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Abstract

In this work we focus on the dynamics of a Solar sail in the Sun-
Earth Elliptic Restricted Three-Body Problem with Solar radiation
pressure. The considered situation is the motion of a sail close to the
L1 point, but displacing the equilibrium point with the sail so that
it is possible to have continuous communication with the Earth. In
previous works we derived a station keeping strategy for this situation
but using the Circular RTBP as a model.

In this paper we discuss the effect of the eccentricity in the region
close to the sail-displaced L1 point of the Circular RTBP. Then we
show how to use the information on this dynamics to design a station
keeping strategy. Finally, we apply these results to the GeoStorm
mission, including errors in the sail orientation and on the estimation
of the position of the sail in the simulations.

1 Introduction

One of the advantages of solar sails is that they open a wide new range
of possible mission applications that cannot be achieved by a traditional
spacecraft. For instance, we can place a solar sail high above the ecliptic
plane, with the sail oriented such that the solar radiation pressure counteracts
the gravitational attraction of the Earth (or any other planet). Thus, a sail
allows to have a satellite hovering a pole of the planet. This mission concept
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was first introduced by Robert L. Forward in 1990 [7], who called it “Statite”
(a spacecraft that does not orbit). Nowadays these ideas are being consider
in the proposed Polar Observer and PolarSitter missions. These mission
concepts would enable to have constant monitoring of the Polar regions of
the Earth for climatological studies.

Moreover, if we consider the Circular Restricted Three Body Problem
(CRTBP) and add the solar radiation pressure, families of artificial equilibria
that replace the classical Lagrange points L1,...,5 appear. For instance, if
we consider that the sail is perpendicular to the Sun-sail line, we find an
equilibrium point in the Earth-Sun line closer to the Sun that the classical
L1. If we change slightly the sail orientation, the different forces acting in
the system will cancel out in different positions in the phase space, having
a 2D family of artificial equilibria parametrised by the sail orientation (for
further details [11, 12]).

These artificial equilibria are possible target positions for mission applica-
tions. For example, placing several solar sails around the displaced L1 could
act as a solar shed, that could be used to cool down the Earth helping with
the global warming [15]. Another interesting example is the GeoStorm mis-
sion [10, 17], the idea is to place a solar sail on an equilibrium point closer
to the Sun than the Lagrangian point L1 and displaced about 5◦ from the
Earth-Sun line, enabling observations of the Sun’s magnetic field having a
constant communication with the Earth. This would enable to alert of Geo-
magnetic storms, doubling the actual alert time of the ACE spacecraft (that
is now orbiting on a Halo orbit around L1).

All these missions require to maintain a solar sail in a fixed location.
Nevertheless, most of these equilibria are unstable, hence a station keeping
strategy is needed to maintain a solar sail close to equilibria for a long time.

In previous works [2, 4] we used dynamical systems tools to develop a
station keeping strategy for this situation in the Circular RTBP model. The
key point there was to understand the dynamics of the system for a fixed sail
orientation, and see how it varies with the orientation of the sail. Then, this
information was used to derive a sequence of changes on the sail orientation
that keeps the sail close to equilibria. We already tested these algorithms with
the GeoStorm and Polar Observer missions [2, 4]. During the simulations
we considered the CRTBP + solar radiation pressure as a model. We also
included random errors on the position and velocity determination as well as
on the sail orientation to test the robustness of these algorithms. There it
was shown that the most relevant errors (the ones with more impact on the
dynamics) are the errors in the sail orientation.

In this paper we want to focus on the station keeping of a solar sail close
to an equilibrium point, taking into account the eccentricity of the orbit of

2



the Earth. Hence, the model considered here is the Elliptic RTBP plus the
solar radiation pressure that, for simplicity, we will refer as ERTBP. This is a
first approach of a more ambitious project where we want to consider a more
complex model, including the gravitational effect of the whole solar system.

The main effect of the eccentricity on the Circular RTBP can be sum-
marised as follows. It is known that, under quite general conditions, if you
perturb an autonomous ODE with a T-periodic time dependent forcing, the
fixed points are replaced by periodic orbits (of period T). These orbits tend
to the fixed points of the autonomous system when the amplitude of the
forcing goes to zero. This is what happens in this case. In the ERTBP there
is no longer a 2D family of equilibria parametrised by the sail orientation,
but families of periodic orbits that replace these equilibria. In the Circu-
lar RTBP, for each sail orientation there is an equilibrium point. So, in the
ERTBP there is a periodic orbit nearby. As the points we are considering are
unstable, these periodic orbits are also unstable. Hence, we need to derive a
station keeping strategy to remain close to it.

The station keeping is based on an extension of the results for fixed points
presented in [2, 3]. The main idea is to use the Floquet modes of the periodic
orbit to find a periodic reference system that simplifies the tracking of the
relative position of the solar sail with respect to the nominal periodic orbit
and its stable and unstable invariant manifolds. Then, we can see how small
changes on the sail orientation affect to the trajectory of the sail so we can
use this information to derive a station keeping strategy.

