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Abstract

The goal of this paper is the numerical computation and continuation
of families of homoclinic connections of the Lyapunov families of pe-
riodic orbits (p.o.) associated with the collinear equilibrium points,
L1, L2 and L3, of the planar circular Restricted Three–Body Problem
(RTBP). We describe the method used that allows to follow individ-
ual families of homoclinic connections by numerical continuation of a
system of (nonlinear) equations that has as unknowns the initial con-
dition of the p.o., the linear approximation of its stable and unstable
manifolds, and a point in a given Poincaré section in which the un-
stable and stable manifolds match. For the L3 case, some comments
are made on the geometry of the manifold tubes and the possibility of
obtaining trajectories with prescribed itineraries.

Keywords: periodic orbits, invariant manifolds, homoclinic connections,
numerical methods, Restricted Three–Body Problem.

1 Introduction

Homoclinic and heteroclinic connections of hyperbolic objects play an im-
portant role in the study of dynamical systems from a global point of view.
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Of special interest is their application to the design of space missions us-
ing Libration Point dynamics. Since 1978, when NASA launched the ISEE-3
spacecraft, Lissajous and Halo type trajectories around the collinear equilib-
rium points have been considered in the trajectory design of space missions.
Most Libration Point missions launched up to present [14] consist essentially
of a single nominal trajectory and a transfer trajectory to it. The Genesis
mission [25] has been the first one to make use of an heteroclinic connection.
The use of homoclinic and heteroclinic phenomena allows to envisage more
complex missions, like low–energy transfers to the Moon [37] and the Petit
Grand Tour to the moons of Jupiter [21]. Having as a goal the design of such
complex missions in a systematic way, it is desirable to construct maps of
homoclinic and heteroclinic connections in several primary–secondary sys-
tems. The methodology developed in this paper is mostly aimed to the
construction of such maps.

The Circular Restricted Three–Body Problem (RTBP) is the natural
problem to start with when analyzing such space missions. Attention is
mostly focused on L1 and L2, because of its suitability to place permanent
observatories of the Sun or of the whole celestial sphere (like WMAP, around
L2, see [14] for a short description of both this mission and SOHO). Analyt-
ical proofs of the existence of homoclinic orbits to Lyapunov periodic orbits
(LPO) around the L1 and L2 points have been given in [32], for some partic-
ularly shaped homoclinic orbits, and in [30], where the authors considered
the homoclinic connections of LPO around L1 (L2 in that paper) for values
of the mass parameter µ close to 0 and values of the Jacobi constant, C,
close to the one at L1. More recently, and by means of a computed as-
sisted proof approach (see [40, 41]), proofs have been given of the existence
of particularly shaped homoclinic and heteroclinic connections of Lyapunov
orbits around L1 and L2, for the particular value of µ = 0.00095387 (the
mass parameter value for the Oterma comet in the Sun-Jupiter system) and
the Jacobi constant C = 3.03.

From a numerical point of view, families of homoclinic and heteroclinic
connections of periodic and quasi–periodic solutions around L1 and L2 have
been computed in the literature by means of the use of semi-analytical tech-
niques, in order to compute the families of invariant objects to connect and
its stable and unstable invariant manifolds. After that, individual connec-
tions are found by matching the corresponding manifolds on a surface of
section. Families are described by repeating this matching process for sev-
eral values of a parameter, which is often the energy (or equivalently the
Jacobi constant). This approach has been successfully applied in many sit-
uations, [8, 21, 22, 23, 27]. However, there is the possibility to improve
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it in some aspects. Semi-analytical techniques are very accurate near an
equilibrium point, but lose accuracy as we get away from it. In some sit-
uations (like the L3 point of the circular Restricted Three-Body Problem),
they do not give useful approximations at all [26]. Moreover, in the case of
d-dimensional invariant tori for d ≥ 2, the manifold matching process can be
time consuming, since a d-dimensional parameter space needs to be scanned.
It would be desirable to use numerical methodology for the continuation of
individual families of connections.

From a theoretical point of view, a suitable Poincaré section would reduce
the problem of computation and continuation of homoclinic connections of
p.o. to the computation and continuation of homoclinic connections of fixed
points of maps. Numerical methodology for this has been developed in
[5, 42]. This approach is not practical in our setting, due to the complicated
geometry of the manifold tubes (see Sect. 3.2), which makes difficult to find
an explicit expression of a Poincaré section valid throughout the connection.
Therefore, it is needed to work directly in the ODEs.

In the computations of this paper, we have used a method for the con-
tinuation of homoclinic connections that consists of raising a (nonlinear)
system of equations whose solution is a curve that corresponds to a family
of homoclinic connections. This systems includes the equations of a p.o. in a
Poincaré section, the eigenvalue/eigenvector equations for the linear approx-
imation of the invariant manifolds of the p.o., and matching conditions for
the manifolds on another Poincaré section. Such quantities are numerically
continued using a predictor-corrector method [1]. The idea of including both
the manifold and connection conditions in the continuation equations has
already been used in the literature. See [42], for maps, and [10, 13, 15, 29],
for flows. In the last two references, all the conditions are stated in terms of
boundary value problems in order to use the continuation package AUTO
[16].

In our approach, the continuation equations are stated in terms of match-
ing conditions on Poincaré sections. The system of equations and its dif-
ferential with respect to the unknowns is evaluated by direct numerical in-
tegration of the differential equations, together with its first and second
variational equations. The instability due to the hyperbolic character of all
the p.o. considered is avoided by using multiple shooting (see Sect. 2.2).

Our attention has been restricted to homoclinic connections of periodic
orbits, but the method generalizes naturally to heteroclinic connections of
p.o., and also to homoclinic and heteroclinic connections of invariant tori.
In this latter case, since the computation of d–dimensional tori for d ≥ 2
is demanding in terms of computing time, it is necessary to pre-compute
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and store the families of tori before attempting the numerical continuation
of connections. This is currently work in progress (see [35] for preliminary
results). Also, the numerical methodology has been applied to the RTBP
only, but the continuation method make no use of any particularity of the
RTBP other than its Hamiltonian character, and is thus valid for any other
Hamiltonian system.

In Sect. 2, we briefly recall the RTBP and describe the numerical method
used for the continuation of families of homoclinic connections of periodic
orbits.

Sect. 3 is devoted to numerical results. In Sect. 3.1, we consider the
equilibrium points L1 and L2. For the LPO around L1, we have fixed the
mass parameter µ to the Earth-Moon case, µ = µEM = 9.53875 · 10−4, in
order to test the results obtained by our methodology with previous papers.
We have continued, in a systematic way, the families of homoclinic orbits
surrounding the Earth and those surrounding the Moon. In this latter case,
a particular contribution of this paper is that besides recovering some of the
families computed in [7, 8], we have been able to continue them for larger
values of the energy. For such higher energy levels, connections can be found
with close passages to Earth and Moon, which make them interesting as
trajectories for the transportation of cargo in the Earth–Moon system (see
Fig. 4 top right and [9]). With respect to the LPO around L2 we have also
fixed µ = µEM and we have done a systematic continuation of families of
homoclinic connections surrounding only the Moon, and those surrounding
both the Earth and the Moon. We remark that, taking other values of µ,
the same methodology allows to recover the homoclinic orbits obtained in
[32, 40, 41].

