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Abstract

This chapter focuses on the dynamics in a neighbourhood of the five equilib-
rium points of the Restricted Three-Body Problem. The first section is devoted
to the discussion of the linear behaviour near the five points. Then, the motion
in the vicinity of the collinear points is considered, discussing the effective com-
putation of the center manifold as a tool to describe the nonlinear dynamics in
an extended neigbourhood of these points. This technique is then applied to the
Earth-Moon case, showing the existence of periodic and quasi-periodic motions, in-
cluding the well-known Halo orbits. Next, the dynamics near the triangular points
is discussed, showing how normal forms can be used to effectively describe the mo-
tion nearby. The Lyapunov stability is also considered, showing how the stability
is proved in the planar case, and why it is not proved in the spatial case. This
section also discusses how to bound the amount of diffusion that could be present
in the spatial case. Finally, in the last section we focus on the effect of perturba-
tions. More concretely, we mention the Elliptic Restricted Three-Body Problem,
the Bicircular problem and similar models that contain periodic and quasi-periodic
time-dependent perturbations.
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1 Introduction

Let us consider two point masses (usually called primaries) that attract each other ac-
cording to the gravitational Newton’s law. Let us assume that they are moving in cir-
cular orbits around their common centre of mass, and let us consider the motion of an
infinitesimal particle (here, infinitesimal means that its mass is so small that we neglect
the effect it has on the motion of the primaries and we only take into account the effect
of the primaries on the particle) under the attraction of the two primaries. The study of
the motion of the infinitesimal particle is what is known as the Restricted Three-Body
Problem, or RTBP for short.

To simplify the equations of motion, let us take units of mass, length and time such
that the sum of masses of the primaries, the gravitational constant and the period of
the motion of the primaries are 1, 1 and 2π respectively. With these units the distance
between the primaries is also equal to 1. We denote as µ the mass of the smaller primary
(the mass of the bigger is then 1− µ), µ ∈ (0, 1

2
].

The usual system of reference is defined as follows: the origin is taken at the centre of
mass of the primaries, theX-axis points to the bigger primary, the Z-axis is perpendicular
to the plane of motion, pointing in the same direction as the vector of angular momentum
of the primaries with respect to their common centre of mass, and the Y -axis is defined
such that we obtain an orthogonal, positive-oriented system of reference. With this we
have defined a rotating system of reference, that is usually called synodic. In this system,
the primary of mass µ is located at the point (µ − 1, 0, 0) and the one of mass 1 − µ is
located at (µ, 0, 0), see Figure 1.

Defining momenta as PX = Ẋ − Y , PY = Ẏ + X and PZ = Ż, the equations of
motion can be written in Hamiltonian form. The corresponding Hamiltonian function is

H =
1

2
(P 2

X + P 2
Y + P 2

Z) + Y PX −XPY −
1− µ
r1
− µ

r2
, (1)

being r21 = (X − µ)2 + Y 2 + Z2 and r22 = (X − µ+ 1)2 + Y 2 + Z2 (see, for instance, [78]
for the details).

It is well-known that the system defined by (1) has five equilibrium points. Two of
them can be found as the third vertex of the two equilateral triangles that can be formed
using the two primaries as vertices (usually called L4,5 or Lagrangian points). The other
three lie on the X-axis and are usually called L1,2,3 or Eulerian points (see Figure 1). A
more detailed discussion on the existence of these points can be found in many textbooks,
like [78]. Note that “our” L1 and L2 are swapped with respect to that reference. This
lack of agreement for the definition of L1,2 is rather common in the literature: usually,
books on celestial mechanics use the same notation as in [78] but books on astrodynamics
follow the convention we use here.

In this chapter we will focus on the dynamics around these points, specially for
examples coming from the Solar system. We will also comment on the main perturbations
that appear in astronomical and astronautical applications and their effects.
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Figure 1: The five equilibrium points of the RTBP. The graphic corresponds to the Earth-
Moon case. The unit of distance is the Earth-Moon distance, and the unit of mass is the
total mass of the system. In these units, the mass of the Moon is µ ≈ 0.01215.

2 Linear behaviour

In this section we will first discuss the linearization of the dynamics around the five
equilibrium points. The presentation is done in a way that prepares the following sections.

2.1 The collinear points

Let us define, for j = 1, 2, γj as the distance from the smaller primary (the one of mass
µ) to the point Lj, and γ3 as the distance from the bigger primary to L3. It is well-known
(see, for instance, [78]) that γj is the only positive solution of the Euler quintic equation,

γ5j ∓ (3− µ)γ4j + (3− 2µ)γ3j − µγ2j ± 2µγj − µ = 0, j = 1, 2,

γ53 + (2 + µ)γ43 + (1 + 2µ)γ33 − (1− µ)γ23 − 2(1− µ)γ3 − (1− µ) = 0,

where the upper sign in the first equation is for L1 and the lower one for L2. These
equations can be solved numerically by the Newton method, using the starting point
(µ/3)1/3 for the first equation (L1,2 cases), and 1− 7

12
µ for the second one (L3 case).

The next step is to translate the origin to the selected point Lj. Moreover, since in
Section 3 we will need the power expansion of the Hamiltonian at these points, we there-
fore perform a suitable scaling in order to avoid fast growing (or decreasing) coefficients.
The idea is to have the closest singularity (the body of mass µ for L1,2 or the one of mass
1−µ for L3) at distance 1 (see [68]). As the scalings are not symplectic transformations,
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let us consider the following process: first we write the differential equations related to
(1) and then, on these equations, we perform the following substitution

X = ∓γjx+ µ+ αj,

Y = ∓γjy,
Z = γjz,

where the upper sign corresponds to L1,2, the lower one to L3 and α1 = −1 + γ1,
α2 = −1− γ2 and α3 = γ3. Note that the unit of distance is now the distance from the
equilibrium point to the closest primary.

In order to expand the nonlinear terms, we will use that

1√
(x− A)2 + (y −B)2 + (z − C)2

=
1

D

∞∑
n=0

( ρ
D

)n
Pn

(
Ax+By + Cz

Dρ

)
,

where A, B, C, D, are real numbers with D2 = A2 +B2 +C2, ρ2 = x2 + y2 + z2 and Pn
is the polynomial of Legendre of degree n. After some calculations, one obtains that the
equations of motion can be written as

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cn(µ)ρnPn

(
x

ρ

)
,

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑
n≥3

cn(µ)ρnPn

(
x

ρ

)
, (2)

z̈ + c2z =
∂

∂z

∑
n≥3

cn(µ)ρnPn

(
x

ρ

)
,

where the left-hand side contains the linear terms and the right-hand side contains the
nonlinear ones. The coefficients cn(µ) are given by

cn(µ) =
1

γ3j

(
(±1)nµ+ (−1)n

(1− µ)γn+1
j

(1∓ γj)n+1

)
, for Lj, j = 1, 2

cn(µ) =
(−1)n

γ33

(
1− µ+

µγn+1
3

(1 + γ3)n+1

)
, for L3.

In the first equation, the upper sign is for L1 and the lower one for L2. Note that these
equations can be written in Hamiltonian form, by defining the momenta px = ẋ − y,
py = ẏ + x and pz = ż. The corresponding Hamiltonian is then given by

H =
1

2

(
p2x + p2y + p2z

)
+ ypx − xpy −

∑
n≥2

cn(µ)ρnPn

(
x

ρ

)
. (3)

The nonlinear terms of this Hamiltonian can be expanded by means of the well-known
recurrence of the Legendre polynomials Pn. For instance, if we define

Tn(x, y, z) = ρnPn

(
x

ρ

)
, (4)
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Figure 2: Values of c2(µ) (vertical axis), for µ ∈ [0, 1
2
] (horizontal axis), for the cases

L1,2,3.

then, it is not difficult to check that Tn is a homogeneous polynomial of degree n that
satisfies the recurrence

Tn =
2n− 1

n
xTn−1 −

n− 1

n
(x2 + y2 + z2)Tn−2, (5)

starting with T0 = 1 and T1 = x.
The linearization around the equilibrium point is given by the second order terms of

the Hamiltonian (linear terms must vanish) that, after some rearranging, take the form,

H2 =
1

2

(
p2x + p2y

)
+ ypx − xpy − c2x2 +

c2
2
y2 +

1

2
p2z +

c2
2
z2. (6)

It is not difficult to derive intervals for the values of c2 = c2(µ) when µ ∈ [0, 1
2
] (see

Figure 2). As c2 > 0 (for the three collinear points), the vertical direction is an harmonic
oscillator with frequency ω2 =

√
c2. Now let us focus on the planar directions, i.e.,

H2 =
1

2

(
p2x + p2y

)
+ ypx − xpy − c2x2 +

c2
2
y2, (7)

where, for simplicity, we keep the name H2 for the Hamiltonian.
Now, let us define the matrix M as JHess(H2),

M =


0 1 1 0
−1 0 0 1
2c2 0 0 1
0 −c2 −1 0

 . (8)
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The characteristic polynomial is p(λ) = λ4 + (2− c2)λ2 + (1 + c2 − 2c22). Calling η = λ2,
we have that the roots of p(λ) = 0 are given by

η1 =
c2 − 2−

√
9c22 − 8c2

2
, η2 =

c2 − 2 +
√

9c22 − 8c2
2

.

As µ ∈]0, 1
2
] we have that c2 > 1 that forces η1 < 0 and η2 > 0. This shows that the

equilibrium point is a centre×centre×saddle. Thus, let us define ω1 as
√
−η1 and λ1

as
√
η2. For the moment, we do not specify the sign taken for each value (this will be

discussed later on).
Now, we want to find a symplectic linear change of variables casting (7) into its real

normal form (by real we mean with real coefficients) and, hence, we will look for the
eigenvectors of matrix (8). As usual, we will take advantage of the special form of this
matrix: if we denote by Mλ the matrix M − λI4, then

Mλ =

(
Aλ I2
B Aλ

)
, Aλ =

(
−λ 1
−1 −λ

)
, B =

(
2c2 0
0 −c2

)
.

