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Àngel Jorba
Universitat de Barcelona, Spain, angel@maia.ub.es

Abstract

In this paper we study the dynamics of a solar sail close to an asteroid. We have taken the Elliptic Hill problem adding
the SRP due to the solar sail as a model. We first describe the dynamics of the system when the eccentricity of the asteroid
orbit is neglected. The effect of the solar sail allows us to displace the Lagrangian points L1 and L2. Moreover, we will find
families of of periodic orbits for different sail orientations. Finally we will show how these invariant objects vary when we
include the effect of the eccentricity.

I. INTRODUCTION

Due to the small gravitational field around asteroids, solar
radiation pressure plays an important role on the dynamics
of a satellite around them. Hence, the systematic use of
the solar radiation pressure via specialised reflecting areas,
such as solar sails, to propel a satellite can offer new and
challenging mission concepts.

When looking at the dynamics of a satellite close to an as-
teroid8 two effects play an important role: its gravitational
field due to its irregular shape and spin states, and the solar
attraction and radiation pressure. The first effect becomes
relevant when we are within a few radii from the surface of
the asteroid, in what is known as the gravity regime. If we
are far from the gravity regime, to consider the asteroid as
a point mass is a good approximation of the real dynamics.
Here effects like the solar radiation pressure and the Sun’s
gravity must be considered. Moreover, to have a realistic
model, the fact that an asteroid can follow a very eccentric
orbit around the Sun must also be taken into account.

Solar sails are a proposed form of spacecraft propulsion
that takes advantage of the solar radiation pressure (SRP)
to propel a spacecraft by means of large and ultra-thin

membrane mirror. The impact of the photons emitted by
the Sun on the surface of the sail and its further reflection
will accelerate the spacecraft. Although the acceleration
produced by the solar radiation pressure is small, given the
fact that the asteroids gravitational potential is also small
this one will be relevant enough. In fact Villac et al.9 re-
cently studied the possibility of using the solar arrays of a
small satellite as an active control system. They showed
that the reflectivity of modest solar panels actually pro-
duced an important extra acceleration to the spacecraft.

In this paper we approximate the dynamics of a solar sail
close to an asteroid by means of the Elliptic Hill problem
with the extra effect of the solar radiation pressure. And
we will present a preliminary study the non-linear dynam-
ics around the L1 and L2 regions. As an example we will
focus on the case of Vesta, and consider a simplified model
for the solar sail. This one will be flat and perfectly reflect-
ing. In the near future effects such as the absorption and
imperfections on the sail will be taken into account.7

In section III. we describe the dynamics of the Circular
Hill problem when we add a solar sail. We will describe
how the effect of the solar sail displaces the equilibrium
points L1 and L2 when we consider different sail orien-
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tations, having a 2D family of “artificial equilibria”. We
will see that the linear dynamics around these points is
centre×centre×saddle, hence new families of planar and
vertical Lyapunov orbits exist around these artificial equi-
libria. We will describe how these families vary for differ-
ent values of the sail orientation.

When we consider the Elliptic Hill problem, we have a pe-
riodic time-dependent effect, with the same period as the
asteroid orbital period around the Sun (T). Now the equi-
librium points are replaced by T-periodic orbits and the pe-
riodic orbits are 2D invariant tori. In section IV. we will
compute some of these invariant objects and describe how
the dynamics changes when we include the effect of the
eccentricity.

II. MODELISATION

One of the options to capture the dynamics of a spacecraft
around an asteroid, is to use the Hill problem, that models
the motion of two small masses (asteroid and spacecraft)
which interact due to their mutual gravitational attraction
and are perturbed by a distant larger body (the Sun). In
our case the spacecraft is propelled by a solar sail, hence
we must add the effect of the solar radiation pressure. This
model accounts for the coupled effects of the small body
gravity field, the solar tides and the solar radiation pressure.
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Fig. 1: Schematic representation of the position between
the asteroid and the solar sail in the rotating reference sys-
tem.

II.I The H3BP for a Solar Sail

The Hill three body problem (H3BP) is obtained as an ap-
proximation to the circular restricted three body problem
(CR3BP) for a spacecraft orbiting the small primary within
the Hill’s radii (RHill = D(µsb/3)1/3), where µsb is the

gravitational parameter of the smaller primary (the aster-
oid) and D is the distance between the Sun and the small
body.