The L3 case has been much less investigated. From an astronomical point
of view, horseshoe motion, explaining the motion of the co-orbital satellites,
Janus and Epimetheus, of Saturn (see [31]) and near Earth asteroids (see
[12]), has drawn some attention. In [4], it is seen that the manifolds of
both L3 and its corresponding LPO family play a role in horseshoe motion.
Furthermore, there is numerical evidence [18, 20, 38] on the fact that the
stable/unstable manifolds of the objects (LPO and 2D tori) of the center
manifold of L3 in the 3D RTBP confine regions of effective stability around
the triangular points L4 and L5. The extension of the methodology of this
paper to the computation of connections of tori mentioned above would
provide a new numerical tool for the analysis of the normal behavior of the
center manifold of L3.

Sect. 3.2 is devoted to the computation of homoclinics of LPO around
L3 in the 2D RTBP, where some families of either half-horseshoe and full-
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horseshoe shaped homoclinic orbits are computed. A systematic exploration
is done for the Sun–Jupiter mass parameter. Some comments are made on
the difficulty of the visualization of sections of the manifold tubes, due to
the slow dynamics around L3, that produces intricate loops on the manifold
tubes when the base LPO is large.

All the families of homoclinics computed correspond to first order ho-
moclinic orbits, in the sense that they correspond to the first cuts of the
manifold tubes. It is well known that, once a stable manifold tube in-
tersects transversally an unstable one, giving rise to some homoclinics, an
infinity of additional homoclinics exist associated with subsequent cuts of
these same manifold tubes. We do not compute any of this “higher order”
homoclinics, although we make some comments on its existence for the L3

case in Sect. 3.2.3. In this Section we also illustrate, on a specific example,
the classification of trajectories in transit and non–transit orbits as defined
by Conley [11], and explore the possibility of obtaining trajectories with
prescribed itineraries.

2 Homoclinic connections of Lyapunov p.o. of the
RTBP

2.1 The RTBP

The circular restricted three–body problem (RTBP) describes the motion
of a particle of infinitesimal mass, moving under the gravitational influence
of two massive bodies called primaries, that describe circular orbits around
their common center of mass. We will consider the planar problem, in
which the motion of the third body is contained in the plane of motion of
the primaries. Taking a coordinate system reference that rotates with the
primaries, with origin placed at their center of mass, and suitable units, we
can assume that the primaries have masses 1− µ and µ, µ ∈ (0, 1/2], their
positions are fixed at (µ, 0) and (µ− 1, 0) and the period of their motions is
2π. With these assumptions, the equations of motion of the third body in
this rotating (also called synodical) system of coordinates, are (see Szebehely
[39])

ẍ− 2ẏ = DxΩ(x, y),
ÿ + 2ẋ = DyΩ(x, y),

(1)

where
Ω(x, y) =

1
2
(x2 + y2) +

1− µ

r1
+

µ

r2
+

1
2
µ(1− µ),
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r1 =
√

(x− µ)2 + y2 and r2 =
√

(x− µ + 1)2 + y2. The system of equa-
tions (1) has a first integral, called the Jacobi integral, which is given by

C = 2Ω(x, y)− ẋ2 − ẏ2. (2)

Furthermore, we recall that equations (1) satisfy the well known symmetry

(t, x, y, ẋ, ẏ) −→ (−t, x,−y,−ẋ, ẏ). (3)

This implies that, for each solution of equations (1), there also exists another
one, which is seen as symmetric with respect to y = 0 in configuration space.

By introducing momenta px = ẋ − y and py = ẏ + x, the equations of
motion of the RTBP transform into the following Hamiltonian system

ẋ = px + y, ṗx = py − (1− µ)(x− µ)
r3
1

− µ(x− µ + 1)
r3
2

,

ẏ = py − x, ṗy = −px − y

(
1− µ

r3
1

+
µ

r3
2

)
,

(4)

with associated Hamiltonian function

H(x, y, px, py) =
1
2
(p2

x + p2
y)− xpy + ypx − 1− µ

r1
− µ

r2
.

Its relation with the Jacobi integral is given by

C = −2H + µ(1− µ).

The value of the Hamiltonian on each orbit will be referred as the energy of
the orbit from now on.

We also recall that the RTBP has five equilibrium points: the collinear
points, L1, L2 and L3, situated on the line containing the primaries, and
the equilateral ones, L4 and L5, both forming an equilateral triangle with
the two primaries. We denote by Ci and hi the value of the Jacobi constant
and the energy at the equilibrium point Li, i = 1, . . . , 5.

We focus our attention on the dynamics of the RTBP around the collinear
equilibrium points L1, L2 and L3. The position and the energy of the
collinear points is given in terms of µ in Table 1 (see [39]). Observe that
xL2 ≤ µ − 1 ≤ xL1 ≤ µ ≤ xL3 , that is, L1 is between both primaries, L2 is
on the left hand side of the small one and L3 is on the right hand side of
the large one.

It is well known that, if we write the differential equations (4) as

ẋ = XH(x)
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Table 1: Position on the synodical horizontal axis and energy of the collinear
equilibrium points

xLi hi

L1 −1 +
(µ

3

)1/3 − 1
3

(µ
3

)2/3 + 26
9

(µ
3

)
+ O(µ4/3) −3

2 − 9
2

(µ
3

)2/3 + 5
(µ

3

)
+ O(µ4/3)

L2 −1− (µ
3

)1/3 − 1
3

(µ
3

)2/3 + 28
9

(µ
3

)
+ O(µ4/3) −3

2 − 9
2

(µ
3

)2/3 + 7
(µ

3

)
+ O(µ4/3)

L3 1 + 5
12 µ + O(µ3) −3

2 − 1
2µ + O(µ2)

then Spec DXH(Li) = {±iω,±λ}, so the equilibrium point Li, i = 1, 2, 3 is a
center×saddle point and Lyapunov’s center theorem (see, for example, [33])
applies. Thus, the equilibrium point gives rise to a one–parametric family
of periodic orbits, spanning a 2-D manifold tangent to real and imaginary
parts of the eigenvectors of eigenvalues ±iω at the equilibrium point. This
family is known as Lyapunov family of periodic orbits (LPO), and, close to
the equilibrium point, it can be parameterized by the energy H.

Since the equilibrium point is hyperbolic, the Lyapunov family inherits
hyperbolicity and therefore the periodic orbits have, at least close to the
equilibrium point, unstable and stable manifolds. These unstable and stable
manifolds can intersect, giving rise to homoclinic connections of the LPO.

2.2 Numerical methodology

An homoclinic connection of an object X is a trajectory that tends forward
and backward in time to X. Thus, it lies in the intersection of the unsta-
ble and stable manifolds of the object W u(X) ∩ W s(X). An heteroclinic
connection between two objects X, Y is a trajectory that tends backward in
time to X and forward in time to Y , so it lies in W u(X)∩W s(Y ). Although
in the present paper we will restrict ourselves to the computation of homo-
clinic connections, all the methodology applies with minor modifications to
the computation of heteroclinic connections.