Now, the kernel of Mλ can be found as follows: denoting as (w>1 , w
>
2 )> the elements of

the kernel, we start solving (B−A2)w1 = 0 and then w2 = −Aw1. Thus, the eigenvectors
of M are given by (2λ, λ2 − 2c2 − 1, λ2 + 2c2 + 1, λ3 + (1− 2c2)λ)>, where λ denotes the
eigenvalue.

Let us consider now the eigenvectors related to ω1. From p(λ) = 0, we obtain that
ω1 verifies

ω4
1 − (2− c2)ω2

1 + (1 + c2 − 2c22) = 0.

We also apply λ =
√
−1ω1 to the expression of the eigenvector and, separating real and

imaginary parts as uω1 +
√
−1vω1 we obtain

uω1 = (0,−ω2
1 − 2c2 − 1,−ω2

1 + 2c2 + 1, 0)>,

vω1 = (2ω1, 0, 0,−ω3
1 + (1− 2c2)ω1)

>.

Now, let us consider the eigenvalues related to ±λ1,

u+λ1 = (2λ, λ2 − 2c2 − 1, λ2 + 2c2 + 1, λ3 + (1− 2c2)λ)>,

v−λ1 = (−2λ, λ2 − 2c2 − 1, λ2 + 2c2 + 1,−λ3 − (1− 2c2)λ)>.

We consider, initially, the change of variables C = (u+λ1 , uω1 , v−λ1 , vω1). To know whether
this matrix is symplectic or not, we check C>JC = J . It is a tedious computation to see
that

C>JC =

(
0 D
−D 0

)
, D =

(
dλ1 0
0 dω1

)
.

This implies that we need to apply some scaling on the columns of C in order to have a
symplectic change. The scaling is given by the factors

dλ1 = 2λ1((4 + 3c2)λ
2
1 + 4 + 5c2 − 6c22), dω1 = ω1((4 + 3c2)ω

2
1 − 4− 5c2 + 6c22).
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Thus, we define s1 =
√
dλ1 and s2 =

√
dω1 . As we want the change to be real, we have

to require dλ1 > 0 and dω1 > 0. It is not difficult to check that this condition is satisfied
for 0 < µ ≤ 1

2
in all the points L1,2,3, if λ1 > 0 and ω1 > 0.

To obtain the final change, we have to take into account the vertical direction (z, pz):
to put it into real normal form we use the substitution

z 7→ 1
√
ω2

z, pz 7→
√
ω2pz.

This implies that the final change is given by the symplectic matrix

C =



2λ
s1

0 0 −2λ
s1

2ω1

s2
0

λ2−2c2−1
s1

−ω2
1−2c2−1
s2

0 λ2−2c2−1
s1

0 0

0 0 1√
ω2

0 0 0
λ2+2c2+1

s1

−ω2
1+2c2+1

s2
0 λ2+2c2+1

s1
0 0

λ3+(1−2c2)λ
s1

0 0 −λ3−(1−2c2)λ
s1

−ω3
1+(1−2c2)ω1

s2
0

0 0 0 0 0
√
ω2


(9)

that casts Hamiltonian (6) into its real normal form,

H2 = λ1xpx +
ω1

2
(y2 + p2y) +

ω2

2
(z2 + p2z), (10)

where, for simplicity, we have kept the same name for the variables. Later on, to simplify
the computations, we will use a complex normal form for H2 because it will simplify the
computations. This complexification is given by

x = q1, y = q2+
√
−1p2√
2

, z = q3+
√
−1p3√
2

,

px = p1, py =
√
−1q2+p2√

2
, pz =

√
−1q3+p3√

2
,

(11)

and it puts (10) into its complex normal form,

H2 = λ1q1p1 +
√
−1ω1q2p2 +

√
−1ω2q3p3, (12)

being λ1, ω1 and ω2 real (and positive) numbers.

2.2 The equilateral points

The equilibrium points L4 and L5 are located at (µ− 1
2
,∓
√
3
2
, 0), where the upper (“−”)

sign is for L4 while the lower (“+”) one is for L5. These points are known to be linearly
stable when the value of the mass parameter µ is below the Routh critical value µR =
1
2

(
1−

√
69
9

)
≈ 0.03852. In what follows we assume that the value of our mass parameter

is less than µR. The dynamics for values of µ larger than the Routh critical value will
not be discussed here. For more details, you can read [50, 42, 64, 73, 66] and references
therein.
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The first step is to translate the origin of coordinates to the equilibrium point (note
that here we do not need any scaling, since the two masses are already at distance one
from the points L4,5). The translation is given by the (symplectic) change

X = x+ µ− 1
2
, PX = px ±

√
3
2
,

Y = y ∓
√
3
2
, PY = py + µ− 1

2
,

Z = z, PZ = z,

to the Hamiltonian (1). As before, the upper sign is for L4 and the lower one for L5 (this
rule for the signs will be used along this section). To simplify notation we use the same
symbol H for the Hamiltonian obtained,

H =
1

2
(p2x + p2y + p2z) + ypx − xpy +

(
1

2
− µ

)
x∓
√

3

2
y − 1− µ

rPS
− µ

rPJ
,

where r2PS = (x − xS)2 + (y − yS)2 + z2, r2PJ = (x − xJ)2 + (y − yJ)2 + z2, xS = 1/2,
yS = ∓

√
3/2, xJ = −1/2 and yJ = ∓

√
3/2. Note that (xS, yS, 0) are the coordinates of

the big primary in the new coordinates and that (xJ , yJ , 0) is the position of the small
one. The subscripts usually correspond to “Sun” and “Jupiter”. They provide a classical
example for the RTBP, where the small particle can be an asteroid.

The next step is to expand H around the origin. The expansion of the nonlinear
terms is performed in the same way as we did in Section 2.1, so we will not repeat the
details here. Note that, as the origin is an equilibrium point, the first order terms must
vanish (we forget about the constant value H(0), since it is irrelevant to the dynamics).
The first non-trivial terms are of second order and they are responsible for the linear
dynamics around the point. They are

H2 =
1

2
(p2x + p2y + p2z) + ypx − xpy +

1

8
x2 − 5

8
y2 − axy +

1

2
z2,

where a = ±3
√
3

4
(1− 2µ). Note that the behaviour in the (z, pz) directions is uncoupled

of the behaviour in the (x, y, px, py) directions. Moreover, the motion on the z-axis cor-
responds to an harmonic oscillator with frequency 1 (for all µ), that is already in (real)
normal form. Hence, we restrict ourselves to the (x, y, px, py)-plane:

H2 =
1

2
(p2x + p2y) + ypx − xpy +

1

8
x2 − 5

8
y2 − axy. (13)

Let us define the 4× 4 matrix J as

J =

(
0 I2
−I2 0

)
,

where I2 denote the 2× 2 identity matrix. The equations of motion of (13) are given by
the linear system 

ẋ
ẏ
ṗx
ṗy

 = J∇H2 = JHess(H2)


x
y
px
py

 . (14)
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An easy computation shows that the matrix M = JHess(H2) is given by

M =


0 1 1 0
−1 0 0 1
−1

4
a 0 1

a 5
4
−1 0

 . (15)

The characteristic polynomial is p(λ) = λ4 +λ2 + 27
16
− a2. From this expression it is easy

to obtain that system (14) is stable if µ ≤ µR = 1
2

(
1−

√
23
27

)
(this is the Routh mass)

and unstable if µr < µ ≤ 1
2
. As we are studying the case µ < µR, we assume that the

solutions of p(λ) = 0 are all purely imaginary, that is, λj = ±ωj
√
−1, j = 1, 2. The real

values ωj are the frequencies of the linear oscillations at the equilibrium points L4,5, and
it is trivial to show that they always differ when 0 < µ < µR. Let us call ω1 the one that
satisfies ω2

1 >
1
2

and ω2 the one such that ω2
2 <

1
2
. For the moment we do not specify the

sign we take for each frequency. These signs will be determined below.
Now we want to obtain a real (and symplectic) change of variables such that the

Hamiltonian (13) is reduced to its (real) normal form. The first step will be to look for
the eigenvectors of the matrix M given by (15). To simplify the computation, we will
take advantage of the special form of this matrix. We denote by Mλ the matrix M −λI4,
and we define the following splitting in 2× 2 blocks:

Mλ =

(
Aλ I2
B Aλ

)
, Aλ =

(
−λ 1
−1 −λ

)
, B =

(
−1

4
a

a 5
4

)
.

