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Abstract

Let gα be a one-parameter family of one-dimensional maps with a cascade of
period doubling bifurcations. Between each of these bifurcations, a superstable
periodic orbit is known to exist. An example of such a family is the well-known
logistic map. In this paper we deal with the effect of a quasi-periodic perturbation
(with only one frequency) on this cascade. Let us call ε the perturbing parameter. It
is known that, if ε is small enough, the superstable periodic orbits of the unperturbed
map become attracting invariant curves (depending on α and ε) of the perturbed
system. In this article we focus on the reducibility of these invariant curves.

The paper shows that, under generic conditions, there are both reducible and
non-reducible invariant curves depending on the values of α and ε. The curves in
the space (α, ε) separating the reducible (or the non-reducible) regions are called
reducibility loss bifurcation curves. If the map satifies an extra condition (condition
satisfied by the quasi-periodically forced logistic map) then we show that, from
each superattracting point of the unperturbed map, two reducibility loss bifurcation
curves are born. This means that these curves are present for all the cascade.

1 Introduction

The results in this paper are motivated by the study of period doubling bifurcation cas-
cades of invariant curves in a family of autonomous 1D maps under a quasi-periodic
perturbation, which is one of the classical routes to chaos. In these maps, the unper-
turbed (autonomous) part has a period doubling bifurcation cascade and we focus on the
effect of the perturbation. Numerical experiments show that, for a fixed value of the per-
turbing parameter, these maps only have a finite cascade of period doubling bifurcations
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of invariant curves ([Kan83, Kan84]), and this seems related to the possible existence of
strange nonchaotic atractors (see [FKP06] and references therein). Our goal is to study
the dynamical properties of the invariant curves along the cascade.

1.1 Basic definitions and concepts

Let us start with some basic definitions and concepts. A quasi-periodically forced one
dimensional map is a map of the form

F : T× R → T× R(
θ
x

)
7→

(
θ + ω
f(θ, x)

)
(1)

where T = R/Z, f ∈ Cr(T×R,R) with r ≥ 1 and ω ∈ T \Q. A quasi-periodically forced
map determines a dynamical system on the cylinder, explicitly defined as

θ̄ = θ + ω,
x̄ = f(θ, x).

}
(2)

A continuous function u : T→ R is an invariant curve of (2) if and only if u(θ+ω) =
f(θ, u(θ)), for all θ ∈ T. The value ω is known as the rotation number of the curve. An
equivalent way to define an invariant curve is to require the set {(θ, x) ∈ T×R | x = u(θ)}
to be invariant by F , where F is the function defined by (1). On the other hand, note that
F n is also a quasi-periodically forced map. The rotation number is said to be Diophantine
if there exist γ > 0 and τ ≥ 1 such that

|qω − p| ≥ γ

|q|τ
, for all (p, q) ∈ Z× Z \ {0}.

Given a function u : T→ R, we say that u is a n-periodic invariant curve of F if u is
invariant by F n (and there is no smaller n satisfying such condition).

Given x = u0(θ) an invariant curve of (2) of class Cr (r ≥ 1), its linearized normal
behaviour is described by the following linear skew product:

θ̄ = θ + ω,
x̄ = a(θ)x,

}
(3)

where a(θ) = Dxf(θ, u0(θ)) is of class Cr−1, x ∈ R and θ ∈ T.
A linear skew product like (3) is called reducible if, and only if, there exists a change

of variable x = c(θ)y, continuous with respect to θ, such that (3) becomes

θ̄ = θ + ω,
ȳ = by,

}
where b does not depend on θ. The constant b is called the multiplier of the reduced
system. An invariant curve is called reducible if its linearized normal behaviour (3) is
reducible. An n-periodic invariant curve is reducible if it is reducible for F n.
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In the case that a(·) is a C∞ function and ω is Diophantine, the skew product (3) is
reducible if, and only if, a(·) has no zeros [JT08]. Due to this property, the reducibility
loss can be characterized as a codimension one bifurcation.

Let us consider a one-parametric family of linear skew-products

θ̄ = θ + ω,
x̄ = a(θ, µ)x,

}
(4)

where ω is Diophantine, µ belongs to an open set of R and a is a C∞ function of θ and
µ. We say that the system (4) undergoes a reducibility loss bifurcation at µ0 if

1. a(·, µ) has no zeros for µ < µ0,

2. a(·, µ) has a double zero at θ0 for µ = µ0,

3. d
dµ
a(θ0, µ0) 6= 0.