Consider a periodic orbit (p.o.) X with hyperbolic character, and assume
that we have a parametrization of its unstable and stable manifold tubes that
can be numerically evaluated. We denote these parameterizations as ψu(θ, ξ)
and ψs(θ, ξ), where θ is an angle and ξ ∈ R (we give actual formulae later on
this Section). We also assume that ψu/s(θ, ξ) describes the periodic orbit for
ξ = 0, one branch of the manifold for ξ > 0, and the other branch for ξ < 0.
We will denote these branches as W

s/u
+ (X) and W

s/u
− (X), respectively.

Let Σ = {g(x) = 0} be a hypersurface which is known to be intersected
by the manifold tubes, where g : R4 → R is a function defined on a neigh-
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borhood of this intersection. Given a point x, we consider two associated
Poincaré maps: P+

Σ , which propagates the flow forward in time until the
next intersection with Σ, and P−

Σ , which does the same backward in time.
Choose a value ξ0, with |ξ0| small, and consider the function

F (θu, θs) = P+
Σ (ψu(θu, ξ0))− P−

Σ (ψs(θs, ξ0)) (5)

The values of (θu, θs) for which F (θu, θs) is zero correspond to a homoclinic
connection. In particular, the points ψu(θu, ξ0), which is close to the p.o.
in W u(X), ψs(θs, ξ0), also close to the p.o. in W s(X), and P+(ψu(θu, ξ0) =
P−(ψs(θs, ξ0)), which is in Σ, belong to the homoclinic connection.

The function F and its differential DF can be numerically evaluated by
numerical integration of ẋ = XH(x) and its first variational equations, so
Newton’s method can be used to find roots of F . In order to obtain initial
conditions for the Newton iteration, it is convenient to display the intersec-
tion of each manifold tube with the section Σ, {P+

Σ (ψu(θ, ξ0))}θ∈[0,2π) and
{P−

Σ (ψs(θ, ξ0))}θ∈[0,2π). Since the manifolds are 2D tubes, each intersection
is a 1–dimensional set (typically closed curves) as, for instance, in Figure 2.
Each common point of these two sets gives rise to a homoclinic connection,
and therefore corresponds to a zero of F .

The section Σ that defines the P+
Σ and P−

Σ Poincaré maps should be
defined locally, in a neighborhood of the intersection of the manifold tubes.
In practice, it is more convenient to work with global sections defined by
an implicit equation {g(x) = 0} (actually, in all the computations of Sect. 3
we have used just hyperplanes). It may happen then that the first cut with
the section is not the one we are interested in. For instance, in Figure 1, in
order to match in Σ = {x = 0} the first cut of the unstable manifold with
the stable manifold, we need to consider the sixth cut of the stable manifold
with Σ. In what follows, we will denote the j–th cut of a branch of manifold
with a section Σ by W

s/u
± (X) ∩ Σj .

In order to develop actual formulae for the invariant manifold tubes of
the p.o., assume that x0 is an initial condition of a T–periodic orbit (p.o.),
so that φT (x0) = x0. The p.o. can be parameterized by an angle as

ϕ(θ) = φ θ
2π

T (x0).

Assume that Λ > 0 is an eigenvalue of the monodromy matrix1 DφT (x0)
(Λ > 1 for the unstable manifold, Λ < 1 for the stable one), and v0 ∈ R4 is

1For Λ < 0, a real Floquet change is not possible. In such a case, we can consider
the p.o. 2T–periodic and work with DφT (x0)

2 = Dφ2T (x0), which will have Λ2 > 0 as
corresponding eigenvalue. This has never happened in the computations of Sect. 3.
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a corresponding eigenvector. We define

v(θ) = Λ−θ/2πDφ θ
2π

T (x0)v0, (6)

which is the eigenvector associated to the point ϕ(θ), and

ψ(θ, ξ) = ϕ(θ) + ξv(θ).

Then ψ(θ, ξ) gives the linear approximation of the invariant manifold ψ(θ, ξ),
for |ξ| small enough, that is, close to the periodic orbit. In order to find
homoclinic connections, we will use ψ. Furthermore, a first–order Taylor
expansion shows that, for bounded |t|,

φt(ψ(θ, ξ)) = ψ(θ + tω, etλξ) + O(ξ2) (7)

for ω = 2π/T , λ = ω lnΛ/(2π). Therefore, the manifold parameterized by
ψ(θ, ξ) is invariant by the flow except for a quadratic term in ξ. In all the
computations done along the paper we have taken |ξ| of the order of 10−6.

For the continuation of homoclinic connections, we will consider the en-
ergy H as a parameter. This means that, for each value of the energy we
need to compute the corresponding p.o., its eigenvalues and eigenvectors,
and a new initial seed in order to solve the equations {F (θu, θs) = 0} with
F defined as in (5). We would like to automatize the procedure in a standard
predictor–corrector method (see [1]). This implies to consider the eigenval-
ues and eigenvectors as functions of the initial conditions of the p.o. This
is not convenient in order to do continuation, because, although they can
be obtained by a general eigenvalue routine (such as LAPACK’s DGEEV,
[2]), it is not obvious how to differentiate them with respect to the initial
conditions of the p.o. An strategy is to add the eigenvalue condition to the
continuation equations, plus a normalization condition in order to have local
uniqueness of the eigenvectors. See also a similar approach in [5, 15, 28, 29].

Consider the following variables. Let h ∈ R be an energy level, x ∈ R4

an initial condition of a p.o. of period T , Λu, Λs ∈ SpecDφT (x), with Λu > 1
and 0 < Λs < 1, and vu, vs corresponding eigenvectors of DφT (x). Let us
also consider θu, θs ∈ [0, 2π] starting phases on the linear approximation of
the unstable and stable manifolds, respectively. We introduce T u, T s ∈ R the
times to intersect the section Σ from the starting points ψ

u(θu, ξ), ψs(θs, ξ)
on the (linear approximation of the) unstable and stable manifolds, respec-
tively (for a given ξ). Notice that the introduction of T u, T s avoids the
need to take into account the number of cuts of the sections, which would
have been necessary if we had considered Poincaré maps explicitly, as in the
function F defined in (5).
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We also consider g1 : R4 −→ R a function defining a Poincaré section
for the periodic orbit, and g2 : R4 −→ R a function defining the Poincaré
section to match the manifolds, this is, Σ = {g2(x) = 0}. The system of
equations we consider in order to continue homoclinic connections of p.o. is

H(x)− h = 0,
g1(x) = 0,

φT (x)− x = 0,
‖vu‖2 − 1 = 0,

DφT (x)vu − Λuvu = 0,
‖vs‖2 − 1 = 0,

DφT (x)vs − Λsvs = 0,

g2

(
φT u

(
ψ

u(θu, ξ0)
))

= 0,

g2

(
φT s

(
ψ

s(θs, ξ0)
))

= 0,

φT u

(
ψ

u(θu, ξ0)
)− φT s

(
ψ

s(θs, ξ0)
)

= 0,

(8)

where ξ0 is kept fixed to a small value (usually 10−6), and the unknowns are

h, x, T,Λu, vu, Λs, vs, θu, T u, θs, T s.