Here, λ denotes one of the eigenvalues of the matrix M . The kernel of Mλ is now easy
to find: to solve (

Aλ I2
B Aλ

)(
w1

w2

)
=

(
0
0

)
,

we can start by solving (B − A2)w1 = 0 and then w2 = −Aw1 (note that the kernel of
(B−A2) is trivial to find since it is a 2× 2 matrix). In this way, we find the eigenvector
(2λ+a, λ2− 3

4
, λ2+aλ+ 3

4
, λ3+ 5

4
λ+a)>. Now, as the eigenvalues of M satisfy λ =

√
−1ω,

ω ∈ R, we obtain that the frequencies ω are determined by the equation

ω4 − ω2 +
27

16
− a2 = 0. (16)

We also apply λ =
√
−1ω to the expression of the eigenvector and, separating real and

imaginary parts, we obtain that it can be expressed as u+
√
−1v, where

u(ω) =
(
a,−ω2 − 3

4
,−ω2 + 3

4
, a
)>

v(ω) =
(
2ω, 0, aω,−ω3 + 5

4
ω
)>

}
. (17)

We start considering the change of variables given by the matrix C = (u1, u2, v1, v2),
where uj and vj denote the values of u and v given by (17) corresponding to the frequen-
cies ωj, j = 1, 2. For the moment we do not specify which sign is taken for each frequency.
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In order to know whether C is symplectic or not, we check the property C>JC = J : a
tedious but not difficult computation produces

C>JC =

(
0 D
−D 0

)
, D =

(
d(ω1) 0

0 d(ω2)

)
.

where d(ω) = ω(2ω4 + 1
2
ω2 − 3

4
). Of course, to derive this expression you need to use

the properties (16) and ω2
1ω

2
2 = 27

16
− a2. Note that the zeros obtained in C>JC and D

were expected, due to the way we have constructed C. The only question was to know
whether d is 1 or not. As it is not, we need to perform some scaling to the columns of C:
let us define sj =

√
d(ωj), j = 1, 2 and let us redefine C as (u1

s1
, u2
s2
, v1
s1
, v2
s2

). This matrix
is now symplectic, but we also want C to be real, that is, we want the values d(ωj) to be
positive. This will determine the signs we must choose for the frequencies ωj. As ω2

1 <
1
2
,

if one wants d(ω1) > 0 is necessary to take ω1 > 0 and, conversely, as ω2
2 <

1
2

implies that
we must take ω2 < 0 in order to have d(ω2) > 0. Hence, the change we have obtained is
real, symplectic and it brings the Hamiltonian (13) into the real normal form

H2 =
ω1

2
(x2 + p2x) +

ω2

2
(y2 + p2y), (18)

where we recall that ω1 > 0 and ω2 < 0.
As in Section 2.1, we want a complex normal form for H2, because it will simplify

the computations in the following sections. So, it is not difficult to derive the change
that brings (18) into complex normal form: we compose the complexifying change

x = q1+
√
−1p1√
2

,

px =
√
−1q1+p1√

2
,

y = q2+
√
−1p2√
2

,

py =
√
−1q2+p2√

2
,

with the above-defined matrix C to produce the final change used in the paper:
a
r1

+ 2ω1

r1

√
−1 2ω1

r1
+ a

r1

√
−1 a

r2
+ 2ω2

r2

√
−1 2ω2

r2
+ a

r2

√
−1

−ω2
1−

3
4

r1

−ω2
1−

3
4

r1

√
−1

−ω2
2−

3
4

r2

−ω2
2−

3
4

r2

√
−1

−ω2
1+

3
4

r1
+ aω1

r1

√
−1 aω1

r1
+
−ω2

1+
3
4

r1

√
−1

−ω2
2+

3
4

r2
+ aω2

r2

√
−1 aω2

r2
+
−ω2

2+
3
4

r2

√
−1

a
r1

+
−ω3

1+
5
4
ω1

r1

√
−1

−ω3
1+

5
4
ω1

r1
+ a

r1

√
−1 a

r2
+
−ω3

2+
5
4
ω2

r2

√
−1

−ω3
2+

5
4
ω2

r2
+ a

r2

√
−1

 ,

where

rj =

√
ωj

(
4ω4

j + ω2
j −

3

2

)
, j = 1, 2.

3 Nonlinear dynamics near the collinear points

We have already seen that the linear dynamics at the collinear points is of the type
centre×centre×saddle. In this section we focus on the effect that the nonlinear terms
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have in this description. We first describe the method used, and then we will apply it to
our situation.

Let us consider a Hamiltonian with three degrees of freedom, in a neighbourhood
of an equilibrium point of the type centre×centre×saddle, that we will assume to be at
the origin. Of course, this is an unstable equilibrium point but we are interested in the
existence of trajectories that remain close to the point for all times. If we consider the
linearization of the vectorfield at this point, and we skip the hyperbolic part, we obtain
a couple of harmonic oscillators. Hence, for the linearized vectorfield, we have a couple
of families of periodic orbits near the point, plus the quasiperiodic solutions obtained as
product of the two families of periodic orbits. These quasiperiodic solutions are some-
times called Lissajous orbits [22]. Let us consider now the effect of the nonlinear terms
of the vectorfield on these bounded solutions. Under generical conditions the well-known
Lyapunov centre theorem says that, for each linear (periodic) oscillation, there exists a
one-parametric family of periodic orbits of the complete Hamiltonian system that em-
anates from the point in a tangent way to the family of linear oscillations. The limit
frequency of these periodic orbits at the fixed point is the frequency of the linear oscilla-
tions (see, for instance, [74, 60]). A similar result holds for the quasi-periodic Lissajous
orbits: under general hypotheses, it can be shown that these linear oscillations can be ex-
tended to the complete system as a Cantorian two-parametric family of two-dimensional
invariant tori. Moreover, the measure of the gaps between tori is exponentially small
with the distance to the origin (for the proofs, see [48]).

In this section we will perform an effective computation of the dynamics near the
collinear points, by means of the so-called reduction to the centre manifold. With this, we
will be able to obtain an explicit representation of the bounded motions in an extended
neighbourhood of the equilibrium point. As an example, we will do the computations
for a concrete value of the mass parameter µ. These results are based on a combination
of numerical and semi-analytical tools. Proofs for these results have to be computer
assisted. For instance, see [13] to see the kind of work done in this direction.

Finally, let us mention that the results in this section can be extended beyond
the radius of convergence of the power series used here, by means of purely numerical
methods. See [41] for the details.

3.1 Reduction to the centre manifold

The process of reduction to the center manifold is very similar to a normal form calcula-
tion. It is based on removing all monomials involving p1 or q1 other than products p1q1
in the expansion of the Hamiltonian, to produce an invariant manifold tangent to the
elliptic directions of H2 (see Section 3.1.1 for details). Let us recall that, if F (q, p) and
G(q, p) are two functions (where, as usual, q denotes the positions and p the momenta),
their Poisson bracket is defined as

{F,G} =
∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
.
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In what follows, we will use the following notation. If x = (x1, . . . , xn) is a vector of
complex numbers and k = (k1, . . . , kn) is an integer vector, we denote by xk the value
xk11 · · ·xknn (in this context we define 00 as 1). Moreover, we define |k| as

∑
j |kj|.

3.1.1 The Lie series method

Let us start by expanding the initial Hamiltonian around the equilibrium point, in the
complex coordinates for which the second degree terms are in diagonal form (see Sec-
tion 2.1). This expansion can be obtained by substituting the linear change obtained
from the composition of (9) and (11) into the recurrence (5), that is then applied to
compute the last sum in (3). The second degree terms in (3) that are not in the sum are
obtained by direct substitution. In this way, the Hamiltonian takes the form

H(q, p) = H2(q, p) +
∑
n≥3

Hn(q, p), (19)

where H2 is given in (12) and Hn denotes an homogeneous polynomial of degree n with
complex coefficients.

The changes of variables are implemented by means of the Lie series method: if
G(q, p) is a Hamiltonian system, then the function Ĥ defined by

Ĥ ≡ H + {H,G}+
1

2!
{{H,G} , G}+

1

3!
{{{H,G} , G} , G}+ · · · , (20)

is the result of applying a canonical change to H. This change is the time one flow
corresponding to the Hamiltonian G. G is usually called the generating function of the
transformation to obtain (20). See [31] and references therein for more details.

It is easy to check that, if P and Q are two homogeneous polynomials of degree r
and s respectively, then {P,Q} is a homogeneous polynomial of degree r + s − 2. This
property is very useful to implement in a computer the transformation (20): for instance,
let us assume that we want to eliminate the monomials of degree 3 of (19), as it is usually
done in a normal form scheme. Let us select as a generating function a homogeneous
polynomial of degree 3, G3. Then, it is immediate to check that the terms of Ĥ satisfy

degree 2: Ĥ2 = H2,

degree 3: Ĥ3 = H3 + {H2, G3},

degree 4: Ĥ4 = H4 + {H3, G3}+ 1
2!
{{H2, G3} , G3},

...

Hence, to eliminate the monomials of degree 3 one has to look for a G3 such that
{H2, G3} = −H3. Let us denote

H3(q, p) =
∑

|kq |+|kp|=3

hkq ,kpq
kqpkp , G3(q, p) =

∑
|kq |+|kp|=3

gkq ,kpq
kqpkp ,

13



and H2(q, p) =
∑3

j=1 ηjqjpj, where η1 = λ1, η2 =
√
−1ω1 and η3 =

√
−1ω2. As

{H2, G3} =
∑

|kq |+|kp|=3

〈kp − kq, η〉 gkq ,kpqkqpkp , η = (η1, η2, η3),

it is immediate to obtain

G3(q, p) =
∑

|kq |+|kp|=3

−hkq ,kp
〈kp − kq, η〉

qkqpkp ,

that is well defined because the condition |kq| + |kp| = 3 implies that 〈kp − kq, η〉 is
different from zero. Note that G3 is so easily obtained because of the “diagonal” form of
H2 given in (12).