The results are tested with the GeoStorm mission. To this end, we have
randomly selected 1000 initial conditions close to the nominal periodic orbit
of the sail and we have simulated the control strategy for each case. Moreover,
we have added some random errors in the determination of the position
(and speed) of the sail and in the execution of the manoeuvre (i.e., in the
orientation of the sail). The control strategy manages to keep the sail close
to the nominal orbit in all the considered cases.

The paper is organised as follows: Section 2 introduces the model for the
forces acting on the sail and explains the dynamical model for the motion of
the sail. In Section 3 we describe the effects of the eccentricity of the Earth
on the phase space of the RTBP plus sail. In Section 4 we will discuss how
to extend the station keeping strategy introduced in [2, 3] to this case, where
we need to remain close to a periodic orbit. Finally, in Section 5 we will test
the performance of this strategy on the GeoStorm mission.
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2 Dynamical Model

In this study we have taken the Sun-Earth Elliptical Restricted Three Body
Problem (ERTBP) model, adding the solar radiation pressure due to the
Solar sail. This is the first step of a project that plans to study the dynamics
of a sail taking into account the effect of the whole Solar System.

The formulation that we use for the ERTBP is different from the one
seen in the literature by McInnes et al. in [8, 1]. Here we use an inertial
reference system centred on the centre of mass of the two primaries, hence the
two primaries are not fixed throughout time. We have chosen this reference
frame because then the extension to the whole Solar System comes naturally.

2.1 Solar Sail Model

The acceleration given by the sail depends on the orientation of the sail and
its efficiency. In a first approach, one can consider that the force due to the
radiation pressure is produced by the reflection of the photons emitted by
the Sun on the surface of the sail [11]. For a more realistic model, one should
include the force produced by the absorption of photons by the sail [13]. The
force produced by reflection is directed along the normal direction to the
surface of the sail, while the absorption is strictly in the opposite direction
of the Sun. This means that the direction of the resultant force should be
tilted from the normal direction to the surface of the sail.

In this paper we consider the simplest model for the sail, that is, a flat
and perfectly reflecting sail. Hence, we only consider the force induced by
the reflection of the photons. Therefore, the force due to the solar radiation
pressure will be in the normal direction to the surface of the sail, proportional
to the projected area and inversely proportional to the distance to the Sun.
According to [11], it takes the form,

~Fsail = β
(1− µ)

r2PS
〈~rs, ~n〉2~n, (1)

where the constant β is the sail lightness number, that accounts for the
efficiency of the sail.

The sail orientation is parametrised by two angles, α and δ, that can be
defined in many ways [11, 9, 14]. Here we define them as follows: (i) α is the
angle between the projection of the Sun-sail line, ~rs, and the normal vector
to the sail, ~n, on the ecliptic plane; (ii) δ is the angle between the projection
of the Sun-sail line, ~rs, and the normal vector to the sail, ~n, on the y = 0
plane (see Fig. 1).
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Figure 1: Graphic representation of the two angles (α, δ) that define the sail
orientation

We must mention that, when we study the dynamics of the system, we
always consider that the sail orientation is fixed with respect to the Sun-sail
line direction. In Section 3 we will describe some of the invariant objects
that appear in the system for different fixed sail orientations.

2.2 Restricted 3 Body Problem for a Solar Sail

We assume that the solar sail is affected by the gravitational attraction of
the two primaries (Earth and Sun) and the solar radiation pressure due to
the sail. The motion of the two primaries is only affected by their mutual
gravitational attraction, hence their motion can be described by the two-body
problem.

A first approach for the Sail-Earth-Sun system is to consider that the two
primaries follow a circular orbit around their mutual centre of mass. We will
take a more realistic approach, considering the eccentricity in the motion of
the two primaries, in the case of the Earth-Sun system we take e = 0.0167.

Hence, we take an inertial reference frame with the origin at the centre
of mass of the two primaries and with their orbit contained in the Z = 0
plane. We also normalise the units of mass, distance and time so that the
total mass of the system is 1, the semi-major axis of the Sun-Earth orbit is
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1 and the period of their orbit is 2π. The equations of motion are:

Ẍ(t) = −(1− µ)
X(t)−XS(t)

r3PS
− µX(t)−XE(t)

r3PE
+ β

(1− µ)

r3PS
〈~rs, ~n〉2NX ,

Ÿ (t) = −(1− µ)
Y (t)− YS(t)

r3PS
− µY (t)− YE(t)

r3PE
+ β

(1− µ)

r3PS
〈~rs, ~n〉2NY ,

Z̈(t) = −(1− µ)
Z(t)− ZS(t)

r3PS
− µZ(t)− ZS(t)

r3PE
+ β

(1− µ)

r3PS
〈~rs, ~n〉2NZ ,

(2)
where,

rPS =
√

(X(t)−XS(t))2 + (Y (t)− YS(t))2 + (Z(t)− ZS(t))2,

rPE =
√

(X(t)−XE(t))2 + (Y (t)− YE(t))2 + (Z(t)− ZS(t))2,

are the Sun - sail and Earth - sail mutual distances and ~rs is the Sun -
sail direction. The normal direction to the surface of the sail is denoted by
~n = (NX , NY , NZ) and it depends on the two angles α and δ that define the
sail orientation. The parameters µ and β are the mass ratio of the system
and the sail lightness number respectively.