Here T, T u > 0 and T s < 0.
In our setting, the integration times T u, T s may become large (this is the

case in Sect. 3.2). In order to maintain high precision, it is necessary to use
multiple shooting. We have implemented a system with multiple shooting
both in the periodic orbit and the connection.

Either with the simple or multiple shooting equations, continuation has
been done by a standard predictor–corrector method [1]. In order to dif-
ferentiate any of the systems of equations used, it is needed to integrate
the second variational equations of the RTBP. Note also that, both in the
single and multiple shooting cases, the system is over–determined and rank
deficient. For instance, a clear over–determination is the fact that, the two
last equations of Eq. (8) imply the third equation from the bottom. The
reason for that redundancy follows from numerical experience, and its goal is
to accelerate the convergence of Newton’s method. Redundancy and rank–
deficiency can be coped by using the minimum–norm least–squares (LS)
solution for the linear system that gives the Newton correction. Of course,
we could also eliminate redundant equations, but this would need a lin-
ear analysis that would lead to an avoidable computational overhead. The
computation of the minimum–norm LS does implicity this linear analysis
at negligible computational cost. In our implementation, this solution has
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been computed using QR decomposition with column pivoting. For more
details, see [24, 34].

Of course, the system of equations in Eq. (8) is not specific of the RTBP
but is valid for any Hamiltonian system. With minor modifications, it would
allow to continue heteroclinic connections of p.o., as it has been mentioned
in the Introduction.

3 Numerical results

The remaining part of the paper is devoted to present our results. First, in
Sect. 3.1 we consider the case of L1 and L2 for the Earth-Moon value of the
mass parameter µ = µEM = 1.215058560962404×10−2. As mentioned in the
introduction, we compute some families of homoclinic connections to planar
Lyapunov orbits that surround the small primary (the Moon), in order to
compare the results obtained with the numerical techniques presented in
this paper with the results obtained by Canalias and Masdemont in [8] using
Lindstedt-Poincaré series. Furthermore, we compute families of homoclinic
connections of Lyapunov orbits that surround either only the large primary
(the Earth) or both primaries. We remark that in [30] the authors give
asymptotic expressions of the invariant manifolds of Lyapunov orbits around
L1 that, for small values of µ and energies close to the one of L1, allow
them to prove the existence of homoclinic connections analogous to the ones
computed here.

After that, in Sect. 3.2 we explore the neighborhood of L3 point for
the Sun-Jupiter mass parameter µ = µSJ = 9.53875 × 10−4. Additional
comments are made on the geometry of manifold tubes and the possibility
to apply symbolic dynamics.

It is known that the existence of an homoclinic connection implies the ex-
istence of an infinite number of homoclinics. For maps, this is a consequence
of Birkhoff’s homoclinic theorem [6] (see also [36]). In all the explorations
that follow, we have computed only homoclinics corresponding to the first
cuts of the manifold tubes. We refer to these homoclinics as “first–order
homoclinics”. The existence of higher–order homoclinics is illustrated in
Sect. 3.2.3.

All the homoclinic orbits have been computed with tolerances ranging
from 10−10 to 10−12, that is, the non–linear systems of equations of the
previous Section used for continuation are satisfied within this accuracy.
The continuations are stopped when the accuracy criterion is violated. In
general, this happens when a passage close to the small primary takes place.
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In some figures where the projection of orbits or invariant manifolds in
configuration space is shown, we have included the horizontal line y = 0
(dotted line in the plots) that contain the primaries for greater clarity. Blue
and red indicate that the piece of orbit or the set of points shown belongs to
the stable and unstable manifold respectively. As it has been mentioned at
the end of the introduction, we will only compute first–order homoclinics,
although some comments will be made on the existence of higher–order
homoclinics for the L3 case in Sect. 3.2.3.

3.1 Homoclinic connections to Lyapunov orbits around L1

and L2

In this Section we have fixed the value of the mass parameter to µ = µEM .
As it has been mentioned before, L1 and L2 are center×saddle equilibrium
points, and for values of the energy close to h1 and h2 (given in Table 1)
respectively, the planar Lyapunov periodic orbits (LPO) around them in-
herit their hyperbolic behavior, so they have stable and unstable invariant
manifolds.

Let X be a hyperbolic invariant object, and W u/s(X) the unstable/stable
manifold (or simply W u/s when no confusion is possible). In the case of the
collinear equilibrium points, X = Li, i = 1, 2, both the stable and unstable
manifolds have a branch to the right and a branch to the left of Li (see
[11] for a proof). In the present Section, we denote by W

u/s
+ (Li), i = 1, 2,

the branch corresponding to the eigenvector that points to the right half
space {x > xLi}, and by W

u/s
− (Li), i = 1, 2, the branch corresponding to

the eigenvector pointing to the left half region {x < xLi}. This will be
coherent with the notation for the branches introduced above as long as
we take v0 in Eq. (6) with positive x component. We extend this notation
for the branches of the invariant manifolds of a periodic orbit, which are
two dimensional objects than can be viewed as tubes approaching the LPO.
In Fig. 1 and 5 some of these invariant manifolds are plotted. Due to the
symmetry (3), and the fact that LPO are symmetric with respect the y = 0
axis, the branches W u− and W s− are symmetric, as well as W u

+ and W s
+ are.

By numerically propagating the manifolds, it is seen that, in order to find
connections, it only makes sense to try to match branches in the same half
space (see Fig. 1 and 5).

Recall that we denote the j–th cut of the W u± manifold tube forward in
time by W u± ∩ Σj , and the k–th cut of the W s± manifold tube backward in
time by W s± ∩ Σk. We will say that there exists a homoclinic connection of
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type (−j,−k) or (+j,+k), j, k ∈ N, if

(
W u
− ∩ Σj

) ∩
(
W s
− ∩ Σk

)
6= ∅, or

(
W u

+ ∩ Σj
) ∩

(
W s

+ ∩ Σk
)
6= ∅, (9)

respectively. We observe that, in both cases, all the pairs k′, j′ such that
k′ + j′ = k + j give the same homoclinic connection. Depending on the
equilibrium point and the branches we consider, we will obtain homoclinic
orbits that surround either only one primary or both primaries.

For L1 and L2, we will work with Poincaré sections of the form Σ =
{x = constant}. Given an LPO of energy level h, all its homoclinics will
lie in the manifold {H = h}, which is three–dimensional. In this manifold,
Σ is a plane that can be visualized by projecting in the (y, py) (or (px, py))
coordinates. The projections of the sets defined in (9) are used to find initial
homoclinic connections. These initial connections are then continuated by
the method described above giving rise to families.