In this section we are not interested in a complete normal form, but only in un-
coupling the central directions from the hyperbolic one. Hence, it is not necessary to
cancel all the monomials in H3 but only some of them. Moreover, as we want the radius
of convergence of the transformed Hamiltonian to be as big as possible, we will try to
choose the change of variables as close to the identity as possible. This means that we
will eliminate the least possible number of monomials in the Hamiltonian. In order to
produce an approximate first integral having the center manifold as a level surface (see
below), it is enough to eliminate the monomials qkqpkp such that the first component of
kq is different from the first component of kp. This implies that the generating function
G3 is

G3(q, p) =
∑

(kq ,kp)∈S3

−hkq ,kp
〈kp − kq, η〉

qkqpkp , (21)

where Sn, n ≥ 3, is the set of indices (kq, kp) such that |kq| + |kp| = n and the first
component of kq is different from the first component of kp. Then, the transformed

Hamiltonian Ĥ takes the form

Ĥ(q, p) = H2(q, p) + Ĥ3(q, p) + Ĥ4(q, p) + · · · , (22)

where Ĥ3(q, p) ≡ Ĥ3(q1p1, q2, p2, q3, p3) (note that Ĥ3 depends on the product q1p1, not
on each variable separately). This process can be carried out up to a finite order N , to
obtain a Hamiltonian of the form

H̄(q, p) = HN(q, p) +RN+1(q, p),

where HN(q, p) ≡ HN(q1p1, q2, p2, q3, p3) is a polynomial of degree N and RN+1 is a
remainder of order N+1 (note that HN depends on the product q1p1 while the remainder
depends on the two variables q1 and p1 separately). Neglecting the remainder (it is very
small if we are close enough to the origin), we can define I1 = q1p1 (this is a canonical
change if we define properly the corresponding angle variable) to obtain a Hamiltonian
HN(I1, q2, q3, p2, p3). Note that the equation corresponding to the variable I1 is İ1 = 0
so it is a first integral of the system. Selecting the value I1 = 0 we are restricting the

14



Hamiltonian HN to an invariant manifold that is tangent at the origin with the linear
central part of the system. This is the so called reduction to the centre manifold. Finally,
the Hamiltonian is put into its real form by using the inverse of (11).

Note that the normalizing method used here is slightly different than the one intro-
duced in [19]. The main difference is that this process uses less computer memory, since
it does not require to store the complete Lie triangle.

It is interesting to note the absence of small divisors during the entire process. The
denominators that appear in the generating functions (like (21)), 〈kp − kq, η〉, can be
bounded from below when (kq, kp) ∈ SN : using that η1 is real and that η2,3 are purely
imaginary, we have

|〈kp − kq, η〉| ≥ |λ1|, for all (kq, kp) ∈ SN , N ≥ 3.

For this reason, the divergence of this process is very mild (the divergence of normalizing
transformations in the absence of small divisors has been considered in other contexts,
see, for instance, [7] or [9]; for a more general discussion see [65]). This is clearly observed
when this process is stopped at some degree N . Then, the remainder is very small in a
quite big neighborhood of the equilibrium point. We will deal with these points in the
next section.

An explicit expression for the change of variables that goes from the coordinates
of the center manifold to the coordinates corresponding to the Hamiltonian (19) can be
obtained in the following way: once the generating function G3 has been obtained, we
can compute

q̃j = qj + {qj, G3}+
1

2!
{{qj, G3} , G3}+

1

3!
{{{qj, G3} , G3} , G3}+ · · · , (23)

p̃j = pj + {pj, G3}+
1

2!
{{pj, G3} , G3}+

1

3!
{{{pj, G3} , G3} , G3}+ · · · , (24)

that produces the transformation that sends the coordinates of (19), given by the vari-
ables (q̃, p̃) into the coordinates of (22), represented by the variables (q, p). In the next
step, the generating function G4 is applied to the right-hand side of equations (23) and
(24), to obtain the change corresponding to fourth order, and so on.

Then, we perform the substitution q1 = p1 = 0 in the expressions for the change
of variables, to obtain six power expansions (corresponding to the six initial variables),
each one depending on the four variables of the center manifold. These expansions are
put into real form in the same way as the Hamiltonian. From now on, and to simplify
notation, the realified variables will still be called q and p.

We recall that, after replacing I1 by 0, we have obtained a two degrees of freedom
Hamiltonian system Hc ≡ HN(0, q2, q3, p2, p3), where the origin is an elliptic equilibrium
point. It is not difficult to produce a qualitative description of the dynamics of Hc: the
phase space is four dimensional, so let us fix an energy level Hc = hc to reduce to a three
dimensional phase space. Now, Poincaré sections are two dimensional and can be plotted
easily. Doing several plots for several values of hc one gets a description of the trajectories
that remain close to the origin. The dynamics of the initial Hamiltonian near the origin
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can be obtained adding the hyperbolic part that we have skipped when reducing to the
centre manifold. See [45] for further information.

Although the normalizing process used to approximate the center manifold is di-
vergent in general, we can apply KAM techniques to show, under suitable hypotheses,
the existence of a Cantorian centre manifold, completely filled up by invariant tori. This
manifold is parametrized by two parameters (the actions of the tori), and each parame-
ter moves on a Cantor set. The complementary of the measure of this manifold (in the
parameters space) decreases exponentially with the distance to the origin. See [48] for
more details. For a general discussion of the main features of centre manifolds, see [75]
or [79].

3.1.2 The L1 point of the Earth-Sun system

We have applied the above-explained algorithm to the collinear points of the RTBP. As
a first example we have focused on the L1 point corresponding to the mass parameter
µ = 3.0404233984441761 × 10−6. This is an approximate value for the Earth-Sun case.
All the expansions have been performed up to degree N = 32.

The first terms of the Hamiltonian restricted to the center manifold are given in
Table 1. The monomials that are not listed there have zero coefficient. In order to have
an idea of the radius of convergence of this series, we have computed (numerically) the
values

r(1)n =
‖Hn‖1
‖Hn−1‖1

, r(2)n = n
√
‖Hn‖1, where ‖Hn‖1 =

∑
|k|=n

|hk|, 3 ≤ n ≤ N, (25)

being hk the coefficient of the monomial of exponent k. These values have been plotted in
Figure 4. They seem to show a mild divergence of the series, although the region where
the truncated series looks convergent (i.e., the region where the size of the last terms of
the series is small) is quite big. Numerical and very realistic estimates of the radius of
convergence are obtained as follows: take an initial condition inside the center manifold
and, by means of a numerical integration of the reduced Hamiltonian, produce a sequence
of points for the corresponding trajectory. Then, by means of the change of variables,
send these points back to the initial RTBP coordinates. Finally, by means of a numerical
integration of the RTBP, we can test if those points belong to the same orbit (note
that we can not use a very long time span for those integrations, since the hyperbolic
character of the center manifold in the RTBP amplifies the errors exponentially). This
gives an idea of the error we have in the determination of the center manifold. In fact,
the accuracy of the plots in Figures 3 and 6 has been checked in this way. For more
details about this kind of error estimation, see [43].

To have a description of the dynamics inside the center manifold we use the following
scheme: we take the 3D Poincaré section q3 = 0 (this corresponds, at first order, to use
z = 0 in the synodical coordinates) and we fix an energy level h0 to obtain a 2D section.
Hence, to obtain a picture of the phase space of this Poincaré section we select a value
h0 and an initial point (q2, p2). Using that q3 = 0 and that the value of the Hamiltonian
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k1 k2 k3 k4 hk k1 k2 k3 k4 hk

2 0 0 0 1.0432267821115535e+00 0 0 2 2 1.2424817827573600e-01

0 2 0 0 1.0432267821115544e+00 4 1 0 0 -2.0023568581469642e-01

0 0 2 0 1.0076053314983200e+00 2 3 0 0 3.4353440405951968e-01

0 0 0 2 1.0076053314983200e+00 0 5 0 0 -2.0187593581785741e-02

2 1 0 0 6.5165140304211688e-01 2 1 2 0 -1.9849089558605101e-01

0 3 0 0 -4.1659670417917148e-02 0 3 2 0 1.4712780865620459e-01

0 1 2 0 5.3911539423589860e-01 0 1 4 0 -2.7451664895216100e-02

4 0 0 0 -8.5787309100706366e-02 3 0 1 1 -1.1415906236784655e-01

2 2 0 0 4.1161447802927803e-01 1 2 1 1 2.1573064571205472e-01

0 4 0 0 -2.6563655599297287e-02 1 0 3 1 -9.4058985172178297e-02

2 0 2 0 -1.4043712336878425e-01 2 1 0 2 1.9372724033920288e-01

0 2 2 0 2.7927960671292551e-01 0 3 0 2 -4.4040459096995777e-02

0 0 4 0 -5.7468618566454702e-02 0 1 2 2 1.9106055501181426e-01

1 1 1 1 6.2490402334472867e-02 1 0 1 3 3.8405228183256930e-02

2 0 0 2 1.5018398762952467e-01 0 1 0 4 -2.2759839111536957e-02

0 2 0 2 -2.8803507814853090e-02

Table 1: Coefficients, up to degree 5, of the transformed Hamiltonian restricted to the
center manifold corresponding to the L1 point of the Earth-Sun system. The exponents
(k1, k2, k3, k4) refer to the variables (q2, p2, q3, p3), in this order.

must be h0, we compute (numerically) the corresponding value p3 (in fact, there are
two values that solve the equation, one positive and one negative; we use the positive
one). Then, this point is used as an initial condition for a numerical integration of the
Hamiltonian restricted to the central part, plotting a point each time that the trajectory
crosses the plane q3 = 0 with p3 > 0.