On the other hand, consider a system like (2) with f a C∞ function, which depends
(smoothly) on a one dimensional parameter µ (we denote this dependence as f = fµ),
having an invariant curve u = uµ. We will say that the invariant curve undergoes a
reducibility loss bifurcation if the family of linear skew-products (4), where a(θ, µ) =
Dxfµ(θ, uµ(θ)), undergoes a reducibility loss bifurcation. Note that the reducibility loss
takes place when the number of zeros of θ 7→ a(θ, µ) goes from 0 to 2 when µ crosses µ0.
The number of zeros of a is invariant under linear changes of variables (for more details
see Section 3 in [JT08]).

Definition 1.1 For a given value of µ, if the number of zeros (counting their multiplicity)
of θ 7→ a(θ, µ) is finite, this number is called degree of non-reducibility.

In what follows, we will refer to degree of non-reducibility simply as degree. Note that,
as a is C∞ and ω is Diophantine, degree zero is equivalent to reducibility.

In this paper we focus on maps of the form

Fα,ε : T× R → T× R(
θ
x

)
7→

(
θ + ω

f(θ, x, α, ε)

)
,

(5)

where ω is Diophantine, α and ε are real parameters and f is of the form

f(θ, x, α, ε) = g(x, α) + εh(θ, x, α, ε),

where g and h are C∞ functions. The function g is assumed to have a cascade of period
doubling bifurcations. This means that we also have a sequence of superstable periodic
orbits. We recall that a superstable periodic orbit is a periodic orbit with a critical point,
i.e., a point with zero derivative.

If x0 is an attracting fixed point of x 7→ g(x, α0) then for |α−α0| and |ε| small enough
there exists a unique invariant curve x = x(θ, α, ε) of (5) such that it is smooth w.r.t. all
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its arguments and x(θ, α0, 0) = x0 for all θ ∈ T (see Section 2 in [JT08]). Moreover, the
function

a(θ, α, ε) =
∂f

∂x
(θ, x(θ, α, ε), α, ε),

describing the linearized normal behaviour around the invariant curve satisfies, for ε = 0,
a(θ, α0, 0) = ∂g

∂x
(x0, α0). Hence, if ∂g

∂x
(x0, α0) 6= 0, the map θ 7→ a(θ, α, ε) has no zeros so

the curve is reducible. In general, if
∣∣ ∂g
∂x

(x0, α0)
∣∣ 6= 1 (i.e., the point is hyperbolic), the

implicit function theorem can be applied to prove the existence of an invariant curve close
to x0 for α close to α0 and ε close to 0.

1.2 Summary of results

One of the goals of this paper is to describe the reducibility of the invariant curves that
appear as a perturbation of a superstable fixed point. We have just mentioned that this
point can be continued to an invariant curve x = x(θ, α, ε) for |α − α0| and |ε| small
enough. However, the reducibility in this case is not clear: as a(θ, α0, 0) = 0 (for all θ),
it is not immediate to predict in general the number of zeros of θ 7→ a(θ, α, ε) (note that
this can depend on the values of α and ε).

In general, one should expect curves in the parameter space (α, ε) where the degree
changes (these curves correspond to values of (α, ε) for which θ 7→ a(θ, α, ε) has a double
zero). We will refer to them as curves of change of degree. Among them, the most
interesting ones are the curves corresponding to a transition between degree 0 (no zeros)
and degree two (two zeros): when ω is Diophantine and a is C∞, this is a transition from
reducible to non-reducible. In this case, we will refer to these curves as reducibility loss
bifurcation curves. In this paper we prove, under very general conditions, the existence
of curves of change of degree.

Next, we focus on the application of the previous result to the superstable orbits that
appear along a cascade of period doubling bifurcations. The main difficulty is to check
the hypohteses for the iterated map F 2n . Here we give suitable conditions on F such that
the hypotheses are satisfied by F 2n (for all n) and for a set of full Lebesgue measure of
values of ω. These results are illustrated with the quasi-periodically forced logistic map.

In previous works [JRT12, RJT13] we have considered the role of reducibility in the
behaviour of the period doubling cascade. The reason is that, while the bifurcations of
reducible curves are studied with very standard tools (they are similar to the bifurcations
of periodic orbits), the bifurcations of non-reducible curves are completely different. For
instance, in some situations a non-reducible invariant curve is destroyed giving rise to a
SNA or a chaotic attractor [GOPY84, PNR01, FKP06]. Hence, it is natural to consider
the role of non-reducible curves in the finite character of the cascade.