As in the CR3BP, we take a rotating reference frame where
the line joining the Sun and the small body is fixed on the
X-axis. But now we take the origin of coordinates centred
around the small body and the Sun at −∞ (see Figure 1).

With this in mind, the equations of motion for the solar sail
are:

Ẍ − 2NẎ = −µsb
r3
X + 3N2X + ax,

Ÿ + 2NẊ = −µsb
r3
Y + ay,

Z̈ = −µsb
r3
Z −N2Z + az,

(1)

where, (X,Y, Z) denotes the position of the solar sail in
the rotating frame, N =

√
µsun/aast is the angular veloc-

ity of the rotating frame, µsb is the gravitational parameter
of the small body, r =

√
X2 + Y 2 + Z2 is the distance be-

tween the solar sail and the centre of the small-body, while
a = (ax, ay, az) is the acceleration given by the solar sail.

II.II The EH3BP for a Solar Sail

For a more realistic model, the fact that most asteroids fol-
low very eccentric orbits around the Sun must be taken into
account. The Elliptic Hill three body problem (EH3BP) is
an extension of the H3BP, which assumes that the small
body revolves around the distant perturbing body (the Sun)
in an elliptic Keplerian orbit rather than a circular one.

Again, we can find the EH3BP as an approximation of the
Elliptic restricted three body problem (ER3BP) for a space-
craft orbiting the small primary within the Hill’s radii. We
recall that the ER3BP uses a rotating-pulsating reference
system, so that the distance between the primaries remains
fixed. Where the new coordinates (x, y, z) are related to
the old ones (X,Y, Z) by X = ρx, Y = ρy, Z = ρz, and
ρ = 1

1+e cos f , being e the eccentricity of the elliptic mo-
tion of the asteroid around the Sun and f the true anomaly.
In this new set of coordinates the time variable will be de-
fined by the true anomaly. Finally to derive the EH3BP we
will consider the centre the origin of coordinates around
the small body and send the Sun to −∞.

Now the equations of motion for the solar sail are:

x′′ − 2Ny′ = 1
1+e cos f

(
−µsb

r3
x+ 3N2x+ ax

)
,

y′′ + 2Nx′ = 1
1+e cos f

(
−µsb

r3
y + ay

)
,

z′′ +N2z = 1
1+e cos f

(
−µsb

r3
z + az

)
,

(2)
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where ′ denotes differentiation with respect to the true
anomaly f , (x, y, z) denotes the position of the solar sail
in the rotating frame and r =

√
x2 + y2 + z2 is the dis-

tance between the solar sail and the centre of the small-
body, while N and a = (ax, ay, az) are defined as in Eq.
(1).

Notice that if we consider e = 0, Eqs. (2) and (1) turn to
be the same, i.e. the H3BP is a particular case of the E3BP.

II.III Solar Sail

In this paper we will consider the simplest model for a solar
sail: the sail is assumed to be flat and perfectly reflecting.
Hence the acceleration due to the SRP is in the normal di-
rection to the surface of the sail, and

a = (ax, ay, az) = β〈l,n〉2n, (3)

where l denotes the direction of the SRP, n is the vector
normal to the surface of the sail (both are unit vectors), and
β is the characteristic acceleration of the sail.

In the rotating reference frame considered here l =
(1, 0, 0) and n = (cosα cos δ, sinα cos δ, sin δ), where α
is the angle between n and the Sun-line on the ecliptic
plane and δ is the angle with the z-axis. As the direction of
the SRP cannot point towards the Sun, then 〈l,n〉 ≥ 0.

The characteristic acceleration of a solar sail β is given by,

β =
µSRP
R2

; µSRP = GSRP
A

m
(1 + ρ), (4)

where GSRP represents the solar flux, σ = A
m is the area

to mass ration of the spacecraft, R is the distance between
the spacecraft and Sun and ρ is a coefficient representing
the reflectivity of the solar sail, which we take equal to 1 as
we are considering the case of a perfectly reflecting sail.

As an example we will consider the case of a modest so-
lar sail, where the area to mass ratio of 0.025m2/kg, 100
times smaller that the Nano-Sail D1 mission where they
successfully deployed a 10m2 solar sail with a 4kg play-
load. The area to mass ratio considered here accounts for
a smaller sail or a larger playload mass for the spacecraft,
given by the extra onboard instrumentation.