The motion of the two primaries (XS(t), YS(t), ZS(t)) and (XE(t), YE(t), ZE(t))

is described by the two-body problem. We could take an analytical solution
of the two-body problem but this would require to include Kepler’s equation
in the model. Hence, we have decided to include the equations of motion of
the masses in the system:

ẌS = µ
XE −XS

r3SE
, ŸS = µ

YE − YS
r3SE

, Z̈S = µ
ZE − ZS
r3SE

,

ẌE = (1− µ)
XS −XE

r3SE
, ẌE = (1− µ)

YS − YE
r3SE

, ẌE = (1− µ)
ZS − ZE
r3SE

,

(3)
where,

rSE =
√

(XS −XE)2 + (YS − YE)2 + (ZS − ZS)2,

is the Sun-Earth distance. Taking suitable initial conditions we can force the
desired motion for the two primaries.

The classical approach to the elliptical problem (without radiation pres-
sure) can be found in Szebehely [16]. The usual reference frame is based
on using a rotating-pulsating coordinate system, such that the primaries are
kept in fixed positions on one of the axis. This is not our case: we use an
inertial reference system so Sun and Earth are not fixed along time.
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3 Equilibria of the System

It is well known that the Circular RTBP, in synodical coordinates, has five
equilibrium points, L1,...,5. Three of them are on the line joining the two
primaries and are called collinear points (L1,2,3). The other two form an
equilateral triangle with the two primaries and are known as the triangular
points (L4,5).

In this paper we consider two extra effects on this model. The first one
is produced by the solar sail. As the orientation of the sail is assumed to be
fixed in synodical coordinates (see Section 2.1), its effect does not depend
on time, it only depends of the position of the sail and of its orientation. In
this situation, the five equilibrium points still exist, but displaced from its
previous position. That is, if we fix the sail lightness number β, there are
5 equilibrium points for each orientation (α, δ) of the sail. Varying the two
angles (α, δ) we obtain a 2D surface of equilibria. If β is small, this surface
has five connected components, that merge for β large enough. For more
details, see [11, 12, 2]. In Fig. 2 we can see two slices of this surface for
different values of β.
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Figure 2: Slices of the family of equilibria for β = 0.001, 0.005, 0.01, 0.05, 0.1,
from left to right and top to bottom, slice Z = 0, slice Z = 0 zoom Earth
region, slice Y = 0 and slice Y = 0 zoom Earth region.
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The second effect is due to the non-circular motion of the Earth. There are
several possibilities to consider this effect. One is the elliptical problem (see,
for instance, Szebehely [16]) where, using rotating and pulsating coordinates
the two primaries are kept in a fixed position. Here we will look at the
elliptical problem as a perturbation of the Circular RTBP. To explain the
idea, let us consider the Circular RTBP in rotating coordinates such that
the two primaries are fixed on the horizontal axis. If in the ERTBP we take
the same rotation coordinate system, the gravitational attraction of the two
masses (Sun and Earth) on the sail is the one of the Circular RTBP plus a
small correction, because the two masses are not located in the same place as
in the Circular RTBP, but slightly displaced due to their eccentricity. Hence,
the ERTBP can be seen as a perturbation of the circular problem. Moreover,
this perturbation depends on time in a periodic way, with the period of the
motion of the masses. Hence, we have an autonomous problem, the Circular
RTBP, plus a periodic time-dependent perturbation. In this case and under
quite general conditions 1, the fixed points of the autonomous problem are
replaced by periodic orbits with the same period as the perturbation. We
will place the sail on one of these periodic orbits.

We stress that we have done all the computations in inertial coordinates.
In inertial coordinates, these periodic orbits are also periodic orbits with the
same period as the masses. Hence, they can be computed by a standard
multiple shooting method, using as a seed the circular orbit corresponding
to the CRTBP plus sail.

In Fig. 3 we can see the different periodic orbits that for different values of
the eccentricity replace the displaced L1 point considered for the GeoStorm
mission in an inertial (left) and in a rotating (right) reference system. We can
see how the amplitude of these orbits increase as the eccentricity increases.

On the left hand side of Fig. 4 we see these periodic orbits for α ∈
[0.274◦, 0.789◦] and δ = 0◦, and on the right hand side we can see the different
periodic orbits for α = 0◦ and δ = [−2.86◦, 2.86◦]. All of them for a fixed
eccentricity e = 0.0167.

4 Station Keeping Strategy

As it has been discussed in previous works by McInnes et. al [12, 10], the
artificial equilibria that appear on the CRTBP when the solar radiation pres-
sure is added are in an interesting location, for practical mission applications,

1Basically, a small enough perturbation and a non-resonance condition between the
frequency of the elliptic motion of the masses with the frequencies of the linearised motion
around the fixed point. These hypothesis are satisfied in the cases considered here.
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Figure 3: Continuation with respect to the eccentricity of the periodic orbits
that replace the equilibrium point on the ERTBP for e = 0 to e = 0.0167. In
a rotation reference system (left) and in an inertial reference system (right).

such as the GeoStorm or the Polar Observer. Nevertheless, they are unsta-
ble and a station keeping strategy must be used to maintain the sail close to
equilibria.

