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Abstract

We consider the planar Restricted Three-Body problem and the collinear equilibrium
point L3, as an example of a center×saddle equilibrium point in a Hamiltonian with
two degrees of freedom. We explore the existence of symmetric and non-symmetric
homoclinic orbits to L3, when varying the mass parameter µ. Concerning the symmetric
homoclinic orbits (SHO), we study the multi-round, m-round, SHO for m ≥ 2. More
precisely, given a transversal value of µ for which there is a 1-round SHO, say µ1,
we show that for any m ≥ 2, there are countable sets of values of µ, tending to µ1,
corresponding to m-round SHO. Some comments on related analytical results are also
made.
Keywords: invariant manifolds, multi-round homoclinic orbits, Restricted Three–
Body Problem.

1 Introduction

It is well known that homoclinic and heteroclinic connections of hyperbolic objects play an
important role in the study of dynamical systems from a global point of view. They are also
relevant in applications to celestial mechanics and astrodynamics, specially in the design
of libration point mission (see e.g. Howell et al. (1998); Gómez et al. (2004); Parker and Lo
(2006); Gómez et al. (2003) and references therein).

In this paper we will consider the circular Restricted Three–Body Problem (RTBP). We
will restrict our attention to the collinear libration points. Since the linear character of the
flow around them is center×center×saddle, the collinear points have a 4–dimensional cen-
ter manifold, which, in particular, hosts all the nominal trajectories interesting for libration
point missions. Periodic orbits and tori contained in the center manifold inherit the hyper-
bolic behavior of the equilibrium point. Thus they have stable and unstable manifolds, and
their intersections give rise to homoclinic and heteroclinic orbits.

In part due to their interest for astrodynamical applications, most attention for ho-
moclinic and heteroclinic phenomena related to libration points of the RTBP has been
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focused to L1 and L2. From the theoretical point of view, many works prove the existence
of homoclinic and heteroclinic phenomena in particular situations (see e.g. Bernard et al.
(2003); Mcgehee (1969); Llibre et al. (1985), and Wilczak and Zgliczyński (2003, 2005) for
computer–assisted proofs). Numerical computations of homoclinic and heteroclinic con-
nections of periodic and quasi–periodic solutions around L1,2 have been done in the lit-
erature by means of the use of semi-analytical techniques (Gómez and Masdemont, 2000;
Canalias and Masdemont, 2006; Gómez et al., 2005; Koon et al., 2000; Gómez et al., 2004;
Canalias, 2007) or by ’ad hoc’ continuation methods (Barrabés et al., 2008).

The L3 case has been much less investigated, although horseshoe motion, explaining the
motion of the co-orbital satellites, Janus and Epimetheus, of Saturn (see Llibre and Ollé,
2001) and near Earth asteroids (see Connors et al., 2002), has drawn some attention. The
computation of horseshoe periodic orbits (HPO) in the spatial RTBP has been done for
several authors, Schanzle (see for example 1967), or Taylor (1981) were some families of
horseshoe periodic orbits are shown for the Sun-Jupiter mass ratio. More recently, in
Barrabés and Mikkola (2005), the computation and description of the organization of fam-
ilies was done, and in Barrabés and Ollé (2006), the existence of symmetrical HPO in the
planar RTBP from the dynamical behavior of the invariant manifolds of L3 was studied.
Furthermore, there is numerical evidence (Farrés, 2005; Gómez et al., 2001; Simó, 2006) on
the fact that the stable and unstable manifolds of the objects (Lyapunov periodic orbits and
2D tori) of the center manifold of L3 in the 3D RTBP confine regions of effective stability
around the triangular points L4 and L5.

In this paper, we will deal with the simplest case, that is, we consider from now on
the planar RTBP. We want to analyze the existence of homoclinic orbits to the equilibrium
point L3 itself, when varying the mass parameter µ. This study has two main motivations.
On the one hand, the dynamics of the stable and unstable 1–dimensional manifolds of
L3 may be regarded as the skeleton or as a clue in order to know the dynamics of the
invariant manifolds of the periodic and quasi-periodic orbits close to the equilibrium point.
In particular, Lerman proved, under generic conditions, the existence of homoclinic orbits
to each hyperbolic Lyapunov periodic orbit in the presence of a homoclinic orbit to a
saddle×center equilibrium point (in a Hamiltonian with two degrees of freedom), see Lerman
(1991). This problem is revisited in Bernard et al. (2003) in the case in which there is
not a homoclinic orbit to a saddle×center equilibrium point. In Koltsova et al. (2005),
the authors analyzed the homoclinic orbits to invariant tori near a homoclinic orbit to a
center×center×saddle equilibrium point (in a Hamiltonian with three degrees of freedom).
On the other hand, the existence of an infinite set of periodic orbits accumulating to a given
homoclinic orbit (the so called blue sky catastrophe phenomenon after Devaney, see Devaney
(1977) and also explains the evolution of some families of horseshoe periodic orbits, when
varying the mass parameter µ and the Jacobi constant C (see Barrabés and Ollé, 2006).