In this paper we prove the existence of reducibility and non-reducibility regions near
values of the parameters for which there exist superstable periodic orbits.
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2 Curves of change of degree

In the following theorem we deal with the existence of curves of change of degree. As
it has been mentioned before, when the maps are C∞ and ω is Diophantine, the curves
corresponding to a transition between degrees 0 and 2 are also reducibility loss bifurcation
curves.

Theorem 2.1 Consider the map

Fα,ε : T× R → T× R(
θ
x

)
7→

(
θ + ω

f(θ, x, α, ε)

)
,

where ω is irrational, α and ε are real parameters, and f is of the form

f(θ, x, α, ε) = g(x, α) + εh(θ, x, α, ε),

where g and h are Cr (r ≥ 3). Moreover, for α = α0, g has a superattracting nondegen-
erate fixed point at x0. In other words,

1. g(x0, α0) = x0.

2.
∂g

∂x
(x0, α0) = 0.

3.
∂2g

∂x2
(x0, α0)

∂g

∂α
(x0, α0) +

∂2g

∂x∂α
(x0, α0) 6= 0.

Let H be the function

θ 7→ H(θ) = h(θ − ω, x0, α0, 0)
∂2g

∂x2
(x0, α0) +

∂h

∂x
(θ, x0, α0, 0).

Then, for each simple zero θ0 of H ′(θ) and for |ε| small enough, there exists a function
α = α(ε) such that α(0) = α0 and the curve (α(ε), ε) is a curve of change of degree for the
unique invariant curve x = z(θ, α, ε) obtained as the continuation of the invariant curve
z(θ, α0, 0) ≡ x0. Moreover,

α′(0) = − H(θ0)

∂2g

∂x2
(x0, α0)

∂g

∂α
(x0, α0) +

∂2g

∂x∂α
(x0, α0)

. (6)

Proof: Without loss of generality, we can assume that x0 = 0 and α0 = 0. A straightfor-
ward application of the Implicit Function Theorem ensures that x = g(x, α) defines, for
|α| small, a function x = p(α) such that p(α) = g(p(α), α) and p(0) = 0 (i.e., x = p(α) is
the curve of –attracting– fixed points of g w.r.t. the parameter α near α = 0). Moreover,
under these conditions it is known that there exists an invariant curve x = z(θ, α, ε) such
that z(θ, α, 0) ≡ p(α).
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Let us rescale the parameter α as α = εβ. It is not difficult to see that z can be
written as

z(θ, α, ε) =

[
∂g

∂α
(0, 0)β + h(θ − ω, 0, 0, 0)

]
ε+O(ε2).

The linearized normal behaviour along this curve is described by a linear skew product
(4), where

a(θ, β, ε) =
∂f

∂x
(θ, z(θ, εβ, ε), εβ, ε).

It is not difficult to see that

a(θ, β, ε) =

[
h(θ − ω, 0, 0, 0)

∂2g

∂x2
(0, 0) +

∂h

∂x
(θ, 0, 0, 0)

+

(
∂2g

∂x2
(0, 0)

∂g

∂α
(0, 0) +

∂2g

∂x∂α
(0, 0)

)
β

]
ε+O(ε2).

The condition for a to gain (or lose) a zero in θ is to have a double zero. Hence, we ask
for the conditions

h(θ−ω, 0, 0, 0)
∂2g

∂x2
(0, 0)+

∂h

∂x
(θ, 0, 0, 0)+

(
∂2g

∂x2
(0, 0)

∂g

∂α
(0, 0) +

∂2g

∂x∂α
(0, 0)

)
β+O(ε) = 0,

∂h

∂θ
(θ − ω, 0, 0, 0)

∂2g

∂x2
(0, 0) +

∂2h

∂x∂θ
(θ, 0, 0, 0) +O(ε) = 0.

If θ0 is a simple zero of the second equation and β0 is given by

β0 = −
h(θ0 − ω, 0, 0, 0)

∂2g

∂x2
(0, 0) +

∂h

∂x
(θ0, 0, 0, 0)

∂2g

∂x2
(0, 0)

∂g

∂α
(0, 0) +

∂2g

∂x∂α
(0, 0)

,

applying the Implicit Function Theorem we have that there exist functions θ = θ(ε) and
β = β(ε) such that θ(0) = θ0, β(0) = β0 and

a(θ(ε), β(ε), ε) = 0,
∂a

∂θ
(θ(ε), β(ε), ε) = 0,

for |ε| small enough.

