) > 0. Therefore, for any v ∈
B1 \ {v | v(θ, z0) = 0, ∀θ ∈ T} there exists a unique γ0 ∈ T such that tγ0(v) ∈ B′1(θ0, z0).

The following map eliminates the rotational symmetry by projecting the points in B1
into the set B′1.

B : T× B′1 → T× B′1

(ω, v) 7→
(

2ω,
L′ωv
‖L′ωv‖

)
,

(10)

with
L′ω : B′1 → B′1

v 7→ tγ(v) (Lω(v)) ,

where γ(v) is chosen such that tγ(v) (Lω(v)) ∈ B′1.
We can use again the discretization described in Section 2.3 to approximate numer-

ically the dynamics of B as we have done with A. For the numerical simulation of the
operator, we have taken θ0 = 0 and x0 = 0. After discretization, the set B′1(0, 0) is
identified in R2(N+1) with the half hyperplane

{(x, y) ∈ R2(N+1) |x0 = 0 and y0 > 0},

where x0 and y0 are respectively the first components of x and y.
In Figure 7 and Figure 8 we display different projections of the attracting set obtained

iterating the map B.
Note that the different projections of the attracting set displayed in Figure 7 keep a

big resemblance with the plots of the dyadic solenoid displayed in Figure 5 of [14]. Indeed
we believe that the attractor is the inclusion of a dyadic solenoid in B′1. For more details
on the definition and the dynamics of the solenoid map see [1, 11, 14, 18].

In Figure 9 we display a numerical approximation of the operator L′ω defined above. We
can observe that for every value of ω there exists a single dominant eigenvalue. We believe
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that this dyadic solenoid similarity is explained by the fact that the second component of
(10) contracts all point towards the dominant eigenspace (which depends on ω) while the
first component is expansive in ω. This is essentially the same mechanism that creates
the dyadic solenoid in R3.
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