In [2, 3, 6], we already discussed how to derive station keeping strategies
around unstable equilibria in the Circular RTBP using dynamical system
tools. We also tested them and discussed their robustness when different
sources of errors were included in the simulations (both on the position and
velocity determination and the sail orientation).

As discussed in the previous section, when the eccentricity is included,
there are no longer equilibrium points, they have been replaced by 2π periodic
orbits (with the standard units for the ERTBP, the period of the elliptic
motion of Earth and Moon is 2π). We will place the sail close to one of
these periodic orbits, as they have the same interesting properties regarding
mission applications. Nevertheless, they are also unstable, hence we need a
station keeping algorithm.

We recall that the key point of the strategies described in [2, 3] was to un-
derstand the geometry of the phase space and how it is affected by variations
on the sail orientation. Hence, we will start by focusing on these periodic or-
bits and describing their linear dynamics and its variation for small variations
on the sail orientation.

Before starting with the details, let us mention that a first extension of
these strategies for periodic orbits is presented in [5], where we discuss the
possibility of using these ideas to derive a control around a Halo-type orbit
for a solar sail. The main difference with the work presented here is that
for a fixed sail orientation there is a family of Halo-type orbits, while there
is a unique orbit that replaces the fixed point for each eccentricity and sail
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Figure 4: Continuation of the periodic orbits in the ERTBP with respect to
the α and δ for a fixed eccentricity e = 0.0167. All of them are plotted on
an rotation reference system, on the left we have the continuation w.r.t. α
and on the right the continuation w.r.t. δ.

orientation. As we will see this simplifies the extension of the algorithm.

4.1 Linear dynamics

The first step to study the behaviour close to a periodic orbit is done through-
out the first order variational equations. If we write the equations of motion
in Eq. (2) as ẏ = F (y, t), then the first variational equations are

Ȧ = DF (y(t))A, A ∈ L(R6,R6), (4)

with the initial condition A(0) = Id.
We denote by φ the flow associated to Eq. (2) and φτ (y0) the image of

the point y0 ∈ R6 after τ units of time. The solution A(τ) of Eq. (4) is the
differential matrix, Dφτ (y0), of φτ (y0) with respect to the initial condition
y0. For h ∈ R6 (with ‖h‖ small enough), we have

φτ (y0 + h) = φτ (y0) +Dφτ (y0) · h+O(|h|2).

Therefore, φτ (y0)+A(τ)·h gives a good approximation of φτ (y0+h) provided
that h is small.

If we consider a 2π-periodic orbit, the variational matrix after one period,
A(2π), is called the monodromy matrix associated to the orbit. The linear
stability of the orbit is determined by the eigenvalues of this matrix.

For the periodic orbits that we consider in this study (see Section 3),
the eigenvalues of the monodromy matrix (λ1,...,6) satisfy: λ1,2 are real with
λ1 > 1, λ2 < 1, the others λ3,4,5,6 are complex pairs of conjugate eigenvalues,
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λ3 = λ̄4 and λ5 = λ̄6. As the system is volume preserving,
∏6

i=0 λi = 1.
We stress that although this system preserves volume (the divergence of the
vector field is zero), it is not Hamiltonian.

These three pairs of eigenvalues have the following geometrical meaning:

• The first pair (λ1, λ2) are related to the (strong) hyperbolic character of
the orbit. The value λ1 is the largest in absolute value, and is related to
the eigenvalue e1(0), which gives the most expanding direction. After
one period, a given distance to the nominal orbit in this direction is
amplified in a factor of λ1. Using Dφτ we can get the image of this
vector under the variational flow: e1(τ) = Dφτe1(0). At each point of
the orbit, the vector e1(τ) together with the vector tangent to the orbit,
span a plane that is tangent to the local unstable manifold (W u

loc). In
the same way λ2 and its related eigenvector e2(0) are related to the
stable manifold and e2(τ) = Dφτe2(0).

• The other two couples (λ3, λ4 = λ̄3) and (λ5, λ6 = λ̄5) are complex con-
jugate and their modulus is close to 1 (recall that Eq. (2) is a Hamilto-
nian system with a non-Hamiltonian perturbation). The monodromy
matrix, restricted to the plane spanned by the real and imaginary parts
of the eigenvectors associated to λ3, λ4 (and λ5, λ6) is a rotation with a
small dissipation or expansion, so that the trajectories on these planes
spiral inwards or outwards. The monodromy matrix restricted to these
planes has the form (

∆i cos Γi −∆i sin Γi
∆i sin Γi ∆i cos Γi

)
,

where ∆1,2 denotes the modulus of λ3 and λ5 respectively, and they are
the rate of contraction or expansion for each period. Γ1,2 denotes the
argument of λ3 and λ5 respectively, and they account for the rotation
around the periodic orbit (at each period).

• For the orbits considered here we have that |λ3,4,5,6| � |λ1|, hence the
most expanding direction (by far) is given by e1(τ).