Given an area to mass ratio of 0.025m2/kg, a solar sail in
the vicinity of Vesta (R ≈ 2.3AU) would have a character-
istic acceleration of β ≈ 4.22× 10−11km/s2.

II.IV Parameters

In this paper we consider the particular case of a solar sail
orbiting around Vesta. In Table 1 we summarise the values
for all the parameters used.

Parameter Value Unit

µsb 17.8 km3

s2

µsun 1.327× 1011 km3

s2

aast 2.3619 AU

N 5.7086× 10−8 1
s

Area/mass ratio 0.025 m2

kg

GSRP 108 km3

s
kg
m2

e 0.0882

Table 1: SRP and Spacecraft Parameters for a mission to
Vesta

Finally, we will normalise the units of distance (L) and
time (T ) so that they satisfy: NT = 1 and µsb T

2

L3 = 1. In
this unit system, the normalised variables x̄, ȳ, z̄ and t̄ are
related to the unnormalised variables x, y, z, and t by:

t = t̄T, x = x̄L, y = ȳL, z = z̄L,

ẋ = ˙̄xL/T, ẏ = ˙̄yL/T, ż = ˙̄zL/T,

With this normalisations, the equations of motion in Eq.
(1) and (2) use N = 1, µsb = 1 and β is replaced by,

β̄ = β

(
1

µsbN4

)1/3

.

Where for the case of Vesta we have β̄ = 47.99.

III. DYNAMICS FOR THE H3BPS (e = 0)

It is well known that the classical Hill problem
(no SRP) has two symmetric equilibrium points
L1,2 = (±3−1/3, 0, 0), whose linear dynamics is
centre×centre×saddle. As the system is Hamiltonian,
around L1,2 we find families of planar and vertical
Lyapunov orbits and Halo orbits. In this section we will
discuss how the phase space dynamics varies when we add
the effect of the SRP due to a solar sail.
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III.I Artificial Equilibria

It is well know that when we include the effect of SRP in
the Hill’s problem L1,2 are displaced. Having a 2D family
of “artificial” equilibria parametrised by the sail orientation
α and δ.

When we consider a solar sail perpendicular to the SRP di-
rection4 (i.e. α = δ = 0) the Lagrangian points L1 and L2

are displaced towards the Sun and lay in the x-axis, which
we will call SL1 and SL2 respectively. As we can see in
Figure 2, SL1 quickly moves away from the small body
while SL2 comes close to it. Notice that for β̄ = 47.99,
SL1 is about 16UD from the small body and presenting lit-
tle interest for mission applications. On the contrary, SL2

come close to the small-body, and presents a more inter-
esting location. For β̄ = 47.99 SL2 is at about 0.14UD

≈ 113 Vesta’s radii. A distance at which the perturbations
given by the shape and spin-rate of the asteroids is still not
relevant enough and the H3BP for a solar sail is a good
approximation for the dynamics around SL2.
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Fig. 2: Normalised distance x between the displaced SL1,2

and the small-body vs solar acceleration β̄.

We know that the linear dynamics around L1,2 is
centre×centre×saddle and for β̄ ∈ [0, 50] SL1,2 in-
herits the same linear behaviour. To fix notation let
±λ1,±iω1,±iω2 be the eigenvalues of the differential
flow at the equilibrium point. In Figure 3 we plot the
variation of the modulus on the eigenvalues with respect
to β̄. Notice that as β̄ increases also does the instability
of SL2 (blue line). This is probably because as we get
closer to the small body its gravitational effect is stronger.
Moreover, the modulus of the complex eigenvalues also in-
crease, this has a direct effect on the period of the family
of orbits that are born around the equilibrium point, which
will have shorter orbital periods. On the other hand, the in-

stability of the SL1 decreases, λ→ 0, as well as the orbital
period of the orbits that tends to synchronise itself with the
asteroids period.
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Fig. 3: Modulus of the eigenvalues of the linearised system
at the displaced SL1,2 vs β̄. From top to bottom: λ1, ω1

and ω2

When we consider other sail orientations α and δ 6= 0 we
can displace the equilibria away from the x-axis. We note
that, if we consider α 6= 0 and δ = 0, we displace the
equilibrium points within the ecliptic plane, from one side
to the other w.r.t the x-axis. While, if we consider α = 0
and δ 6= 0, then we displace the equilibrium points above
and below the ecliptic plane. The use of these “artificial”
equilibria for mission operations at asteroids was already
investigated by Morrow et al.6

We can find all these equilibrium points with a simple con-
tinuation method starting from the classical L1 or L2 and
varying any of the two angles α or δ. In Figure 4 we show
the position of some of these artificial equilibrium points
for α = 0, δ ∈ [−π/2, π/2] and β̄ = 5, 10, 20, 30, 40, 50
(red lines). In blue we represent the family of equilibria for
β̄ = 47.99. All these points lie on the x, z plane.