The results can be seen in Figure 3. As the Hamiltonian is positive definite at the
origin (this is clearly seen looking at the sign of the coefficients of the second degree
terms in Table 1), each energy level defines a closed region in the Poincaré section. The
boundary of this region coincides with a periodic orbit of the planar Lyapunov family of
L1, that is fully contained in the plane q3 = p3 = 0, and in the figure it has been plot
using a continuous line. The motion inside this region is clearly quasi-periodic (except
by some gaps that are too small to appear in these pictures), with a fixed point on
the p1 axis, that corresponds to a vertical Lyapunov orbit. If the value of the energy
increases, one can see how the well known Halo orbits (see Section 3.2) are born, as a
bifurcation of the planar Lyapunov family. Note that the Halo orbits are surrounded by
2D invariant tori (see also [39] and [40]). The boundary between the tori around the
Halo orbit and the tori around the vertical Lyapunov orbit is a homoclinic trajectory of
the planar Lyapunov orbit. Of course, the homoclinic trajectory that goes out from the
orbit and the one that goes in do not generally coincide: they should intersect one each
other with a very small angle. This phenomenon is known as splitting of separatrices.
Finally, by sending those orbits to the RTBP coordinates, it is possible to see that the
description provided by those plots is valid (and very accurate) up to a distance of L1 a
little bit bigger than 60% of the L1-Earth distance.

17



-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

h=0.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

h=0.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

h=0.6

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

h=1.0

Figure 3: Poincaré sections of the center manifold of L1, corresponding to h = 0.2, 0.4
0.6 and 1.0. Horizontal axis: q2; vertical axis: p2.
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k1 k2 k3 k4 hk k1 k2 k3 k4 hk

2 0 0 0 9.3132294092164980e-01 0 0 2 2 1.6516656013507769e-01

0 2 0 0 9.3132294092164991e-01 4 1 0 0 3.0065634937222852e-01

0 0 2 0 8.9308808149867502e-01 2 3 0 0 -5.8388370855924443e-01

0 0 0 2 8.9308808149867525e-01 0 5 0 0 3.1707966658149511e-02

2 1 0 0 -8.3074621158508666e-01 2 1 2 0 2.4502956646982510e-01

0 3 0 0 6.5285116341699909e-02 0 3 2 0 -1.9424915041015245e-01

0 1 2 0 -6.4906335171207086e-01 0 1 4 0 8.2423593768551455e-03

4 0 0 0 -3.0986677967027330e-02 3 0 1 1 1.7854668840138077e-01

2 2 0 0 5.9388694902317307e-01 1 2 1 1 -4.2089157809945715e-01

0 4 0 0 -4.1582038336828324e-02 1 0 3 1 1.3900075305874218e-01

2 0 2 0 -4.7016550083469763e-02 2 1 0 2 -2.8565999503473249e-01

0 2 2 0 3.5694318621877408e-01 0 3 0 2 7.7193563104132376e-02

0 0 4 0 -1.7818840096908990e-02 0 1 2 2 -2.8562245235708378e-01

1 1 1 1 1.1056617867458479e-01 1 0 1 3 -7.5028466176853367e-02

2 0 0 2 2.1139923206390523e-01 0 1 0 4 4.3954249987303046e-02

0 2 0 2 -4.9839132339243322e-02

Table 2: Coefficients, up to degree 5, of the Hamiltonian restricted to the center manifold
corresponding to the L2 point of the Earth-Moon system. The exponents (k1, k2, k3, k4)
refer to the variables (q2, p2, q3, p3), in this order.

3.1.3 The L2 point of the Earth-Moon system

It is not difficult to repeat the computations of the last section for the L2 point of the
Earth-Moon system. The Hamiltonian restricted to the center manifold is displayed in
Table 2, and the estimates of the region of convergence are shown in Figure 5. Figure 6
contains the plots of the Poincaré sections, where the bifurcation that gives rise to the
Halo orbits is also shown. As before, it is possible to check that this description is very
accurate up to a half distance from L2 to the Moon. As the results are very similar to
the last case, we do not add further remarks.

3.1.4 The L3 point of the Earth-Moon system

We have also performed these computations for the L3 point. The main difference be-
tween this point and L1,2 can be seen in Figure 1: while L1,2 are strongly influenced
by the two bodies, L3 is influenced by the bigger primary but the effect of the smaller
primary is almost neglectable. This implies that the dynamics near L3 is rather close
to the dynamics of a two body problem (which is very degenerate). This is the reason
for the big coefficients shown in Table 3, that are responsible for the poor convergence
radius shown in Figure 7: Hence, one must use very small values of the energy in order to
be inside the region of convergence. This does not allow to go far enough to observe the
bifurcation corresponding to the Halo orbits and, for this reason, we have not included
the corresponding plots for this case.

So, the study of the behavior around L3 (including the computation of Halo orbits)
is a difficult problem. Moreover, as far as we know, there are no astronautical or as-
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Figure 6: Poincaré sections of the center manifold of L2, corresponding to h = 0.2, 0.4
0.6 and 1.0. Horizontal axis: q2; vertical axis: p2.

tronomical applications that require an accurate knowledge of the phase space around
this point. We believe that, in case that this study were necessary, it would be better
to look at it as a slightly perturbed two body problem rather than using the techniques
discussed here.

3.2 Halo orbits

Halo orbits are periodic orbits which bifurcate from the planar Lyapunov periodic orbits
when the in plane (or intrinsic) and out of plane (or normal) frequencies are equal. This
is a 1:1 resonance that appear as a consequence of the nonlinear terms of the equations.

The importance of these orbits became clear with the mission ISEE 3 (it stands
for International Sun-Earth Explorer) that was launched in 1978. The purpose of this
probe was to study the Sun so it was desirable to place it in between Earth and Sun, to
have a continuous monitoring of the activity of the Sun. Note that to place it at the L1

point satisfies this requirement but with the following drawback: as seen from the Earth,
the spacecraft would be in the middle of the Solar disk. This means that an antenna
pointing to the probe is also pointing to the Sun, and the noise coming from the Sun
would make it impossible to receive any data from the probe. Halo orbits provide a very
good alternative to place the spacecraft: As seen from the Earth, a Halo orbit with low
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k1 k2 k3 k4 hk k1 k2 k3 k4 hk

2 0 0 0 5.0520994612145753e-01 0 0 2 2 7.1591406119636058e-01

0 2 0 0 5.0520994612145753e-01 4 1 0 0 2.1323011406157320e+03

0 0 2 0 5.0266571276387528e-01 2 3 0 0 -5.6249141438829110e+02

0 0 0 2 5.0266571276387528e-01 0 5 0 0 1.3204637130128873e+01

2 1 0 0 -5.6115912436382951e+00 2 1 2 0 5.2838311677563991e+02

0 3 0 0 9.3496383336128464e-01 0 3 2 0 -3.0623587048451135e+01

0 1 2 0 -1.4686056924068396e+00 0 1 4 0 1.5515423765627251e+01

4 0 0 0 7.6528931476095536e+00 3 0 1 1 1.8825389781246327e+00

2 2 0 0 1.3546730001510483e+01 1 2 1 1 -3.6872790343761423e+01

0 4 0 0 3.8069286794284551e-01 1 0 3 1 1.7599729630272192e+00

2 0 2 0 3.3499313360906959e+00 2 1 0 2 5.0848622203654816e+02

0 2 2 0 7.9659730977543119e-01 0 3 0 2 -2.9960960321274250e+01

0 0 4 0 3.5254807289843670e-01 0 1 2 2 2.7128291101879991e+01

1 1 1 1 4.0669264872473150e+00 1 0 1 3 -5.2867739300861096e+00

2 0 0 2 2.7355314621061146e+00 0 1 0 4 1.7913955620592070e+01

0 2 0 2 -1.3673249909233478e+00

Table 3: Coefficients, up to degree 5, of the Hamiltonian restricted to the center manifold
corresponding to the L3 point of the Earth-Moon system. The exponents (k1, k2, k3, k4)
refer to the variables (q2, p2, q3, p3), in this order.
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and r
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vertical amplitude is seen as moving East and West through the Solar disk, but if the
orbit is selected with a large enough vertical amplitude, the orbit is seen moving around
the Solar disk, without crossing it. This is the reason for using the word “Halo” to name
these these orbits: they somehow remind of a halo around a saint. Note that a probe on
one of these orbits can keep permanent communications with the Earth while it has a
continuous coverage of the Sun. Pioneer works in this direction are [22, 67] (Sun-Earth),
[80] (Sun-Jupiter), and [10] (Earth-Moon).

3.3 Applications

As it has been mentioned in the previous section, Halo orbits have a natural interest in
astrodynamics. The first mission using a Halo orbit was ISEE 3, launched in 1978. Since
then many other missions have used these orbits as a suitable place

The quasi-periodic orbits near the collinear points have also been used in some mis-
sions. We mention the Herschel-Planck mission, that has put two satellites in a Lissajous
orbit close to the L2 point of the Earth-Sun system, to study the universe.

An interesting astronomical application can be found in [52], where the authors
study the dynamics of some comets that have fast transitions from an orbit outside
to that of Jupiter to an orbit that is inside, and viceversa. Examples of such comets
are Oterma and Gehrels 3. The dynamical mechanism behind these transitions are the
connections between neighbourhoods of L1 and L2 of the Sun-Jupiter system.

The use of the unstable component of the dynamics to connect different orbits near
the collinear points is studied systematically in [12] with the idea of providing cheap
transfers for an spacecraft moving close to one of the collinear points.

Another astronautical application is the so called “Petit Grand Tour” between the
moons of Jupiter. This is design for a mission to visit the main moons of Jupiter, taking
advantage of the different collinear points of the moons. See [53, 35] for the details.

4 Nonlinear dynamics near the triangular points

As it has been mentioned before, the Lagrangian points are linearly stable when µ is less
than the Routh critical value µR. We will focus on this case.

The tools we will use in this section are similar to the ones in the previous sections.
As it has been explained in Section 2.2, we can expand the Hamiltonian these points as

H(x, y) = H2(x, y) +H3(x, y) +H4(x, y) + · · · .

We have also seen that, in suitable real coordinates, H2 takes the form

H2(x, y) =
1

2
ω1(x

2
1 + y21) +

1

2
ω2(x

2
2 + y22) +

1

2
(x23 + y23).