Each family can be represented by a characteristic curve, that will be
displayed in the (h, yf ) plane, where h is the energy and yf the value of
the y coordinate of the corresponding point in the set defined by Eq. (9).
During the continuation of a family, we have also plotted the sets of Eq. (9)
for several energy levels, in order to check for the appearance of new families
of connections, as in Fig. 6.

3.1.1 Homoclinics to LPO of L1

When we consider the branches of each invariant manifold, we see that
W u−,W s− surround the small primary, while W u

+,W s
+ surround the large one

(see Fig. 1). So we will look for families of homoclinic orbits that surround
only one primary (the Earth or the Moon).

For the homoclinics surrounding the Earth, we use Σ = {x = 0}. Con-
sidering the first cut of W u

+ with Σ, it is seen in Fig. 1 that, in order to
find a connection, we need to consider the sixth cut of W u− with Σ. There-
fore, first–order homoclinics are given by the intersection of W u

+ ∩ Σ1 with
W s

+∩Σ6, whose representation in the (y, py) plane for a specific value of the
energy is the left plot in Fig. 2. We can observe four points of intersection,
so we can follow four different families of homoclinic orbits that surround
the Earth. We denote them by Hej , j = 1, 2, 3, 4. The orbits in the families
He3,4 are symmetric (with respect the horizontal axis), while the orbits in
the families He1,2 are not (one family is obtained from the other by applying
symmetry (3)). The characteristic curves of all of these families are shown
in Fig. 3 left. The computations of the families are done using the section
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Figure 1: Invariant manifolds associated with a Lyapunov orbit around
L1, for the Earth-Moon mass parameter and the energies indicated. Left:
branches W u

+, W s
+ up to their first and sixth intersection, respectively, with

Σ = {x = 0}. Right: branches W u−,W s− up to their first and second inter-
section, respectively, with Σ = {x = µ− 1}.

{x = −1/2}. In Fig. 4, first row, several homoclinics surrounding the Earth
from different families are shown.

For the homoclinics surrounding the Moon, we fix Σ = {x = µ − 1}.
Proceeding as above (see Fig. 1 right), we conclude that first–order homo-
clinics are given by the intersection of the sets W u

+ ∩ Σ1 and W s
+ ∩ Σ2 (see

Fig. 2 right). Only two homoclinic orbits are found for the levels of energy
explored. The characteristic curves of all of these families are shown in Fig. 3
right, denoted by Hmj , j = 1, 2. Observe that the family Hm2 is such that
yf approaches the zero value. This means that the family tends to a collision
orbit with the Moon. In order to follow the family for higher values of the
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Figure 2: Left: Sets W u
+∩Σ1 and W s

+∩Σ6 in the (y, py) plane for a Lyapunov
orbit around L1 at the section Σ = {x = 0}. Right: Sets W u− ∩ Σ1 and
W s− ∩Σ2 in the (y, py) plane for a Lyapunov orbit around L1 at the section
Σ = {x = µ− 1}. Both plots correspond to µ = µEM .

energy, a regularization of the equations should be done. Furthermore, it
can be seen that the numerical procedure of Sect. 2.2 allows to reach energy
levels on which LPO are large. In Fig. 4, second row, several homoclinics
surrounding the Moon from different families are shown.

Associated to any of these families, there are families of higher–order
homoclinics that perform more revolutions around the corresponding body.
In [8], homoclinic connections that perform several revolutions around the
Moon can be found.

3.1.2 Homoclinics to LPO of L2

When we consider the branches of each invariant manifold of the LPO family
around L2, we see that W u

+,W s
+ surround the small primary, while W u−,W s−

surround both primaries (see Fig. 5). So we will look for families of homo-
clinic orbits that surround either only the Moon or both the Earth and the
Moon.

For the homoclinics surrounding both the Earth and the Moon, we con-
sider the section Σ = {x = 0}. From Fig. 5 left, it is seen that first order
homoclinics are given by the intersection of W u−∩Σ1 with W s−∩Σ2. In Fig. 6,
the curves W u−∩Σ1, W s−∩Σ2 are represented in the (px, py) plane for different
energy values. Clearly, as the energy increases, new families of first–order
homoclinic connections appear. We denote them as Hoj , j = 1, 2, . . . We
compute up to 12 different families, whose characteristic curves are plot-
ted in Fig. 8 left. It can be seen that the orbits of the families labelled as
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Figure 3: Left: characteristic curves of families of homoclinic orbits that
surround the Earth (the points on the curves correspond to Σ = {x =
−0.5}). Right: characteristic curves of families of homoclinics surrounding
the Moon (the points on the curves correspond to Σ = {x = µ− 1}). Both
curves are given in the (h, yf ) plane.

Hoj , j = 1, 2, 5, 6, 9, 10 are symmetric orbits, while the orbits of the families
Hoj , j = 3, 4, 7, 8, 11, 12 are not. In Fig. 9, first row, several homoclinics to
Lyapunov orbits around L2 from different families Hoj are shown.

For the homoclinics surrounding only the Moon, we consider the section
Σ = {x = µ−1}. From Fig. 5 right, we conclude that first order homoclinics
are given by the intersection of W u

+∩Σ1 and W s
+∩Σ2, which are represented

in the (px, py) plane in Fig. 7 for two energy levels. We can observe two
points of intersection, so we can follow two different families of homoclinic
orbits that surround once the small primary, denoted by Hi1 and Hi2. Their
characteristic curves are plotted in Fig. 8 right. In Fig. 9, second row,
several homoclinics to Lyapunov orbits around L2 from different families
Hi1 are shown.
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Figure 4: Projection in the configuration space of some homoclinic orbits
to a LPO around L1. First row: orbits from the family He1. Second row:
orbits from the family Hm1.

3.2 Homoclinic connections of Lyapunov orbits around L3

One main difference between L3 and L1,2 is that, around this point, semi–
analytical techniques give accurate representations in a very small energy
range (see [26]). Therefore, they cannot be used for the computation of
Lyapunov orbits and manifolds around L3 as they have been used around
the L1 and L2 points [8, 22, 23, 26]. In contrast with the previous section,
the value of the mass parameter used has been chosen to be Sun–Jupiter
mass ratio (µSJ = 0.000953875), in order to relate our results to previous
works on horseshoe motion [3, 4, 31].

The numerical computations of homoclinic orbits to LPO around L3

presented in this Section are the first ones the authors are aware of. Be-
cause of this reason, in addition to the exploration of families of first–order
homoclinics, some additional comments on the existence of infinitely many
homoclinics and the geometry manifold tubes will be made in Sect. 3.2.3.

Due to the behavior of the manifolds of Lyapunov orbits around L3 (see
Fig. 10), we will change the notation for branches of manifolds with respect
to the one of L1 and L2. For a Lyapunov orbit X, W

u/s
+ (X) will denote the

branch of the unstable or stable manifold in the {y > 0} half–space, whereas
W

u/s
− (X) will refer to the branch in the {y < 0} half–space. The branch
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Figure 5: Invariant manifolds associated with a Lyapunov orbit around
L2 for the Earth-Moon mass parameter and the energies indicated. Left:
branches W

u/s
− up to their second and third intersection respectively with

Σ = {x = 0}. Right: branches W
u/s
+ up to their second and third intersec-

tion respectively with Σ = {x = µ− 1}.