2.1 A particular class of maps

We are interested in the application of these results to two paradigmatic examples: the
quasiperiodically forced logistic map,

θ̄ = θ + ω
x̄ = αx(1− x)(1 + ε cos(2πθ))

}
, (7)
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and the quasiperiodically driven logistic map,

θ̄ = θ + ω
x̄ = αx(1− x) + ε cos(2πθ)

}
. (8)

In both cases, ω ∈ T \Q. Therefore, we rewrite the previous theorem for a more concrete
class of maps that includes these examples.

Corollary 2.1 Consider the map

Fα,ε : T× R → T× R(
θ
x

)
7→

(
θ + ω

f(θ, x, α, ε)

)
,

where ω is irrational, α and ε are real parameters, and f is of the form

f(θ, x, α, ε) = g(x, α) + εh(θ, x, α, ε),

where g and h are Cr (r ≥ 3), g has a critical point x0 that does not depend on α.
Moreover, x0 is a fixed point for α = α0 and h is of the form

h(θ, x, α, ε) = h0(x, α) + hc(x, α) cos 2πθ + hs(x, α) sin 2πθ +O(ε).

More concretely, we ask for the conditions

1.
∂g

∂x
(x0, α) = 0,

∂2g

∂x2
(x0, α) 6= 0, for all α.

2. g(x0, α0) = x0,
∂g

∂α
(x0, α0) 6= 0.

3. |hc(x0, α0)|+ |hs(x0, α0)|+
∣∣∣∣∂hc∂x

(x0, α0)

∣∣∣∣+

∣∣∣∣∂hs∂x
(x0, α0)

∣∣∣∣ 6= 0.

Then, except may be for two values of ω, there exist exactly two functions α = α+(ε) and
α = α−(ε), for |ε| small enough, such that α±(0) = α0 and (α±(ε), ε) are curves of change
of degree between degrees 0 and 2.

Proof: As hypotheses 1, 2 and 3 of Theorem 2.1 can be easily checked, we only have to
look for the zeros of H ′. So, as

H(θ) = [h0(x0, α0) + hc(x0, α0) cos 2π(θ − ω) + hs(x0, α0) sin 2π(θ − ω)]
∂2g

∂x2
(x0, α0)

+
∂h0
∂x

(x0, α0) +
∂hc
∂x

(x0, α0) cos 2πθ +
∂hs
∂x

(x0, α0) sin 2πθ,

we have that H ′(θ) = 2πac(ω) cos 2πθ + 2πas(ω) sin 2πθ, where

ac(ω) = (hc(x0, α0) sin 2πω + hs(x0, α0) cos 2πω)
∂2g

∂x2
(x0, α0) +

∂hs
∂x

(x0, α0),

as(ω) = (−hc(x0, α0) cos 2πω + hs(x0, α0) sin 2πω)
∂2g

∂x2
(x0, α0)−

∂hc
∂x

(x0, α0).
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The hypotheses of the theorem ensure that ac(ω) and as(ω) cannot be both zero except,
may be, for two values of ω. Therefore, there exist two simple zeros of H ′(θ) and then
Theorem 2.1 implies the existence of two curves of change of degree.

The two values of ω excluded in the statement of Corollary 2.1 correspond to common
zeros of ac(ω) and as(ω). In a general example it is very unlikely to have values of ω that
are, at the same time, zeros of ac(ω) and as(ω). For instance, the next result is valid for
all ω ∈ T \Q.

Corollary 2.2 For α = α0 = 2 and x = x0 = 1
2
, both the quasi-periodically forced logistic

map (7) and the quasi-periodically driven logistic map (8) have two curves α±(ε), defined
in the parameter space (ε, α) for |ε| small enough, such that

1. α±(0) = α0 = 2.

2. These curves are curves of change of degree, between degree 0 and 2.

3. For the quasi-periodically forced logistic map (7), d
dε
α±(0) = ±2.

4. For the quasi-periodically driven logistic map (8), d
dε
α±(0) = ±4.

Proof: To apply Corollary 2.1 we check that ∂g
∂x

(x0, α0) = 0, ∂2g
∂x2

(x0, α0) = −4 and
∂g
∂α

(x0, α0) = 1
4
. Moreover, ∂2g

∂x∂α
(x0, α0) = 0. For the quasi-periodically forced logistic

map (7), we have that h0(x0, α0) = 0, hc(x0, α0) = 1
2

and hs(x0, α0) = 0. Then, H(θ) =
−2 cos(2π(θ − ω)) and H ′ has the two zeros θ = ω and θ = ω + 1

2
, and using (6) we

obtain d
dε
α±(0) = ±2. For the quasi-periodically driven logistic map (8), we have that

h0(x0, α0) = 0, hc(x0, α0) = 1 and hs(x0, α0) = 0. Then, H(θ) = −4 cos(2π(θ − ω)) and
H ′ has the two zeros θ = ω and θ = ω + 1

2
, and using (6) we obtain d

dε
α±(0) = ±4.