So, in complex coordinates, it takes the form

H2 =
√
−1ω1q1p1 +

√
−1ω2q2p2 +

√
−1q3p3. (26)
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For the moment being, and to simplify the discussion, let us assume that the frequencies
(ω1, ω2, 1) are non-resonant.

4.1 Birkhoff normal form

Let us detail the computation of the normal form. We use Lie series, since they are
very suitable to perform explicit computations, in a similar way it has been done in
Section 3.1.1. The main difference is that now we try to eliminate all possible monomials
in the expansion. As we did before, let us focus in the monomials of degree 3, after the
first transformation,

H ′3 = H3 + {H2, G3} .

Hence, we ask H ′3 = 0. This equation is easily solved, because H2 is of the form (26): let
us denote by kq the three indices of k that correspond to the variable q and by kp the
ones of p. The expressions of H3 and G3 can be written as

H3 =
∑
|k|=3

hk3q
kqpk

p

, G3 =
∑
|k|=3

gk3q
kqpk

p

.

Hence, assuming that the frequencies ω = (ω1, ω2, 1) of H2 are rationally independent,
it is not difficult to obtain the coefficients gk3 of G3:

gk3 =
−hk3√

−1 〈kp − kq, ω〉
.

As in this case |k| is 3 (odd), the denominator 〈kp − kq, ω〉 is never zero. When dealing
with even degrees (i.e., |k| even), one must consider the case kp = kq (note that, as the
components of ω are rationally independent, this is the only possibility to produce a zero
divisor). This implies that this monomial can not be eliminated and then we select the
corresponding gk3 equal to zero. Of course, if one wants to perform the normal form up
to degree N , it is enough to ask 〈k, ω〉 6= 0 when 0 < |k| < N . If this condition is not
satisfied we can still perform a resonant normal form, that is, we can eliminate all the
monomials except the ones for which 〈k, ω〉 = 0 (usually called resonant monomials).
Even when the frequencies are rationally independent, some of the denominators 〈k, ω〉
can be very small, reducing drastically the domain where these transformations are valid.
In this case is also possible to leave those monomials in the normal form, in order to keep
a reasonable size for the domain of convergence (note that then the normal form might
not be integrable, see [76] for a discussion of this technique). After a finite number of
steps, the Hamiltonian takes the form

H(q, p) = H2(q, p) +H4(q, p) +H6(q, p) + · · ·+H2N(q, p) +R2N+1(q, p),

where the homogeneous polynomials H2j are in normal form, that is, they only contain
monomials such that kp = kq. Terms of degree higher than 2N are not in normal form
and they are all in the remainder R2N+1.
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The final step is to write the transformed Hamiltonian in real veriables. Let us start
by using the inverse of the complexifying change,

qj =
xj −

√
−1yj√
2

, pj =
−
√
−1xj + yj√

2
, j = 1, 2, 3,

where we use q1, q2, q3, p1, p2 and p3 for x, y, z, px, py and pz respectively. In order to
put the Hamiltonian in the easiest possible form, we compose this change with

xj =
√

2Ij cosφj, yj = −
√

2Ij sinφj, j = 1, 2, 3.

This is equivalent to

qj = I1/2 exp(
√
−1φj), pj = −

√
−1I1/2 exp(−

√
−1φj), (27)

Hence, as the monomials that appear in the normal form have the same exponent both
for positions and momenta (kq = kp in the notation above), the change (27) makes them
to depend only on the actions Ij:

hkq
kqpk

p

= hk(
√
−1)|k

q |Ik
q

.

Hence, the truncated Hamiltonian takes the form

H = H(I) = 〈ω, I〉+ H̄2(I) + · · ·+ H̄N(I),

where H̄j are homogeneous polynomials of degree j in the action variables I. This is now
an integrable Hamiltonian, that can be used to give an approximate description of the
dynamics around the equilibrium point.

4.1.1 Invariant tori

Let us use this normal form to give an approximate description of the dynamics close
to an elliptic equilibrium point. This will help us later on to describe the effects of
perturbations on this dynamics. If we neglect the remainder, the equations of motion are

İ = 0, φ̇ =
∂H(I)

∂I
= ω̄(I),

where φ is the vector of angles conjugated to the actions I. The solutions are I(t) = I0
(that correspond to invariant tori) and φ(t) = ω̄(I0)t + φ0, that is a quasiperiodic flow
on the torus.

Now let us recall that Ij = 1
2
(x2j + y2j ), where (x, y) are the (real) variables of

the normalized Hamiltonian. This means that, in order to have real (i.e., non complex)
orbits, the actions Ij cannot be negative. In particular, if all the actions are zero, we are
at the equilibrium point. The frequencies at the equilibrium point I = 0, ω̄(0), are the
frequencies of the linearisation at the point. To move away from the equilibrium point
we have to increase the values of the actions and, as they can only have positive values,
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we cannot achieve any frequency close to ω̄(0) (in other words, having a diffeomorphism
of an open set of frequencies around ω̄(0) onto an open set of actions near I = 0 means
to include negative values of the actions).

Assume now that only one action is strictly positive, say I1. Then the trajectory is
a periodic orbit whose frequency is the first component of ω̄(I1, 0, 0) (the other compo-
nents are the normal frequencies of this periodic orbit). Of course, we can repeat this
same reasoning for the other actions, giving rise to the families of Lyapunov periodic
orbits around the point. If two actions are strictly positive, for instance I1 and I2, then
the motion corresponds to a normally elliptic two dimensional torus whose frequencies
are the first two components of ω̄(I1, I2, 0). The third component of this vector is the
normal frequency of the torus. In this case, these two tori (that sometimes are referred as
Lyapunov lower dimensional tori) are parametrized by the two actions I1 and I2. Finally,
when the three actions are strictly positive, we obtain the three dimensional tori around
the point.

The effect of the remainder on this description can be shortly described as follows.
The family of Lyapunov periodic orbits is not destroyed by the perturbation but only
slightly deformed. This is the statement of the so-called Lyapunov center theorem that we
have already mentioned in this chapter (see also [74, 60]). The effect of the remainder on
the families of Lyapunov elliptic lower dimensional tori is more involved. It can be proved
that, under generic conditions, most of these tori survive the effect of the remainder (see
[48]). The structure of this set has a Cantorian structure, as it is usual in these situations.
Finally, the effect of the remainder on the maximal (three in our case) dimensional tori
is discussed by the classical KAM theorem (see [6]) and it will be discussed in the next
sections.

4.2 On the stability

Assume that we have a Hamiltonian system with an elliptic equilibrium point (that we
locate at the origin) of a ` > 1 degrees of freedom autonomous Hamiltonian system
H(q, p). Consider an initial condition close to the origin. We are interested in knowing
if the corresponding trajectory will be close to the origin for all times (stability in the
sense of Lyapounov), or if it is going to escape to a distance O(1) from the equilibrium
point.

4.2.1 The Dirichlet theorem

This is a particular case in which the stability problem can be easily solved. Let us call M
to the Hessian matrix of the Hamiltonian at the origin (we recall that M is symmetric
and that ∇(q,p)H(0, 0) = 0). Assume that M is a positive definite matrix. Then, the
Dirichlet theorem says that origin is Lyapounov stable.

The proof is based on the fact that, close to the point, the level surfaces of the
Hamiltonian are “like ellipsoids” having the origin inside (those manifolds are of codi-
mension 1 so they divide the phase space in two connected components). Then, as they
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are invariant for the dynamics, they act as a barrier that the trajectories starting near
the point cannot cross. Note that the same argument holds if there exists a first integral,
defined on a neighbourhood of the origin, that is positive definite at (0, 0).

Unfortunately, there are many interesting cases where the matrix M is not positive
definite (for instance, the L4,5 points) and, hence, we need a different kind of results to
study the stability.

4.2.2 KAM and Nekhoroshev theory

In Section 4.1 we have seen that, using a finite number of steps of a normal form scheme,
we can put the Hamiltonian into the form

H = 〈ω, I〉+ H̄2(I) + · · ·+ H̄N(I) +RN+1. (28)

Note that if the effect of the remainder would be neglectable, then we will obtain the
Lyapunov stability of the equilibrium point: the dynamics of the integrable part reduces
to quasi-periodic motions around the elliptic point. However, the effect of the remainder
makes the problem much more difficult. Here we will focus in two ways of dealing with
the effect of this remainder.

The first approach to deal with the remainder of (28) is to try to remove it com-
pletely. This cannot be done using the normal form scheme we have explained in the pre-
vious sections (the scheme is divergent), but it can be done through a Newton method.
This is a quadratically convergent iterative scheme, introduced by A.N. Kolmogorov
([51]), to prove the preservation of tori with Diophantine frequencies. The ideas of Kol-
mogorov, jointly with the works by V.I. Arnol’d ([3]) and J. Moser ([62]) gave rise to the
so called KAM theory, that deals with the existence and persistence of quasi-periodic
motions in conservative systems (although some of these techniques have also been used
in more general settings). One of the key points in this theory is to focus on tori with
Diophantine frequencies. We recall that a vector of ` frequencies is called Diophantine if
it satisfies

| 〈k, ω〉 | > c

|k|γ
, c > 0, k ∈ Z` \ {0}, γ > `− 1,

where ` is the number of degrees of freedom (3 in our case). The set of Diophantine
frequencies has empty interior but a large Lebesgue measure. This implies that the
preserved tori fill a Cantor set of the phase space. On this Cantor set, the trajectories
take place on invariant tori and, hence, they never go away from a vicinity of the origin.
If we focus on the ball of radius r centered at the origin, the Lebesgue measure of the
complementary of this Cantor set can be bounded by c1 exp(−c2(1/r)2/(γ+1)), c1 > 0,
c2 > 0, for r small enough ([48]). This kind of results belongs to the so-called KAM
theory. To decide about the stability we must take into account the motion outside the
Cantor set of invariant tori. For instance, let us consider first the case of two degrees of
freedom (this is the case of the planar RTBP). The phase space is four dimensional and,
fixing the energy level H = h we restrict to a three dimensional space. The invariant
tori are of dimension 2 so they split the phase space and, hence, this allows to conclude

26



the Lyapounov stability of the elliptic point. The case of three degrees of freedom (the
spatial RTBP) is much more difficult. The reason is the following: fixing the energy
level produces a five dimensional invariant manifold and the invariant tori are three
dimensional so they do not split phase space and we can not conclude stability. In fact,
the stability of Hamiltonian systems with three or more degrees of freedom is today an
open question. The more accepted conjecture says that they are, generically, unstable
(see [4]). The instability mechanism is usually known as Arnol’d diffusion.