W u−(X) can be obtained from the branch W s
+(X) by applying the symmetry

(3) and vice–versa, and the same happens for W s−(X) and W u
+(X).

Another particularity of L3 is that first–order homoclinics can be found
by matching either branches of manifolds of the same half–space or branches
of different half–spaces. The first type of connections have half–horseshoe
shape, whereas the second one have full–horseshoe shape. They are explored
in subsections 3.2.1 and 3.2.2, respectively. Since the times T u, T s of Eq. (8)
are large (of the order of hundreds of RTBP dimensionless time units), mul-
tiple shooting is needed in order to have high precision. Typically we have
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Figure 6: Curves W u−∩Σ1 and W s−∩Σ2 in the (px, py) plane for a Lyapunov
orbit around L2 for the Earth-Moon mass parameter and energies indicated.
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Figure 7: Intersections W u
+ ∩ Σ1 and W s

+ ∩ Σ2 in the (px, py) plane for a
Lyapunov orbit around L2 for the Earth-Moon mass parameter and the
energies indicated. Both plots correspond to the section Σ = {x = µ− 1}.

used from 6 to 10 intermediate points, suitably distributed, along the two
pieces of the homoclinic orbit (on the unstable and stable manifolds), and
a tolerance of 10−10.When more than 10 intermediate points for the multi-
ple shooting method are necessary to reach the desired precision, we have
stopped the computations.

3.2.1 Homoclinics of branches of the same half–space

Due to the symmetry (3), for each homoclinic to a LPO corresponding to
branches in {y < 0}, there is a symmetric one corresponding to branches in
{y > 0}. Our exploration will be therefore limited to branches in {y < 0}.
Using the section Σ = {x = µ−1/2}, it is found that first–order homoclinics
in {y < 0} are of type (−1,−2), that is, they result from the intersection
between the curves W u− ∩ Σ1 and W s− ∩ Σ2. Since the L3 point does not
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Figure 8: Characteristic curves in the (h, yf ) plane of families of homoclinic
orbits that surround once either both primaries (left) or only the Moon
(right).

have a homoclinic connection of this type, these curves do not intersect
for values of the energy close to the value of the energy at L3, which is
h3 = −1.500476927936 (see Fig. 11, left). When increasing the energy,
they become tangent at energy h = ht ' −1.5004766, and, after that,
they intersect transversally in two points (see Fig. 11, right). Therefore,
we have two families of homoclinics, Hn1 and Hn2, that we have followed
by the continuation method in Sect. 2.2. Their characteristic curves are
represented in Fig. 13 left.

Let us describe these homoclinic orbits in more detail. As it is shown in
Fig. 10, the invariant manifolds present a half horseshoe shape until the first
intersections with Σ. Orbits in these invariant manifolds have loops close
to the LPO, that “straighten out” as they get away of it (see Fig. 12 left).
The presence of loops in in horseshoe periodic orbits was analyzed from the
µ = 0 case in [4]. As energy increases, the manifolds become thicker and
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Figure 9: Projection in the configuration space of some homoclinic orbits
to a LPO around L2. First row: orbits from families Ho1, Ho12 and Ho9.
Second row: orbits from the family Hi1.
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Figure 10: For µ = µSJ , projection in the configuration space of some orbits
of different branches of the invariant manifolds (W u in red, W s in blue)
associated with the Lyapunov orbits around L3 for the energies indicated.

loops appear farther from the LPO, until they eventually reach the surface
of section Σ. This happens at energy hl = −1.4994267 (see Fig. 12 right).
From this energy on, the representation of the sections of the manifold tubes
with Σ is not straightforward, because, due to the presence of loops, different
pieces of these sections are obtained by a different number of cuts with Σ
(see Fig. 14). In this way, the (±i,±j) classification of homoclinics stops
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Figure 11: For µ = µSJ , (y, py) projections of W u− ∩ Σ1 (red) and W s− ∩ Σ2

(blue) curves at the section Σ = {x = µ−1/2}, for the values of the energies
indicated.

making sense. This is not a problem for the continuation method of Sect. 2.2,
because it does not make use of the number of cuts necessary in order to
reach the section. But, in order to check for the appearance of new families
of homoclinics, it is convenient to be able to have a clear representation of
the section of the manifold tubes.
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Figure 12: For µ = µSJ , projection in configuration space of some orbits
of W u− up to their second intersection with Σ (plotted as a dotted line for
clarity). As the energy increases, the loops reach a neighborhood of the
section Σ.

This can be done if we can numerically evaluate a parametrization ψ(θ, ξ),
with θ ∈ [0, 2π] and ξ ∈ R with |ξ| not necessarily small. Assume that a
section is given by Σ = {g(x) = 0}, for g : Rn → R. Given starting values
(θ0, ξ0) such that ψ(θ0, ξ0) ∈ Σ, the curve intersection between the invariant
manifold and Σ can be obtained by continuation of the equation

g(ψ(θ, ξ)) = 0
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Figure 13: For µ = µSJ , characteristic curves of families of homoclinic
orbits around LPO of L3. Left: families of type (−1,−2) at the section
Σ = {x = µ − 1/2} in the (h, yf ) plane. Right: families of symmetric
homoclinic orbits of type (−1, +1) at the section Σ̃ = {y = 0} in the (h, xf )
plane.

with respect to (θ, ξ).
In order to numerically evaluate such a parametrization, assume there

exists a function ψ(θ, ξ) parameterizing the manifold tube and satisfying
φt(ψ(θ, ξ)) = ψ(θ+tω, etλξ), with ω, λ defined as in (7). Using this property,
and switching ψ by its linear approximation ψ (introduced in Sect. 2.2) for
small |ξ|, we can take

ψ(θ, ξ) = φt∗
(
ψ(θ − t∗ω, e−t∗λξ)

)
,

for t∗ such that |e−t∗λξ| is small.
The curves in Fig. 15 top have been obtained in this way. The initial

values (θ0, ξ0) have been obtained starting from an arbitrary phase θ∗, ξ0 =
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10−6, and computing the first cut with Σ of W u− and the second one of
W s−. Special care has to be taken in order to check for the appearance
of new families of homoclinics, since visual inspection can be misleading,
as is illustrated in Fig. 15. For energy h = −1.49602677, a graph of the
distance of each point of the curve W u− ∩ Σ1 to the curve W s− ∩ Σ2 (Fig. 15
bottom left) shows that in Fig. 15 top left there are only two intersections.
The corresponding homoclinic connections are shown in Fig. 16. For energy
h = −1.489343, the same kind of graph shows that in Fig. 15 top right there
are 4 intersections, so two new families of homoclinics have appeared. We
have not followed them.