We note that the values d
dε
α±(0) have been computed in [RJT13] by means of purely

numerical methods.

3 Cascades of reducibility loss bifurcation curves

In this section we focus on the effect of a quasi-periodic perturbation on the superstable
points that appear along a bifurcation cascade and, more concretely, on the reducibility
of the invariant curves that are born at these points as a response to the quasi-periodic
excitation. The main difficulty to apply the previous results to a superstable periodic
point is that the hypotheses have to be verified on F 2n

α,ε (for all n).

Theorem 3.1 Consider the map

Fα,ε : T× R → T× R(
θ
x

)
7→

(
θ + ω

f(θ, x, α, ε)

)
,
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where ω is irrational, α and ε are real parameters, and f is of the form

f(θ, x, α, ε) = g(x, α) + εh(θ, x, α, ε),

where g and h are Cr (r ≥ 3), g is a unimodal map with a (unique) critical point x0 that
does not depend on α, and h is of the form

h(θ, x, α, ε) = h0(x, α) + hc(x, α) cos 2πθ + hs(x, α) sin 2πθ +O(ε).

We assume that there is a sequence of values of the parameter {αn}n≥0 such that, for each
n, g( · , αn) has a superattracting periodic orbit of period 2n (and not 2n−1). Let us write
gn to denote g2

n
. More concretely, we ask for the conditions

1.
∂g

∂x
(x0, α) = 0,

∂2g

∂x2
(x0, α) 6= 0, for all α.

2. gn(x0, αn) = x0,
∂gn
∂α

(x0, αn) 6= 0, for all n ≥ 0.

3. |hc(x0, αn)|+ |hs(x0, αn)| 6= 0, for all n ≥ 0.

Then, there exists a set Ω ⊂ T \Q such that, if ω ∈ Ω, for each n there exist exactly
two functions α = α+

n (ε) and α = α−n (ε), for |ε| small enough (depending on n), such that
α±n (0) = αn and (α±n (ε), ε) are curves of change of degree between degrees 0 and 2. The
set Ω is of full Lebesgue measure, more concretely the set (T \Q) \ Ω is countable.

To prove the theorem we will show first (in Lemma 3.1) that if Fα,ε has a special form
the result holds. The proof will be completed showing that the 2n-th iterate of the map
in the Theorem has this special form.

Lemma 3.1 Consider the map

Fα,ε : T× R → T× R(
θ
x

)
7→

(
θ + 2nω

f(θ, x, α, ε, ω)

)
,

where ω is irrational, α and ε are real parameters, and f is of the form

f(θ, x, α, ε, ω) = g(x, α) + εh(θ, x, α, ε, ω),

where g and h are Cr (r ≥ 3), g has a critical point x0 that does not depend on α, and h
is of the form

h(θ, x, α, ε, ω) = h0(x, α, ω) + hn,c(x, α, ω) cos 2πθ + hn,s(x, α, ω) sin 2πθ +O(ε),

where h0, hn,c and hn,s are trigonometric polynomials in ω, satisfying(
hn,c(x, α, ω)
hn,s(x, α, ω)

)
=

(
b̄(x, α)I +

2n−1∑
j=1

bj(x, α)Rj(−ω)

)(
hc(x, α)
hs(x, α)

)
,

where I is the identity matrix and Rj(ϕ) is a rotation of angle 2πjϕ. Moreover, x0 is a
nondegenerate critical point and fixed point for α = α0 of the map g,
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1.
∂g

∂x
(x0, α) = 0,

∂2g

∂x2
(x0, α) 6= 0, for all α,

2. g(x0, α0) = x0,
∂g

∂α
(x0, α0) 6= 0,

and

3. b̄(x0, α0) 6= 0,

4. |hc(x0, α0)|+ |hs(x0, α0)| 6= 0.