Most of these equilibrium points inherit the dynamics ofL1

and L2. Hence, they are unstable and the linear dynamics
is centre×centre×saddle.

III.II Periodic Orbits

Given the fact that SL1 quickly escapes from a small vicin-
ity of the asteroid when β̄ grows, from now on we will fo-
cus on the dynamics close to SL2. Here we will describe
the families of periodic orbits that appear around the dif-
ferent artificial equilibria.

We just mentioned that the equilibrium points are
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Fig. 4: Position of the fixed points in the x-z plane for α =
0, δ ∈ [−π/2 : π/2] and β = 5, 10, 20, 30, 40, 47.99 and
50.

centre×centre×saddle. Moreover, the system is Hamilto-
nian. Hence, the Lyapunov Centre Theorem5 ensures that,
under a generic non-resonant condition, two families of pe-
riodic orbits are born around each equilibrium point. Each
family is related to one of the two complex eigenvalue,
where the period of the orbits tends to 2π/ωi as these ones
tend to the equilibrium point. Here we describe the fami-
lies of periodic orbits for β̄ = 47.99 but a similar behaviour
is expected for other values of β̄.

Due to the symmetries of the system both families of orbits
cross transversally the Poincaré section Γ = {Y = 0, Ẏ >
0}. We have computed these two families of periodic orbits
by means of a continuation method, taking the x coordinate
of the orbit in the Poincaré section Γ as the continuation
parameter.

In Figure 5 we plot the continuation diagram of the pla-
nar and vertical family for α = δ = 0 (i.e. the sail is
perpendicular to the SRP). We can see that when the pla-
nar family of periodic orbits cross the 1:1 resonance the
two families of Halo orbits are born. We note that as the
two centre librations of SL2 are close to a 1:1 resonance
(iω1 = i18.3921913,iω2 = i18.3831392) the Halo or-
bit are born very close to SL2.

Both the planar and vertical family of periodic orbits that
are born at SL2 are linearly unstable and their linear dy-
namics is centre×saddle. At the 1:1 resonance, the linear
dynamics of the planar orbit changes, the orbits are still
unstable but the linear dynamics is now saddle×saddle.
Moreover, the Halo orbits that are born inherit their dynam-
ics, that is to say they are centre×saddle orbits. In Figure 5
the dynamics around the orbit is represented by the colour,
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Fig. 5: Continuation diagram of the planar (continuous
line) and vertical (dashed line) family of periodic orbits.
The orbits in red are saddle×saddle and the orbits in blue
are centre×saddle

the blue points correspond to centre×saddle orbits, while
the red points correspond to saddle×saddle orbits.
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Fig. 6: Planar family of periodic orbits for β̄ = 47.99,
α = δ = 0 and e = 0.

In Figures 6 and 7 we plot, respectively, some of the orbits
in the planar and vertical Lyapunov family around SL2.
And in Figure 8 we plot their associated Halo orbits.

When we consider α = 0, δ 6= 0 the picture is slightly
different, but the general structure of periodic orbits is the
same. Families of planar and Halo orbits still exist, but they
are related in a different way. The planar family of periodic
orbits that are born from the fixed point are slightly inclined
and gain inclination very quickly, having Halo-type orbits.
The other branch of Halo-type orbits are related to the pla-
nar family and we can go from one to the other by contin-
uation.
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Fig. 8: Upper and lower families of periodic Halo orbits
for β̄ = 47.99, α = δ = 0 and e = 0.

In Figure 9 we show the continuation diagram for α = 0
and δ = 0, 0.01, 0.02 and 0.03 rad. On the top of Figure 10
we show the families of planar and Halo-type orbits for
δ = 0 and on the bottom of this Figure we see the same
family of orbits for δ = 0.02 rad. Here we can see that the
global structure of the system is the same, in both cases we
have both planar and Halo type orbits.