To sum up, in a suitable basis the monodromy matrix associated to one
of these periodic orbits can be written in the form,

B =



λ1
λ2

0

∆1 cos Γ1 −∆1 sin Γ1

∆1 sin Γ1 ∆1 cos Γ1

0
∆2 cos Γ2 −∆2 sin Γ2

∆2 sin Γ2 ∆2 cos Γ2

 .
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The functions ei(τ) = Dφτ ·ei(0), i = 1, . . . , 6, give an idea of the variation
of the phase space properties in a small neighbourhood of the periodic orbit.
We will use a modification of them called the Floquet modes ēi(τ), i =
1, . . . , 6, six 2π-periodic functions that can easily be recovered by ei(τ).

4.1.1 The Floquet modes

The Floquet modes provide a local reference system close to the periodic
orbit, that is very useful to track the relative position between the space-
craft trajectory and the local unstable and stable invariant manifolds of the
nominal orbit. The Floquet modes ēi(τ) (i = 1, . . . , 6) are six periodic time-
dependent vectors (with the period of the orbit) such that, if we call P (t)
to the matrix that has the vectors ēi(τ) as columns, then the change of
variables y = P (t)z, takes the linearisation equation around the 2π-periodic
orbit, ẏ = A(τ)y, to an equation with constant coefficients ż = Bz. More-
over, as they are periodic functions, they can be spanned as Fourier series
and easily stored by their Fourier coefficients. Let us see how they are here.

We define the first and second Floquet mode taking into account that the
rate of escape and approach, to the periodic orbit, along the unstable and
stable manifolds is exponential:

ē1(τ) = e1(τ) exp
(
− τ
T

lnλ1
)
,

ē2(τ) = e2(τ) exp
(
− τ
T

lnλ2
)
.

The other pairs are computed taking into account that the monodromy
matrix restricted to the plane generated by the real and imaginary parts of
the eigenvectors associated to (λ3, λ4) and (λ5, λ6) is a rotation of angle Γ1,2

and a dissipation/expansion by a factor of ∆1,2:

ē3(τ) = [cos
(
−Γ1

τ
T

)
e3(τ)− sin

(
−Γ1

τ
T

)
e4(τ)] exp(− τ

T
ln ∆1),

ē4(τ) = [sin
(
−Γ1

τ
T

)
e3(τ) + cos

(
−Γ1

τ
T

)
e4(τ)] exp(− τ

T
ln ∆1),

ē5(τ) = [cos
(
−Γ2

τ
T

)
e5(τ)− sin

(
−Γ2

τ
T

)
e6(τ)] exp(− τ

T
ln ∆2),

ē6(τ) = [sin
(
−Γ2

τ
T

)
e5(τ) + cos

(
−Γ2

τ
T

)
e6(τ)] exp(− τ

T
ln ∆2|).

Where T stands for the period of the periodic orbit, in this case, T = 2π.
In this new set of coordinates, the dynamics around the periodic orbit is

quite simple. If φτ (x0) denotes the point on the periodic orbit at time τ , then
ē1(τ) is the direction of the unstable manifold. When this base point follows
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the periodic orbit, the vector ē1(τ) moves along the orbit following the (two-
dimensional) unstable manifold. In the same way, the vector ē2(τ) follows
the stable manifold along the orbit. For each point of the periodic orbit,
the couple ē3(τ), ē4(τ) spans a plane that is tangent to another invariant
manifold of the orbit. This plane spans a three-dimensional manifold when
the base point moves along the orbit. The dynamics on this manifold can
be visualized as a spiral motion (towards the periodic orbit) on the plane
(ē3(τ), ē4(τ)) at the same time that the plane moves along the orbit. In a
similar way, and ē5(τ) and ē6(τ) span another three-dimensional manifold,
on which the dynamics is again a spiral motion (but now escaping from the
periodic orbit) composed with the motion along the orbit. The growing (or
compression) of these spiral motion is due to the real part of λ3,4 and λ5,6,
which is nonzero but very small. For this reason the spiraling motion is very
small (almost circular) and, to compute the control strategy, we will assume
that this motion is not an spiral but a rotation. Of course, the simulations
of the control strategy are done without this assumption, and the control
is good enough to compensate the spiraling components (similar ideas were
used in [2]).

4.2 Variations of the sail orientation

Now we know how the trajectories behave close to a periodic orbit for a fixed
sail orientation. Let us then discuss how small changes on the sail orientation
affect these trajectories.

In Section 3, we mentioned that small changes on the sail orientation imply
no significant changes on the geometry of the phase space. When the sail
orientation (α, δ) is changed, the periodic orbits on the ERTBP still exist
but their position is slightly displaced. Moreover, the qualitative behaviour
around them is essentially the same for small changes in α and δ.

We want to know how these orbits vary when we change the sail orienta-
tion. So we can use these information in our station keeping strategy. As we
will deal with small variations on the sail orientation, a first order estimation
of how these orbits vary is enough.

Let P (x, α, δ) be a Poincaré section of the flow at time 2π for a fixed
sail orientation. The periodic orbits of the system are fixed points for these
Poincaré section. As we know these fixed points will be parametrised by
the sail orientation. If an orientation (α, δ) is close to the actual orientation
(α, δ) we have that

x(α, δ) ≈ x(α0, δ0) +
∂x

∂α
· (α− α0) +

∂x

∂δ
· (δ − δ0), (5)
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gives the (linear approximation to the) variation of the position of these
fixed points in the Poincaré section. The derivatives ∂x/∂α and ∂x/∂δ can
be found by solving (DPγ − Id)y = −Pγ with γ = α, δ respectively.