-0.65

-0.5

-0.35

-1.05 -0.95 -0.85 -0.75 -0.65

p y

y

-0.65

-0.5

-0.35

-1.05 -0.95 -0.85 -0.75 -0.65

p y

y

-0.65

-0.5

-0.35

-1.05 -0.95 -0.85 -0.75 -0.65
p y

y

Figure 14: For µ = µSJ and h = −1.49602677, (y, py) projection of curves
W u−∩Σi obtained integrating the flow up to the i–th crossing with the section
Σ = {x = µ− 1/2} Left: i = 1. Middle: i = 1, 2 . Right: i = 1, 2, 3.

3.2.2 Homoclinics of branches of different half–spaces

When taking into account branches of different half-spaces, we can explore
the intersection either between W u− and W s

+ or between W u
+ and W s−. In

this Section we have only considered the first case (the other one can be
explored analogously). Thus, we consider the matching of W u− with W s

+ at
the section Σ = {x = µ− 1/2}, and it is found that first–order homoclinics
are of the type (−1, +4). As in the previous section, L3 does not have a
(−1, +4) homoclinic connection, so the curves W u− ∩ Σ1 and W u

+ ∩ Σ4 do
not intersect for energy levels close to h3. At energy h = −1.5004799224
they become tangent and two families of homoclinics appear. As energy
increases the curve W u

+ ∩ Σ4 winds itself up, in such a way that for energy
h = −1.500476742438758 there are 28 families of connections (see Fig. 17).

As the branches W u− and W s
+ are symmetric with respect to Σ̃ = {y = 0},

a more convenient way to display the intersection of the manifold tubes giv-
ing rise to these families of connections is to consider this section (compare
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Figure 15: Top: for µ = µSJ and the energies indicated, (y, py) projection of
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d of each point of the curve W u− ∩ Σ1 to the curve W s− ∩ Σ2, which shows
the number of intersections between them.

Fig.s (17) and (18)). Moreover, in the section Σ̃, we can distinguish between
symmetric and non–symmetric homoclinics with respect to the symmetry
(3). When considering Σ̃, symmetric homoclinics are given by the intersec-
tion points of the W u− ∩ Σ̃1 and W u

+ ∩ Σ̃1 curves that have px = 0 (px = 0
implies ẋ = 0, since y = 0 in Σ̃), and the remaining intersection points cor-
respond to non–symmetric homoclinics. With this new section, the families
of first–order homoclinics we are considering are of type (−1,+1). Recall
that, for each non–symmetric homoclinic, the application of symmetry (3)
gives a different connection of the same type.

Let us describe what happens to the curve W u− ∩ Σ̃1 when the energy
increases (see Fig. 18). Notice that W s

+ ∩ Σ̃1 can be obtained using the
symmetry (3). For h = −1.50047692243, both curves become tangent at
y = px = 0 and as h increases, there appear two families of symmetric
homoclinic orbits plus two families of non–symmetric ones (see Fig. 18, top
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Figure 16: For µ = µSJ and h = −1.49602677, projection in configuration
space of the two homoclinic orbits found for this energy (see Fig. 15).
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Figure 17: Left: for µ = µSJ and h = −1.500476742438758, (y, py) projec-
tion of the curves W u−∩Σ1 (red) and W s

+∩Σ4 (blue) with Σ = {x = µ−1/2}.
Right: zoom of the left plot.
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Figure 18: For µ = µSJ , projection in the (x, px) plane of the sets W u− ∩ Σ̃1

(red) and W s
+ ∩ Σ̃1 (blue) for different values of the energy.

left). For h = −1.500047691243 there is a new tangency, so two new families
appear (see Fig. 18, top right). As energy increases and approaches the ht

value of Sect. 3.2.1 (the energy value for which first–order homoclinics on
the same half space {y < 0} are born), new families appear and the curve
W u− ∩ Σ̃ becomes more intricate (see Fig. 18 bottom right). For h > ht,
the set W u− ∩ Σ̃1 presents a more complicated structure (see Fig. 19). The
appearance, for h > ht, of families of first–order homoclinics of branches of
the same half–space studied in the previous Section is responsible for this
fact. The role that those homoclinics play in the geometry of the successive
intersections of W u− with Σ̃ will be clarified in the following Section.

As an example of families of homoclinics of branches on different half
spaces, we have continued the 6 families of symmetric homoclinic connec-
tions that can be observed in Fig. 18, bottom left. We label such families by
Hsj , j = 1, . . . , 6, and their characteristic curves are shown in Fig. 13 right.
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Figure 19: For µ = µSJ and h = −1.50047477, projection of part of the set
W u−∩ Σ̃1 in the (x, px) plane (each point of the curve that crosses the px = 0
axis, corresponds to a symmetric homoclinic orbit of type (−1,+1)).

3.2.3 The geometry of the manifold tubes

In this subsection we would like to make some comments on the geometry
of manifold tubes for the L3 case, using the terminology of transit and
non–transit orbits introduced in [11]. We would also like to illustrate the
appearance of infinite higher–order homoclinics. Similar studies for the L1

and L2 points can be found in previous works [19, 21, 27].
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Figure 20: For µ = µSJ and h = −1.50047477. Left, (y, px) projection of the
curves W s−∩Σ2 (blue), and the component with y < 0 of the curve W u−∩Σ3

(red) which spirals tending to the curve W u− ∩ Σ1 (black). Right: (y, px)
projection of the curves W s

+ ∩ Σ2 (blue) and the component with y > 0 of
the curve W u−∩Σ3 (red) which spirals tending to the curve W u

+∩Σ1 (black).

Consider the two homoclinic connections for energy level h = −1.50047477
of the families of Fig. 13 left, and the first intersection of the manifold tube
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W u− with the tube W s− in the section Σ = {x = µ− 1/2}, which gives rise to
the W u− ∩Σ1 and W s− ∩Σ2 curves. Both curves intersect at two points that
correspond to the two homoclinics (see the closed S1–like curves in Fig. 20
left). Next, we follow the W u− branch up to its 3rd intersection with Σ. The
set W u− ∩ Σ3 (shown in Fig. 20) breaks into two parts (one in {y < 0} and
the other in {y > 0}), and exhibits a more complicated geometry.

Observe that, fixed this energy level and the sign of ẏ, any point in the
plane (y, px) represented in Fig. 20 uniquely determines a trajectory. Any
point not in W s− ∩ Σ2, when propagated forward in time, cannot cross the
W s− manifold tube. Therefore, any point of Fig. 20 in the interior (bounded)
component of the W s− ∩ Σ2 curve will approach the LPO when propagated
forward in time. A point outside this curve but close to it will also approach
the LPO.

The behavior of trajectories that go close a LPO around L3 (actually
around Li, for i = 1, 2, 3) has been described in [11]. The analysis done
in this reference is based on the linear approximation of the flow around
the equilibrium point, so it is valid in principle for energies close to the one
of L3. The numerical experiments below exhibit an analogous behavior for
higher energy levels.