In Figure 11 we plot the family of vertical orbits around the
fixed point for α = 0, δ = 0.01. Notice that we still find
orbits with an eight-shape, although now it has no longer
two symmetric loops as it happened when δ = 0 (see Fig-
ure 7). On the other hand we must mention that the orbits
in the vertical family that are close to the equilibrium point
do not have an eight-shape but rather a more circular one.
At some point the orbits start bending and end up having
an eight-shape.

IV. DYNAMICS OF THE EH3BPS (e 6= 0)

When e 6= 0, the model becomes a periodic time-
dependent differential equation. In this section we will first
discuss the main effects of this perturbation on the invari-
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Fig. 9: Continuation diagram for the orbits in the planar
family for δ = 0, 0.01, 0.02 and 0.03. The orbits in red are
saddle×saddle and the orbits in blue are centre×saddle.
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Fig. 10: Planar family of periodic orbits for β̄ = 47.99,
α = 0 and δ = 0 (top) or δ = 0.03 (bottom) and e = 0.

ant structures of the phase space of the autonomous model,
and then we will use numerical tools to obtain some rele-
vant trajectories.

A first change is that, due to the time-dependende, the
points SL1,2 are not longer equilibrium points. It is well
known that, under very generic conditions, they are re-
placed by periodic orbits with the same period as the per-
turbation (2π in our situation). These periodic orbits tend
to the equilibrium points of the unperturbed system when
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Fig. 11: Vertical family of periodic orbits for β̄ = 47.99,
α = 0, δ = 0.01 and e = 0.

the eccentricity tends to zero.

As in the previous sections, let us now focus on the neig-
bourhood of SL2. As it has been mentioned above, for
e = 0 the linear dynamics around SL2 is of the type
centre×centre×saddle and, for each centre direction, there
is a family of periodic orbits departing from the point.
These are the so-called Lyapunov families of periodic or-
bits.

For small values of the eccentricity e, the SL2

point is replaced by a periodic orbit of the type
centre×centre×saddle. For each centre direction, there is a
one-parametric family of quasi-periodic solutions (2D tori)
that replaces the Lyapunov family of periodic orbits of the
unperturbed case e = 0. We will refer to these orbits as
Lyapunov families of quasi-periodic solutions. These or-
bits have two basic frequencies, the perturbing frequency
(2π) and a frequency coming from one of the periodic Lya-
punov orbits of the case e = 0.

The main difference between the quasi-periodic and the pe-
riodic Lyapunov families is that, while the periodic fami-
lies are continuous (i.e., the periodic orbits fill a smooth 2D
manifold), the quasi-periodic families are not: the quasi-
periodic orbits with resonant frequencies are destroyed,
and only the ones with good (Diophantine) frequencies are
preserved.3 This gives a Cantorian structure to the set of
Lyapunov orbits, where the holes that produce the Cantor
structure are due to resonances between the frequencies of
the orbits.

IV.I Computation of quasi-periodic orbits

Consider the following (stroboscopic) map: for each initial
condition p for f = 0, we call F (p) to the position of the
corresponding orbit for f = 2π. A fixed point of F corre-
sponds to a 2π periodic orbit of the flow. In the same way,

a quasi-periodic orbit (with two basic frequencies) of the
flow corresponds to an invariant curve of F . An invariant
curve can be represented (parametrized) by a map ϕ from
T1 to R6 such that

F (ϕ(θ)) = ϕ(θ + ω), for all θ ∈ T1. (5)

Here ω denotes the frequency of the curve.

To start the discussion, let us assume that we know the ro-
tation number of the curve we are looking for, and that we
want to determine the function ϕ. So, let us write ϕ as a
real Fourier series,

ϕ(θ) = a0 +
∑
k>0

ak cos(kθ) + bk sin(kθ), ak, bk ∈ R6.

As it is usual in numerical methods, we look for a trunca-
tion of this series. So, let us fix in advance a truncation
value N (the selection of the truncation value will be dis-
cussed later on), and let us try to determine (an approxi-
mation to) the 2N + 1 unknown coefficients a0, ak and bk,
0 < k ≤ N .

First, let us define a mesh of 2N + 1 points on T1 (in all
the paper we assume that the length of T1 is 2π),

θj =
2πj

2N + 1
, 0 ≤ j ≤ 2N.