Moreover, the vectors

vα(τ) = Dφτ (x0) ·
∂x

∂α
(x0)−

∂φτ
∂α

(x0),

vδ(τ) = Dφτ (x0) ·
∂x

∂δ
(x0)−

∂φτ
∂δ

(x0),

(6)

are 2π periodic functions that give us the linear variation of a periodic orbit
φτ (x0) along time. Hence,

φτ (x) = φτ (x0) + vα(τ)(α− α0) + vδ(τ)(δ − δ0), (7)

is a good approximation for the new periodic orbits along time (τ) for small
variations on α and δ. These functions can be computed numerically, as they
are periodic they can be spanned as Fourier series and easily stored by their
Fourier coefficients.

4.3 Control strategy

Now let us assume that the solar sail is close to a given 2π-periodic orbit,
φτ (x0), for a given fixed sail orientation α = α0, δ = δ0. The solar sail escapes
along the unstable manifold (W u

0 ) and rotate along the other directions.
When we change the sail orientation, α = α1, δ = δ1 the 2π-periodic orbit
(φτ (x1)) is shifted. Now the trajectory will escape along the new unstable
manifold (W u

1 ).
In order to maintain the solar sail trajectory close to the nominal peri-

odic orbit (φτ (x0)) we need that the new unstable manifold (W u
1 ) takes the

trajectory close to the stable manifold of φτ (x0) (W s
0 ). If we can find a suit-

able sail orientation α1, δ1, then when we get close to W s
0 , we can restore

the sail orientation to α0, δ0. The main idea is to repeat this process, having
a sequence of changes on the sail orientation that manage to maintain the
solar sails trajectory close to the desired periodic orbit. Nevertheless, one
must take into account the rotating motion around the periodic orbit (see the
section 4.1), because a sequence of changes on the sail orientation are a se-
quence of rotations around different periodic orbits on the centre projection,
and this can result of an unbounded growth.

In order to find an appropriate new sail orientation (α1, δ1) such that the
trajectory comes close to the nominal periodic orbit φτ (x0) and the central
component of the trajectory is kept bounded we follow the ideas described

14



in [2, 4]. There it is shown how to find the new sail orientation by solving
a simple linear system. In this case we can apply similar ideas, the main
difference is that the system to be solved depends on the instant of time
when the manoeuvre has to be done. Let us see this in more detail.

Eq. (7) gives us the variation (for a fixed τ) of the periodic orbits for small
variations on the sail orientation. The Floquet modes ēi(τ) for i = 1, . . . , 6
give us a periodic reference system useful to express the position of the solar
sail with respect to the saddle and centre directions along time.

In Fig. 5 we see a schematic representation of the relative position of
the new periodic orbit with respect to the sails trajectory in these reference
system. We want the new periodic orbit to be placed on the appropriate side
on the saddle projection w.r.t. the sail’s trajectory (Fig. 5 left), and close to
the periodic orbit on the centre projections (Fig. 5 right).

Figure 5: Ideal position for the new fixed point on the saddle (left) and centre
(right) projections. Where p0 represents the nominal periodic orbit (φτ (x0))
and p1 the new periodic orbit (φτ (x1)) in the Floquet modes reference system.

The only inconvenient is that we are in a 6D phase space and the only
have 2 parameters to play to find the new position for the periodic orbits.
Hence, there might not be a periodic orbit where we want. We will chose
the sail orientation that places the periodic orbit the closest to the desired
position imposing some restrictions (for further details see [2, 4]).

4.4 Summary of the station keeping strategy

Let us take a periodic orbit φτ (x0) for a fixed sail orientation α = α0, δ = δ0,
and the Floquet modes associated to it ē1(τ), . . . , ē6(τ). This gives a 2π-
periodic reference system to track along time the relative position of the
trajectory with respect to the periodic orbit and the stable and unstable
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directions. During the control strategy we will always look at the trajectories
in this reference system:

ψ(t∗) = φt∗(x0) +
6∑
i=1

siēi(t
∗),

where (s1, . . . , s6) are the coordinates of the trajectory in this reference sys-
tem. We also need to define the constants εmax and εmin that represent
respectively, the maximum distance allowed to escape and “minimum” dis-
tance to the stable manifold of the periodic orbit on the saddle projection.
By “minimum” we mean that the trajectory is close enough to the manifold
to assume we have arrived there. These constants will depend on the mission
objectives and the dynamical properties around the periodic orbit.

We start with the sail close to the nominal periodic orbit, φτ (x0), with
α = α0, δ = δ0. Due to the instability the trajectory goes away along the
unstable direction ēi(τ). When |s1| ≥ εmax, we consider the sail to be too
far from φτ (x0) so we set an appropriate new sail orientation α = α1, δ = δ1
that brings the probe back to a neighbourhood of φτ (x0). When |s1| ≤ εmin,
the sail is close to W s(x0) and we change the sail orientation back to α =
α0, δ = δ0. This process is repeated on an on.

To find the appropriate new sail orientation α1, δ1 we just need to solve a
linear system at each step. To have a better understanding on the conditions
for these linear system you can look at [2, 3].