The second approach is based on deriving estimates on the size of RN+1 that are
of the kind c1 exp(−c2(1/r)2/(γ+1)) (c1 > 0, c2 > 0). As before, r denotes the radius of
the ball centered at the origin on which we take the norm of RN+1, and it is assumed to
be sufficiently small. This has been obtained optimizing the size of the remainder with
respect to the degree up to which the normal form is obtained, for each value of r. From
this bound on the remainder, it is not diffcult to obtain lower bounds on the diffusion
time (i.e., the time to move away) around the point (these ideas were first introduced in
[63]). For instance, if we call T (r) to the time to go out from a ball of radius 2r starting
in a ball of radius r, we have

T (r) ≥ c3 exp

(
c4

(
1

r

) 2
γ+1

)
,

being c3 and c4 positive constants (to obtain this estimate, analyticity plays an essential
role). Of course, this is not a proof of stability but a “bound on the unstability”. These
kind of estimates are what is usually called Nekhoroshev estimates.

It is outside the scope of this paper to give detailed explanations of these results.
We refer to books like [5] or [6] for a general explanation, and to [15, 61, 48, 8, 27]
for more concrete results. Another reference using these techniques but with a different
formulation is [56].

An important remark on the planar case is the following: we have mentioned that
the KAM theorem allows to prove the nonlinear stability of the planar RTBP near the
triangular points. For this result to be true we need to construct the normal form up to
degree 4 in the (p, q) variables (or degree 2 in the I variables), which is the minimum
requirement to apply the KAM theorem (this is the so-called non-degeneracy condition).
This construction can be done for all 0 < µ < µR except for two values, for which the
points are unstable. The details can be found in [57].

4.2.3 First integrals

Another approach to bound the diffusion near an elliptic equilibrium point, without
computing the normal form. The idea is based in the following fact: if we can compute
as many first integrals in involution as the number of degrees of freedom, then the system
will be integrable so we will have stability. Of course, the system we are considering (the
spatial RTBP) is not integrable so these integrals do not exist. What we will do is to
compute power expansions of formal integrals at the equilibrium point. Truncated to a
finite order, these expansions are not exact integrals because they have a very small drift.
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Bounding this drift we obtain a bound on the diffusion near the equilibrium points. Let
us see it with a bit more of detail.

Again, let us consider the dynamics near an equilibrium point of a Hamiltonian
system. To simplify the discussion, we will assume that the equilibrium point is at the
origin and that it is of elliptic type. The case in which some directions are hyperbolic
can be done in a very similar way.

As in the previous cases, let us assume that the Hamiltonian is expanded in power
series, with H2 in diagonal form (as in (26)). Let us denote by F the (wanted) first
integral, that we will expand in power series around the origin as F =

∑
j≥2 Fj, where

Fj denotes a homogeneous polynomial of degree j. From the condition {H,F} = 0 it is
immediate to obtain the following recurrence:

{H2, Fn} = −
n∑
j=3

{Hj, Fn−j+2} . (29)

Hence, due to the diagonal form of H2, it is very easy to solve Fn in terms of F2, . . . , Fn−1,
assuming the standard non resonant conditions on the frequencies of the point ([32]). We
have seen (see Section 3.1.1) that the linear operator G ∈ Pn 7→ {H2, G} ∈ Pn (here Pn
denotes the space of homogeneous polynomials of degree n) is not bijective. Then it is
possible that, if the right hand side of (29) contains resonant monomials, this equation
can not be solved. There are several cases when it can be proved that such monomials
never appear. See [15] for a discussion of this. Note that now, given a F2, we can compute
the following terms F3, F4 and so on.

As usual, the series F =
∑

j≥2 Fj is divergent. However, from its asymptotic char-
acter we can derive quasi-integrals of motion by simply truncating the series to finite
order. This means that, if fn denotes a quasi-integral and (q(t), p(t)) is an orbit of the
Hamiltonian system H then,

ḟn(q(t), p(t)) = {H, fn} (q(t), p(t))

Bounding the Poisson bracket of this formula in a neighbourhood of the elliptic point
one can derive estimates on the diffusion time near the point. For an application of these
techniques, see [76, 15]. See also [55] for an early construction of quasi-integrals, and
[16, 21] for estimations on the rate of divergence.

5 Perturbations

The Restricted Three-Body Problem is a first (and useful) model for many real situa-
tion in astrodynamics. There are, of course, more complex models to produce accurate
predictions for realistic situations. These models take into account effects that are not
included in the RTBP, like the non-sphericity of the bodies, the presence of more masses,
the Solar radiation pressure or relativistic effects. To study the dynamics close to the
equilibrium points of the RTBP, the first (in order of relevance) effects are due to the
eccentricity of the primaries and to the gravitational attraction of other bodies.
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Figure 8: A schematic representation of the Bicircular problem.

5.1 Periodic time-dependent perturbations

There are several perturbations that are modelled as periodic time-dependent effects.
Here we focus on the ones that are more relevant near the Lagrangian solutions.

5.1.1 The Elliptic Restricted Three-Body Problem

One of the first modifications to the RTBP is to assume that the motion of the primaries is
not circular but elliptic, with some eccentricity e 6= 0. Then, the motion of an infinitesimal
particle under the attraction of these primaries is what is known as the Elliptic Restricted
Three-Body Problem. For the derivation of the equations of motion and of the basic
properties, see [78].

The Elliptic RTBP has been studied extensively in the literature. The linear stability
close to the triangular points has been studied in [18]. The nonlinear dynamics is usually
studied using normal forms, as it has been explained in Section 4.1. For details, see
[46, 54].

5.1.2 The Bicircular Problem

As far as we know, this model was first introduced in [17] to account for the direct effect
of the Sun on a particle moving in the Earth-Moon RTBP. To introduce it, let us assume
that Earth and Moon move in circular orbits (with constant angular velocity) around
their common centre of mass, and that this centre of mass moves in a circular orbit (with
constant angular velocity) around the Sun, that is fixed at the origin. Note that these
bodies are not moving on a true solution of the Three-Body Problem.

It is very easy to write the vectorfield of an infinitessimal particle that moves under
the gravitational attraction of these primaries, since the Sun is always at the origin and
the positions of Earth and Moon are given by very simple trigonometric formulae. The
study of the motion of this infinitessimal particle is what is called the Bicircular problem,
BCP for short.
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To simplify the model, it is usual to take the same units and reference frame as in
the RTBP: Earth and Moon are sitting on the x axis as in Figure 1, while the Sun is
turning around the origin in a circular way. Then, defining the momenta as px = ẋ− y,
py = ẏ + x and pz = ż, it is not difficult to check that the motion of the infinitessimal
particle is described by a Hamiltonian system that depends on time in a periodic way:

HBCP =
1

2

(
p2x + p2y + p2z

)
+ ypx − xpy −

−1− µ
rPE

− µ

rPM
− mS

rPS
− mS

a2S
(y sin θ − x cos θ) , (30)

where r2PE = (x−µ)2+y2+z2, r2PM = (x−µ+1)2+y2+z2, r2PS = (x−xS)2+(y−yS)2+z2,
xS = aS cos θ, yS = −aS sin θ, and θ = ωSt. We stress that the BCP can be written as a
periodic time dependent perturbation of the RTBP:

Hε
BCP = HRTBP + εĤBCP , ĤBCP = −mS

(
1

rPS
+
y sin θ − x cos θ

a2S

)
, (31)

and it is clear that Hε=0
BCP = HRTBP , and that Hε=1

BCP = HBCP . The reason to add the
parameter ε is that, near the Earth orbit, the effect of the Sun is quite large and should
not be considered a perturbation. Hence, ε is more a continuation (homotopy) parameter
rather than a perturbation one. For examples of the use of this model see [77, 14, 44].

The BCP is not only used to model the Earth-Moon-Sun system. For instance, it
can be used to account for the direct effect of Saturn in the Sun-Jupiter RTBP. In this
case the effect of Saturn in the neighbourhood of the orbit of Jupiter is small and can
be considered as a perturbation.

5.1.3 The Bicircular Coherent Model

As it has been mentioned before, the Bicircular Coherent Problem (BCP) accounts for
the direct effect of a third massive body on the infinitesimal particle of the RTBP model,
but it does not include its effect on the two primaries. To simplify the explanations, let
us assume that the massive bodies are Sun, Jupiter and Saturn. To derive a dynamically
coherent model we need first to compute a periodic solution of the general Three-Body
Problem, close to the real motion of Sun, Jupiter and Saturn. Although this is already
a difficult problem, it can be solved by means of numerical methods. Once this periodic
solutions has been obtained, it is not difficult to write the equations of motion for a
particle under the gravitational attraction of these three bodies. Finally, using a suitable
change of coordinates –in which Sun and Jupiter are kept fixed on the x-axis, as in the
RTBP–, these equations of motion are written as a periodic time-dependent perturbation
of the Sun-Jupiter RTBP.