Imposing condition (5) on the points of this mesh we obtain
the system of 2N + 1 equations,

F (ϕ(θj))− ϕ(θj + ω) = 0, 0 ≤ j ≤ 2N, (6)

that we will try to solve, by means of the Newton method,
to determine the 2N + 1 unknown Fourier coefficients.

Hence, we consider a function G defined as fol-
lows: to each array of 2N + 1 (Fourier) coefficients
(a0, a1, b1, a2, b2, . . . , aN , bN ), we associate the 2N + 1
values that appear in the left-hand side of (6). Note that,
as each coefficient ak (or bk) is, in fact, an element of
R6, the function F maps points of Rm into Rm, where
m = 6(2N + 1).

Each Newton iteration requires the numerical evaluation
of the function G at a given point as well as its derivatives.
The evaluation of G can be easily done as follows: for a
given array of Fourier coefficients it is immediate to com-
pute, by direct evaluation of the Fourier series, the points
ϕ(θj) and the corresponding images by F , F (ϕ(θj)). Fi-
nally, the values ϕ(θj +ω) are also obtained by direct eval-
uation of the series. The computation of the Jacobian ma-
trix follows from the chain rule.1
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Note that, if ϕ is a Fourier series corresponding to an in-
variant curve then, for any θ0 ∈ T1, φ(θ) ≡ ϕ(θ + θ0) is
a different Fourier series (i.e., the Fourier coefficients are
different) that represents the same invariant curve ϕ. This
implies that the differential of the function G around an
invariant curve will have a one-dimensional kernel. This
introduces numerical difficulties when solving the linear
system that appears in the Newton method.

To solve this problem we can simply add, for instance, an
extra condition imposing that a component of ϕ(θ) has a
prescribed value when θ is zero (of course, there are differ-
ent options). On one hand, this removes the lack of unique-
ness problem and, on the other hand, this can be imposed
in a very easy way: we simply add this condition as an ex-
tra equation and, as this is a linear condition, we simply
add the corresponding row in the Jacobian of G.

Note that now we have to solve a linear system that has a
unique solution, but it is not “squared”: it has an “extra”
equation. If, for instance, we are solving the linear system
by means of a standard Gaussian elimination method with
row pivoting, then the pivoting strategy will take care of
sending to the last row the equation that is linearly depen-
dent of the other equations. So, after the triangularisation
process and except by rounding errors, the last equation
should read like “0 = 0”. Hence, we can simply skip this
equation and solve the triangular system in the usual way.

IV.II Error estimation

Assume that we have found an approximate zero of the
function G. For instance, assume that, for a given fre-
quency ω, we have obtained Fourier coefficients such that
(6) is satisfied with a tolerance of, say, 10−12. As we do
not have any estimation of the discretization error (this er-
ror depends on the truncation value N ), we do not have in-
formation on the error of the computed invariant curve. In
fact, it could be even possible that what we have computed
is not an invariant curve but simply a curve containing a
few invariant points.

To deal with these inconveniences, let us consider the value

E(ϕ, ω) = max
θ∈T1
|F (ϕ(θ))− ϕ(θ + ω)|,

as an estimate of the error of the invariant curve. It is clear
that ϕ is an invariant curve with rotation number ω if and
only if E(ϕ, ω) is zero.

For each curve, we have approximated the value E(x, ω)
by simply tabulating its value on a mesh of points on T1.
Of course, this mesh must be finer (typically, we have used

a 100 times finer mesh) than the one used to obtain (6)
from (5). When this estimate is bigger than a prescribed
threshold, the program automatically increases the num-
ber of Fourier coefficients and the number of discretizing
points (i.e., it increases the truncation valueN ) and recom-
putes the invariant curve. This process is repeated until the
estimated error E(ϕ, ω) is small enough.

IV.III Application to the EH3BPS

The previous technique can be easily applied to the
EH3BPS. For instance, let γ(f), 0 ≤ f ≤ T be a periodic
orbit (of period T ) of this model for e = 0 (think of any
Lyapunov or Halo orbit). Now consider the effect of the
stroboscopic map F defined before on this periodic orbit:
for a given point of the periodic orbit, γ(f0), we have that
F (γ(f0)) = γ(f0 +2π). This means that, under F , the pe-
riodic orbit becomes an invariant curve of rotation number
4π2

T (to obtain this value we have “scaled” the parametriza-
tion of the periodic orbit from [0, T ] to [0, 2π]). In this way
we obtain an invariant curve (and its rotation number) of F
for e = 0. Then, we can start a continuation method to in-
crease the value of e from 0 to the actual value of the aster-
oid. Once the final value is reached, we can also continue
the invariant curves w.r.t. ω to produce the corresponding
family of curves.