5 Mission Application

We have considered the GeoStorm Warning Mission [10, 17] as an example to
test our strategies. The primary goal of the mission is to provide enhanced
warning of geomagnetic storms to allow operation teams to take preventive
actions to protect vulnerable systems. Currently predictions of future activ-
ity are made by the National Oceanic Atmospheric Administration (NOAA)
Space Environment Centre in Colorado using terrestrial and real-time solar
wind data obtained from the Advanced Compositions Explorer (ACE) space-
craft. The ACE spacecraft is stationed on a halo orbit near L1, at about 0.01
AU from the Earth. From this position the spacecraft has continuous view
of the Sun and communication with the Earth.

The enhanced storm warning provided by ACE is limited by the need to
orbit the L1 point and can only provide predictions of 1 hour in advance.
However, since solar sails add an extra force to the dynamics of the orbit,
the location of L1 can be artificially displaced. The goal of GeoStorm is
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to station a solar sail twice as far from the Earth than L1 while remaining
close to the Earth-Sun line as can be seen in Fig. 6. Since the CME will be
detected earlier than by ACE the warning times will be at least doubled.

Figure 6: Schematic representation of the position of the GeoStorm Mission
(not to scale).

If we want to displace a solar sail at a double distance from the classical
Earth-Sun L1 point, we need a sail lightness number β = 0.051689 (which
corresponds to a0 ≈ 0.3 mm/s2) [11, 17, 10]. Moreover, as we need constant
communication with the Earth, its position must be displaced approximately
5o from the Earth - Sun line. The equilibrium point that we find within this
constraints in the Circular RTBP is unstable, hence a station keeping strategy
is required.

In [2] we discussed the robustness of our strategy in the Circular RTBP
for this mission, now we want to study its behaviour when we include the
eccentricity in the dynamical model.

We have set the eccentricity of the Earth - Sun couple to e = 0.0167
and computed the periodic orbit that replaces the fixed point that we had
on the Circular RTBP. We will now use the strategy described in Section 4
to maintain the trajectory of the solar sail close to the periodic orbit that
replaces the fixed point.

5.1 Mission Results

We have done a Monte Carlo simulation, taking 1000 initial conditions chosen
in a random way close to the nominal periodic orbit. We have applied to
each of them the control strategy up to 30 years. During the simulations
we have measured the time between manoeuvre and the variation of the sail
orientation (α, δ) along time.

Taking the values of εmin = 5.e− 6 and εmax = 5.e− 5 (AU) we have that
the average time between manoeuvres ranges between ∆tmax = 151.03 days

17



and ∆tmin = 69.75 days. The maximum average for the variation of the sail
orientation is of 0.06 degrees for α and 0.003 degrees for δ.

In Fig. 7 we can see the trajectory of a particular initial condition after
applying the control strategy on the XY -plane, the XZ-plane and the 3D
trajectory. Notice that the trajectory is plotted in the rotational reference
system of the Circular RTBP, and we can see how it remains close to the
nominal periodic orbit along time.
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Figure 7: For the GeoStorm mission, in a rotational reference system. Trajec-
tory followed by the sail for 30 years: XY –projection (left), XZ–projection
(middle) and XY Z–projection (right).

In Fig. 8 we show the same trajectory as in Fig. 7 but on the Floquet
mode reference system: the origin is at the periodic orbit φx0(τ), and the
axis are given by {ē1(τ), ē2(τ), ē3(τ), ē4(τ), ē5(τ), ē6(τ)}. We can show
the different projections: the saddle (generated by ē1(τ), ē2(τ)) (left) and
the projection on the other two planes ē3(τ), ē4(τ) (middle) and ē5(τ), ē6(τ)
(right). Notice how the trajectory on the saddle projection is a sequence of
saddle connections between different periodic orbits, and that the other two
projections are essentially a sequence of rotations that keep bounded along
time.
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Figure 8: For the GeoStorm mission; In the Floquet’s modes reference
system. Trajectory followed by the probe for 30 years, saddle projection
(ē1(τ), ē12τ)) (left), centre projection generated by (ē3(τ), ē4(τ)) and the
other centre projection generated by (ē5(τ), ē6(τ)).
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Finally in Fig. 9 we can see the variation of the two angles defining the
sail orientation along time.
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Figure 9: For the GeoStorm mission; Variation of the sail orientation along
time: α (left) and δ (right).

5.2 Error Sensitivity

It is a known fact that during a mission the sail’s position and velocity
is not be determined exactly, and these errors may have an effect on the
decisions taken by the control algorithm described in Section 4. Errors on
the sail orientation are also made and have an important effect in the sail’s
trajectory. We want to see how robust our strategy is when we include all
these effects in our simulations.

We will assume that all the errors follow a normal distribution with zero
mean. We consider a precision on the position of the probe of ≈ 1m in
the space slant and ≈ 2 − 3milli-arc-seconds in the angle determination of
the probe. The precision in speed is around 20 − 30microns/second. These
errors are introduced every time the control algorithm asks for the position
and velocity of the sail to decide if a manoeuvre should be done or not. As
we will see the effect of these errors turns out to be almost negligible.