This kind of model was first developed by M.A. Andreu and C. Simó to study the
motion near the L2 point of the Earth-Moon system taking into account the presence of
the Sun (see [1, 2]). Later, it was also used to study the dynamics close to L4,5 of the
Sun-Jupiter system including the main effect of Saturn ([24]). A difference between these
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two works is the method used to compute the periodic orbit for Sun, Earth and Moon.
In [1, 2] this periodic orbit is obtained by means of a seminumerical method, while in
[24] it is obtained using a shooting procedure.

5.2 Quasi-periodic models

In the previous section we have introduced some models that depend on time in a periodic
way. A natural way of improving these models (to make them closer to reality) is to add
more effects in the form of new time-dependent perturbations. The first models of this
kind were developed in [36] to be used in the design of spacecraft missions near Libration
points: among the applications we remark the design of a spacecraft mission to a Halo
orbit close to the L1 point of the Earth-Sun system.

Let us summarize how these models are derived. Assume, for instance, that we are
interested in the dynamics near the triangular points of the Sun-Jupiter system, and
that we are given a model for the motion of the main bodies of the Solar system (for
instance, the JPL ephemeris). Then, we proceed with the following steps:

a) To write the vector field acting on a particle taking into account the gravitational
attraction of Sun and planets.

b) Take coordinates such that Sun and Jupiter are kept fixed on the x axis. As in the
RTBP, these coordinates are called synodical. Write the vector field defined in a)
in these coordinates.

Now let us suppose that the particle is close to one of the equilibrium points of the Sun-
Jupiter RTBP. In this situation, the vector field can be seen as a perturbation of the
RTBP, with perturbing contributions coming from the real position of Sun and Jupiter
and from the positions of the planets (note that this is not true if we are interested in
the motion close to one of the primaries). Also note that for a model like the one given
by the JPL ephemeris, there are no “simple closed formulas” for these positions. Next
steps are:

c) Perform a frequency analysis on the perturbations (i.e., on the difference between
this vectorfield and the RTBP vectorfield), and detect the dominant frequencies. As
the motion of the Solar system seems to be quasi-periodic (at least for moderate
time spans), it turns out that the part of these perturbing terms that depend
on the positions of Sun and planets can be well approximated by trigonometric
polynomials.

d) Substitute the dependence of the positions of the bodies by these truncated Fourier
series.

e) The frequencies detected in c) can be written as a linear combination of a few of
them, that correspond to the main frequencies of the motion of the bodies. We will
refer to those as basic frequencies.
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f) It is not necessary to take into account all the basic frequencies. In fact, the fre-
quencies selected can be used as a control on the complexity (and the accuracy) of
the model.

This technique has been used in [37, 33, 34]. Another reference about the derivation
on these models close to Lagrangian solutions of some RTBP of the Solar system is [38].
These models have been used in some studies of the dynamics near the triangular points
of Earth-Moon ([20]) and the Sun-Jupiter systems ([71, 28]).

5.3 The effect of periodic and quasi-periodic perturbations

In this section, we will first discuss the effect of periodic and quasi-periodic perturbations
on an autonomous model in the neighbourhood of an equilibrium point of a differential
equation, and then we will mention some of the implications for the Lagrangian solutions.

For the moment being, assume that we have an autonomous ODE with an equilib-
rium point at the origin plus a time-dependent quasi-periodic perturbation,

ẋ = f(x) + εg(x, θ, ε),

θ̇ = ω,
(32)

where x ∈ Rn, θ ∈ Tr, ω ∈ Tr and f(0) = 0. We also assume that the involved func-
tions are analytic. It is known that, under standard non-resonance and non-degeneracy
conditions, there exists a set E of values of ε such that:

• The set E is of large measure around ε = 0: if m(ε) denotes the Lebesgue measure

of the set E ∩ [0, ε], then m(ε)
ε

is exponentially close (w.r.t. ε when ε goes to 0) to
1.

• For each ε ∈ E , there exists a quasiperiodic solution of (32), with ω as vector of
basic frequencies. The size of this solution is O(ε), which means that this solution
goes to the equilibrium point 0 when ε does.

For more details, see [47]. This result shows that the effect of the perturbation is to
produce a quasi-periodic solution that “replaces” the equilibrium point. The set E has a
Cantorian structure due to the resonances. For a detailed study of the effect of different
resonances in a Hamiltonian setting, see [11].

To describe the nonlinear structure around this quasi-periodic solution we assume
that (32) is a Hamiltonian vectorfield. Hence, the model can be described by means of a
Hamiltonian function of the form

H(q, p, θ, I) = 〈ω, I〉+H0(p) + εH1(q, p, θ, ε), (33)

where θ denote the angles of the perturbation, ω its frequencies, I is the action corre-
sponding to θ, and q and p are the angles and actions of the unperturbed Hamiltonian
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H0. The equations of motion are

q̇ =
∂H0

∂p
(p) + ε

∂H1

∂p
(q, p, θ, ε),

ṗ = −ε∂H1

∂q
(q, p, θ, ε),

θ̇ = ω.

We do not write the equation for the variable I, since it is an (artificial) action that
has been added to obtain a Hamiltonian form. Its role is to compensate for the energy
variations w.r.t. time such that Hamiltonian (33) is preserved, and it has no use in the
description of the dynamics.

Strictly speaking, the Hamiltonian (33) does not satisfy the usual non-degeneracy
condition (the frequencies ω do not depend on any action) so the standard KAM theorem
cannot be applied. However, it is not difficult to see that the usual KAM proof works
for this case, because there is no need to control the frequencies ω since they are not
modified during the KAM iterations. Hence, for ε small enough, there exists an open
set of (Diophantine) frequencies ν (these are frequencies coming from the unperturbed
system H0) such that (33) has invariant tori with frequencies (ω, ν). Of course, the
Diophantine condition involves both the frequencies ω and ν. Again, for details see [47].

One can also ask for the persistence of other objects under quasi-periodic pertur-
bations. For instance, we can think of the Lyapunov families of periodic orbits near
the equilateral points (short period, long period and vertical), the Lissajous orbits near
the collinear points or the well-known Halo orbits. In this direction, under generic non-
resonance and non-degeneracy conditions, it is possible to prove the following results:

• Assume that the unperturbed system has a (smooth) family of periodic orbits.
Then, under the effect of the quasi-periodic perturbation, this family becomes a
Cantorian family of invariant tori. The basic frequencies of these tori are (ω, ν)
where, as before, ω are the frequencies of the perturbation and ν ∈ R denote
the frequencies of the periodic orbits. The family becomes Cantorian because not
all the frequencies ν are allowed, only those satisfying a suitable non-resonance
condition.

• Assume that the unperturbed system has a (Cantor) family of lower dimensional
tori. Examples can be the Lissajous orbits near the collinear points or near any
equilibrium point with some center directions. Then, these families “add” the fre-
quencies of the perturbation to their own set of frequences ν ∈ Rs. Only those tori
satisfying a non-resonance condition survive the perturbation.

Full details of these statements (including proofs) can be found in [49]. Examples of these
situations can be seen in, for instance, [14].

These results can be summarized, in a crude way, saying that the effect of periodic or
quasi-periodic time-dependent perturbations on the vicinity of the Lagrangian points is
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to “shake” the dynamical structures that we have described for the (autonomous) RTBP:
the equilibrium point becomes a periodic or quasi-periodic orbit, and the invariant tori
around the point add the perturbing frequencies to the ones they already have. Of
course, this needs that the perturbing frequencies and the frequencies of the torus are
Diophantine. Hence, altough many tori are preserved, the measure of the surviving tori
is reduced by the effect of the perturbation.

5.4 Other perturbations

There are other types of effects that can be relevant in specific situations. For instance,
there is a growing interest in missions to asteroids, in which the effects of the nonspherical
shape of the asteroid can be very relevant. In [29, 30] you can find a study of the dynamics
close to the triangular points when one of the masses is an ellipsoid.

Another effect that can be relevant in some situations is the Solar radiation pressure.
See [59] for the fundamentals and [23] to see how the tools of the previous sections apply
to this situation.

5.5 The Solar system

As a first approximation, the Solar system can be seen as a collection of coupled two-
body systems. This means that there are many situations for the motion of a spacecraft
or an asteroid in which we have a perturbed restricted three-body problem.

A typical example of this situation is the Trojan motion. Classical studies use the
RTBP model, but there are some works in which they use more realistic models. One of
this models can be found in [25, 26], where the main perturbing planets are taken into
account in the study the dynamics. Other studies using numerical integrations of the full
system are [71, 70, 69, 72]. A numerical study on the existence of Trojan motions for a
realistic model of the Earth-Moon system can be found in [44].

5.6 Applications to spacecraft dynamics

There are many astronautical missions that go to a vicinity of the collinear points of the
Earth-Sun or Earth-Moon systems (those are the most common libration points used,
but not the only ones).

The introduction of dynamical systems tools to the design of space missions to
the neighbourhood of libration points started with [36], and continued with [37, 33, 34]
Today, the use of tools such as invariant manifolds or heteroclinic connections starts to
be very common. As example, we mention the the Genesis mission [58].
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[48] À. Jorba and J. Villanueva. On the normal behaviour of partially elliptic lower
dimensional tori of Hamiltonian systems. Nonlinearity, 10:783–822, 1997.

[49] À. Jorba and J. Villanueva. On the persistence of lower dimensional invariant tori
under quasi-periodic perturbations. J. Nonlinear Sci., 7:427–473, 1997.
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