An extra technical difficulty that appears in these computa-
tions is the high unstabilty of the region around SL2. This
implies that it is not practical to use the stroboscopic mapF
since the integration time (2π) is quite long and the trajec-
tories go far away from the neighbourhood of SL2 during
this time. The standard tool to deal with this situation is the
so-called parallel shooting.2 Here, due to the high instabil-
ity, we have used 100 sections for the parallel shooting.

IV.IV Results

We have computed invariant tori corresponding to the pla-
nar and vertical Lyapunov families, and the Halo orbits.

To represent these solutions, we will use the slice f = 0. In
this way, the invariant tori are invariant curves that can be
represented in the same way we have represented periodic
orbits. On the other hand, to draw a single torus, we can
take a mesh of points on the invariant curve and integrate
each point till f = 2π. Note that the integrated trajectory
lands on the invariant curve so that the set formed by the
invariant curve plus these trajectories starting and ending
on the curve (in different points) is the torus. A single or-

IAC-12.C1.6.4 Page 8 of 10



63rd International Astronautical Congress 2012, Naples, Italy
Copyright c©2012 by Ariadna Farrés. Published by the IAF, with permission and released to the IAF to publish in all forms.

bit can also be visualized as an “spiraling” trajectory that
touches the invariant curve each time f is a multiple of 2π.

Figures 12 and 14 show the planar and vertical families of
Lyapunov tori. They are similar to the families of peri-
odic Lyapunov orbits seen before, and the dynamics can be
summarized as the composition of two motions: the mo-
tion along the periodic Lyapunov orbit and a 2π periodic
motion given by the eccentricity. In Figures 13 and 15 we
display a single torus from each of these families.
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Fig. 12: Planar family of Lyapunov tori. Each closed curve
is the ((x, y) projection of the) slice of a tori with f = 0.
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Fig. 13: A torus from the planar Lyapunov family.

Finally, Figure 16 shows a torus corresponding to a Halo
orbit, as seen from the asteroid.

Finally, we recall that all these solutions are unstable. A
detailed study of their stable/unstable manifold, and how
to perform an efficient station keeping nearby is work in
progress.
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Fig. 14: Vertical family of Lyapunov tori. Each closed
curve is the ((x, y, z) projection of the) slice of a tori with
f = 0.
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Fig. 15: A torus from the vertical Lyapunov family.
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Fig. 16: Torus corresponding to a Halo orbit.

V. CONCLUSIONS

In this paper we have done a preliminary study of the dy-
namics of a solar sail close to an asteroid. We have taken
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as a model the Elliptic Hill three body problem, which ac-
counts for the gravitational attraction of both Sun and as-
teroid, the effect of the eccentricity of the orbit of the as-
teroid, plus the SRP. As an example we have considered a
small solar sail, with an area to mass ratio of 0.025m2/kg,
orbiting near Vesta.

In section III. we show how the dynamics of the Circular
Hill problem (the effect of the eccentricity e is neglected)
is affected when we add the effect of the solar sail. We see
how we can displace the position of the equilibrium points
by changing the sail orientation. Moreover, we find differ-
ent families of periodic orbits for different sail orientations.

In section IV. we show what happens when we add the ef-
fect of the eccentricity. The differential equations are now
time dependent, which implies that the equilibrium points
are replaced by periodic orbits, and most of the periodic
orbits are replaced by quasi-periodic ones. We have com-
puted some of these trajectories for e = 0.0882 (Vesta’s ec-
centricity). We can see that the families of planar and ver-
tical orbits as well as Halo orbits persist when we add the
effect of the eccentricity, although now they are no longer
periodic but quasi-periodic.

In the near future, we plan to extend this work to the case
of other asteroids. This means to study the case of other
eccentricities and values of β̄. We recall that as β̄ increases
also does the instability of the orbits, and numerical chal-
lenges appear.

On the other hand, we have seen that all of these orbits are
linearly unstable, hence an active control strategy must be
used to remain close to them. Studies on the controllability
of these objects are in progress.
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