We also consider errors on the sail orientation, that are produced each time
the sail orientation is changed. Hence, if the algorithm decides to change
the sail orientation to α1, δ1, actually the new sail orientation turns to be
α = α1 + εα and δ = δ1 + εδ. Due to the lack of information on the literature
regarding reasonable absolute values for εα and εδ, we have performed sev-
eral simulations considering different values for these errors, aiming to find
the maximum error allowed for the sail orientation so that the trajectory is
controllable.

We have performed a Monte Carlo simulations, using the same random ini-
tial conditions as before, but adding the uncertainty in the position, velocity
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and the sail orientation. The results are summarised in Table 1.
On Table 1 we show the results for the simulations when no errors are

taken into account (line 1), when only errors on the position and velocity
determination are considered (line 2) and when all the sources of error are
taken into account (sail orientation and position + velocity determination).
For each case we show the percentage of simulations that succeed (column 2),
the average maximum and minimum time between manoeuvres (column 3),
and the maximum and minimum variation on the sail orientation (columns
4 and 5).

Table 1: Statistics for 1000 simulations of the GeoStorm mission, with and
without errors for the position determination and sail orientation. Type 1
errors only consider errors on the position and velocity determination and
Type 2 errors also consider errors on the sail orientation, for different max-
imum bounds for these errors. Type 2a is 0.057◦ = 0.001rad, Type 2b is
0.286◦ = 0.005 rad and Type 2c is 0.57◦ = 0.01rad.

% ∆t ∆α ∆δ

No Error 100% 69.75 - 151.03 days 0.058o - 0.0619o 0o - 0.003o

Error Type 1 100% 69.77 - 150.9 days 0.058o - 0.0619o 0o - 0.003o

Error Type 2a 100% 67.28 - 166.9 days 0.057o - 0.063o 0o - 0.004o

Error Type 2b 100% 58.05 - 349.7 days 0.049o - 0.069o 0.00009o - 0.018o

Error Type 2c 47.8% 51.96 - 367.5 days 0.04o - 0.075o 0.0004o - 0.02o

We can see that if we only consider errors on the position and velocity de-
termination, the results are practically the same as when no sources of errors
are considered on the simulations. The average time between manoeuvre and
the maximum variations of the sail orientation are slightly different, but we
have a 100% of success. This might not be the case when errors on the sail
orientation are not taken into account.

As we already mentioned, as we do not have many information on reason-
able values for the errors on the sail orientation, we have done several sim-
ulations considering different absolute magnitudes for the error on the sail
orientation |εα| and |εδ|. We have considered these values to be 0.001rad,
0.005rad and 0.01rad (that correspond to 0.057◦, 0.286◦ and 0.57◦). The
results are summarised in Table 1 in the lines corresponding to errors Type
2a, 2b and 2c respectively. We can see that with errors of order 0.001rad and
0.005rad we always manage to maintain the solar sail close to the nominal
orbit, this is not the case for larger errors.

Hence for this mission, the maximum error permitted for the sail ori-
entation lies between 0.005rad and 0.01rad (i.e. 0.286◦ and 0.57◦). Further
studies should be done to determine that maximum error. Moreover, possible
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changes on the station keeping algorithm could be done in order to improve
these results. For instance, to use different conditions on the time when the
changes on the sail orientation are made, or considering higher order approx-
imations for the invariant objects and their variations w.r.t. changes on α
and δ.

Finally in Figs. 10 and 11 we can see the trajectory of the sail after ap-
plying the control strategy when all the different sources of errors are taken
into account. In Fig. 10 we can see the trajectory on the XY -plane, the
XZ-plane and the XY Z projection, and in Fig. 11 we have the trajectory
on the Floquet’s modes reference system. And in Fig. 12 we can see the
variation of the two angles defining the sail orientation along time.
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Figure 10: For the GeoStorm mission; In a rotational reference system and
considering errors on the position + velocity determination and on the sail
orientation. Trajectory followed by the sail for 30 years: XY –projection
(left), XZ–projection (middle) and XY Z–projection (right).
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Figure 11: For the GeoStorm mission; In the Floquet’s modes reference sys-
tem and considering errors on the position + velocity determination and on
the sail orientation. Trajectory followed by the probe for 30 years, saddle
projection (ē1(τ), ē12τ)) (left), centre projection generated by (ē3(τ), ē4(τ))
and the other centre projection generated by (ē5(τ), ē6(τ)).
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Figure 12: For the GeoStorm mission; Variation of the sail orientation along
time: α (left) and δ (right).

6 Conclusions

In this work we have considered a solar sail near the L1 point of the Earth-Sun
system. As a concrete example, we have focused on the GeoStorm mission.
The main novelty of the work is that, instead of using the Circular RTBP as
a model, we have used the Elliptic RTBP model to account for the effect of
the eccentricity of the Earth.

For this model we have computed a suitable periodic orbit for the GeoStorm
mission, and we have studied the local dynamics around it. Then, we have
used this information to derive a station keeping strategy. We have success-
fully tested this strategy including errors in the position determination and
in the sail orientation.

The techniques used are not based on classical control theory but on dy-
namical systems tools. We already used these techniques in the Circular
RTBP, and here we show how they extend naturally to more complex mod-
els like the Elliptic RTBP.
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