According to [11], depending on wether a trajectory is inside or outside
(and near) the W s− manifold tube, we have the following two possibilities for
the next close passage to the LPO forward in time:

• Trajectories inside the W s− tube are transit trajectories, in the sense
that, for energy levels close to L3, they make a transit through the
neck region determined by the zero velocity curves. Roughly speaking,
they ’cross’ the equilibrium region. These trajectories can be obtained
starting from an initial condition in Σ such that its projection in the
(y, px) plane is inside the curve W s−∩Σ2 (Fig. 20 left). When followed
forward in time, they are close to W s− branch, surround the Hill’s region
(going from one side to the other one), approach the W u− branch and
remain in the same half–space {y < 0} (except perhaps when they are
close to the Lyapunov orbit). See Fig. 21, left.

• Trajectories outside (and near) the W s− tube are non–transit trajec-
tories. Therefore, these trajectories, when started on the section Σ
and followed forward in time, go from the {y < 0} half–space to the
{y > 0} one, approaching the LPO close to the W s− branch, and leaving
it near the W u

+ one. See Fig. 21 right.

The concept of ‘transit or non-transit’ is only valid for a specific interval
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of time, essentially between consecutive passages close to the LPO. Depend-
ing on whether the suitable intersection with Σ lies inside or outside the
W s− ∩ Σ2 set, the orbit will have or not a passage through the neck.

With respect to the W u− tube, we have a similar situation. When prop-
agated backwards in time, orbits inside the tube remain in the {y < 0}
region, whereas orbits outside go from {y < 0} to {y > 0}.
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Figure 21: For µ = µSJ and h = −1.50047477, examples of a transit (left)
and non–transit (right) orbits. See the text for more details.

We consider now the W u− ∩ Σ1 curve (Fig. 20 left) which is divided into
two components by the curve W s− ∩Σ2. According to the concept of transit
and non-transit orbits explained above, we can predict the behavior of the
orbits on the branch W u− when we follow them until the third intersection
with Σ:

• The component of W u− ∩ Σ1 inside W s− ∩ Σ2, this is, inside the W s−
manifold tube, is made of transit orbits. These orbits, when propa-
gated forward in time, come back to the section Σ into the {y < 0}
region after a close passage to the LPO. Its intersection with Σ is part
of the set W u− ∩Σ3, and is the spiral curve represented in Fig. 20 left.
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The points of the starting segment close to any of the two homoclinic
connections approach the Lyapunov orbit close to the W s− tube and
leave it close to the W u− tube, therefore accumulating to the W u− ∩Σ1

curve. They accumulate inside the W u− tube, since they come from
the {y < 0} region and therefore are transit orbits backward in time.
Thus, the intersection of this component of the W u− ∩ Σ3 curve with
W s− ∩ Σ2 gives rise to an infinity of second–order homoclinics.

• The component of W u− ∩ Σ1 outside the W s− manifold tube is made
of non-transit orbits, and therefore goes to the {y > 0} region when
propagated forward in time. The points close to the homoclinic con-
nections accumulate to the W u

+ ∩ Σ1 curve from outside, since they
come from the {y < 0} region and therefore are non-transit orbits
backward in time. The intersection of this component of W u− ∩ Σ3

with W s
+ ∩Σ2 gives rise also to another infinity of second-order homo-

clinics (see Fig. 20 right).

The existence of transit and non-transit orbits (due to the existence
of homoclinic half-horseshoe shaped connections of first order) on the W u−
tube is the explanation for the complexity shown in Fig. 19, where its first
intersection with the section Σ̃ = {y = 0} is considered. As explained
above, one piece of the tube is made of transit orbits (see Fig. 22, left),
another piece is made of non–transit orbits (see Fig. 22, right), and an
infinity of second–order homoclinics are born (of the two classes: half and
full horseshoe shaped). In particular, all the points in Fig. 20 with px = 0
correspond to symmetric homoclinic connections.

The situation can be iterated. In Fig. 23 we have added W u− ∩Σ5 to the
curves of Fig. 20 left. In the former figure, we can distinguish two pieces of
the new W u− ∩ Σ5 curve.

• The piece outside W u−∩Σ1 consists of orbits that do not make a transit
backward in time. Therefore, they come from the {y > 0} region.
Since they were started following the W u− branch, we can assure that,
forward in time, they started in the {y < 0} region, after a passage
close to the Lyapunov orbit went to the {y > 0} region, and after a
new LPO passage ended up in the {y < 0} region.

• The piece inside W u− ∩ Σ1 corresponds to orbits that come from the
{y < 0} region. Therefore, they have made two close passages to the
LPO never leaving the {y < 0} region (except, perhaps, when close to
the LPO).
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Figure 22: For µ = µSJ and h = −1.50047477, projection in configuration
space of two different orbits (transit on the left, non–transit on the right)
on the same branch W u− up to their third intersection with Σ .

The intersection of the W u−∩Σ5 curve with W s−∩Σ2 gives rise to an infinity
of third–order homoclinics.
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Figure 23: For µ = µSJ and h = −1.50047477, (y, px) projection of curves
W u− ∩ Σ1 (black), W u− ∩ Σ3 (red) and W u− ∩ Σ5 (blue).
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Let us consider the set of initial conditions such that its projection in
the (y, px) plane corresponds to the bounded region Ω limited by W u− ∩ Σ1

in the {y < 0} region. The interior of Ω is divided into two components,
R1 and R2, by the curve W u− ∩ Σ3 (see Fig. 20, left). By continuity, one
of the components, for example R1, contains the part of W u− ∩ Σ5 that lies
in the interior of Ω (see Fig. 23). We consider the trajectories with initial
conditions in R1 going backward in time. Due to the fact that they are in
the interior of Ω as the curve W u− ∩ Σ3, they are transit orbits at the first
close passage to the LPO. Furthermore, as they are in the same component
than W u− ∩ Σ5, they are also transit orbits in the second close passage to
the LPO. So, we know that the points in R1, are two times transit orbits
backward in time. Using the same reasoning, the points in R2 are transit
orbits in their first passage close to the LPO, but they must come back to
the Σ section outside Ω. Thus, they are non-transit in their second passage
close to the LPO, and must go to the {y > 0} region (always backward in
time). In this way, the ‘past’ history of a point inside Ω can be known, up
to close encounters with the LPO, from the knowledge of its position with
respect the sets W u−∩Σ2n+1. In the same spirit, the ‘future’ history of these
trajectories can be known from the knowledge of their position with respect
the intersections W s ∩ Σ2n.

A rigorous study using symbolic dynamics would allow to show the ex-
istence of orbits with prescribed itineraries. Studies of this kind have been
done in [19, 21, 30] for LPO around the L1 and L2 points. The difference
between L3 and the previous points is that, instead of prescribing itineraries
between the interior and exterior regions of the zero velocity curve, here we
would prescribe itineraries alternating between the {y > 0} and {y < 0}
regions. Among these trajectories, we could find periodic orbits with half
or full horseshoe shape, visiting the upper and lower half–spaces as many
times as desired.
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[22] G. Gómez, M. Marcote, and J. M. Mondelo, The invariant man-
ifold structure of the spatial Hill’s problem, Dynamical Systems. An
International Journal, 20 (2005), pp. 115–147.
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