Then, except may be for a finite number of values of ω, there exist exactly two functions
α = α+(ε) and α = α−(ε), for |ε| small enough, such that α±(0) = α0 and (α±(ε), ε) are
curves of change of degree between degrees 0 and 2.

Proof: To apply Theorem 2.1 we have to construct the function H of its statement: in
this case, H reads as

H(θ) = [h0(x0, α0, ω) + hn,c(x0, α0, ω) cos 2π(θ − 2nω) + hn,s(x0, α0, ω) sin 2π(θ − 2nω)]

×∂
2g

∂x2
(x0, α0) +

∂h0
∂x

(x0, α0, ω) +
∂hn,c
∂x

(x0, α0, ω) cos 2πθ +
∂hn,s
∂x

(x0, α0, ω) sin 2πθ.

We note that H ′ is of the form H ′(θ) = 2πac(ω) cos 2πθ + 2πas(ω) sin 2πθ, where(
ac(ω)
as(ω)

)
=

∂2g

∂x2
(x0, α0)

(
sin 2π2nω cos 2π2nω

− cos 2π2nω sin 2π2nω

)(
hn,c(x0, α0, ω)
hn,s(x0, α0, ω)

)
+

( ∂hn,s

∂x
(x0, α0, ω)

−∂hn,c

∂x
(x0, α0, ω)

)
.

To simplify the notation, we call Sm(ϕ) to the matrix

Sm(ϕ) =

(
sin 2πmϕ cos 2πmϕ

− cos 2πmϕ sin 2πmϕ

)
,

and note that Sm1(ϕ)Rm2(−ϕ) = Sm1−m2(ϕ). Hence,(
ac(ω)
as(ω)

)
=

∂2g

∂x2
(x0, α0)

[
b̄(x0, α0)S2n(ω) +

2n−1∑
j=1

bj(x0, α0)S2n−j(ω)

](
hc(x0, α0)
hs(x0, α0)

)

+

( ∂hn,s

∂x
(x0, α0, ω)

−∂hn,c

∂x
(x0, α0, ω)

)
.

As ∂2g
∂x2

(x0, α0) 6= 0, b̄(x0, α0) 6= 0 and, at least, one of the values hs(x0, α0), hc(x0, α0)
is not identically zero, then ac(ω) and as(ω) cannot be both identically zero. As they
are trigonometric polynomials of degree 2n in ω, they can only have a finite number of
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simultaneous zeros. To end the proof, note that this implies that H ′(θ) has two simple
zeros except, may be, for a finite number of values of ω.

Proof of Theorem 3.1: It is enough to prove that, for each n, the number of values of
ω for which the functions α±n do not exists is, at most, finite. For the case n = 0, this
follows from Corollary 2.1.

For n > 0, we use the following notation,

F 2n

α,ε : T× R → T× R(
θ
x

)
7→

(
θ + 2nω

fn(θ, x, α, ε)

)
.

It is not difficult to see that

fn(θ, x, α, ε, ω) = gn(x, α) + εhn(θ, x, α, ε, ω),

hn(θ, x, α, ε, ω) = hn,0(x, α, ω) + hn,c(x, α, ω) cos 2πθ + hn,s(x, α, ω) sin 2πθ +O(ε),

where (
hn,c(x, α, ω)
hn,s(x, α, ω)

)
=

(
b̄n(x, α)I +

2n−1∑
j=1

bn,j(x, α)Rj(−ω)

)(
hc(x, α)
hs(x, α)

)
,

I is the identity matrix, Rj(ϕ) is a rotation of angle 2πjϕ and

b̄n(x, α) =
n−1∏
j=0

∂gj
∂x

(gj(x, α), α).

It is clear that b̄n(x0, αn) 6= 0. Then, by Lemma 3.1 we obtain the result.

Corollary 3.1 In the situation of the previous Theorem, if Fα,ε is C∞, there exists a set
Θ ⊂ T \Q of full Lebesgue measure such that, if ω ∈ Θ, for each n there exist exactly two
functions α = α+

n (ε) and α = α−n (ε), for |ε| small enough (depending on n), such that
α±n (0) = αn and (α±n (ε), ε) are reducibility loss bifurcation curves. The set Θ is a subset
of the Diophantine numbers.

The set Θ in the corollary appears due to two facts. The first is the equivalence
bewteen reducibility and degree zero when the map is C∞ and ω is Diophantine. The
second fact is that this set of Diophantine frequencies has to be intersected with the set
Ω in Theorem 3.1 to obtain Θ. Note that Θ also has full Lebesgue measure.
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