The paper is structured as follows. Section 2 states the conventions followed for the
RTBP, the libration points and the Jacobi constant. Section 3 explores the existence of
homoclinic orbits to L3, both symmetric and non-symmetric, in the interval [.0002, .02]
that contains the Earth-Moon (µ = 0.01215) and Sun-Jupiter (µ = 0.000953875) mass
parameters. The rest of the paper is devoted to a numerical study of the cascades of multi–
round homoclinic connections accumulating to horseshoe–like homoclinic connections of
L3, that are predicted by the theoretical results in the references mentioned above. By
analyzing orthogonal crossings to the {y = 0} axis, we derive a graphical procedure that
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allows to locate the value of µ corresponding to the homoclinic connection in any level of the
cascade. In this way, one–round homoclinic connections are studied in Section 4, two–round
in Section 5, and m–round, for m ≥ 2, in Section 6.

2 The RTBP

The circular, restricted three–body problem (RTBP) describes the motion of a particle of
infinitesimal mass, moving under the gravitational influence of two massive bodies called
primaries, that describe circular orbits around their common center of mass. We will con-
sider the planar problem, in which the motion of the third body is contained in the plane
of motion of the primaries. Taking a coordinate system reference that rotates with the
primaries, with origin placed at their center of mass, and suitable units, we can assume
that the primaries have masses 1− µ and µ, µ ∈ (0, 1/2], their positions are fixed at (µ, 0)
and (µ−1, 0) and the period of their motions is 2π. With these assumptions, the equations
of motion of the third body in this rotating (also called synodical) system of coordinates,
are (see Szebehely, 1967)

x′′ − 2y′ = DxΩ(x, y),
y′′ + 2x′ = DyΩ(x, y),

(1)

where
Ω(x, y) =

1
2
(x2 + y2) +

1− µ

r1
+

µ

r2
+

1
2
µ(1− µ),

r1 =
√

(x− µ)2 + y2 and r2 =
√

(x− µ + 1)2 + y2. The system of equations (1) has a first
integral, called the Jacobi integral, which is given by

C = 2Ω(x, y)− x′2 − y′2. (2)

Furthermore, we recall that equations (1) satisfy the well known symmetry

(t, x, y, x′, y′) −→ (−t, x,−y,−x′, y′). (3)

This implies that, for each solution of equations (1), there also exists another one, which is
seen as symmetric with respect to y = 0 in configuration space.

We also recall that the RTBP has five equilibrium points: the collinear points, L1, L2

and L3, situated on the line containing the primaries, and the equilateral ones, L4 and L5,
both forming an equilateral triangle with the two primaries. We recall that xL2 ≤ µ− 1 ≤
xL1 ≤ µ ≤ xL3 , that is, L1 is between both primaries, L2 is on the left hand side of the
small one and L3 is on the right hand side of the large one.

We focus our attention on the collinear equilibrium point L3, whose position and Jacobi
constant (C3) values in terms of µ are given by (see Szebehely, 1967)

xL3 = 1 +
5
12

µ + O(µ3), C3 = 3 + 2µ + O(µ2).

It is well known that, if we write the differential equations (1) as

x′ = X(x)

then Spec DX(Li) = {±iω,±λ}, so the equilibrium point Li, i = 1, 2, 3 is a center×saddle
point. This saddle part is responsible for the existence of 1-dimensional invariant mani-
folds associated with L3. These unstable and stable manifolds can intersect, giving rise to
homoclinic connections to L3.
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3 Homoclinic connections to the equilibrium point L3

Let us explain the notation that will be used throughout this Section. The invariant unstable
(W u) or stable (W s) manifold associated with the equilibrium point L3 is 1-dimensional,
and we will denote by W

u/s
+ the branch that tends (backward/forward) to the equilibrium

point from the upper half region {y > 0} and W
u/s
− the one from the lower half region

{y < 0}. Observe that, due to the symmetry (3), the branches W u− and W s
+, as well as W u

+

and W s−, are symmetric.
In order to compute numerically a branch W u

+/− (W s
+/−), we have taken as an initial

condition L3 + s · v, where s is a small quantity (usually 10−6), v is a unit eigenvector
associated with the eigenvalue λ > 0 (λ < 0 respectively) of the Jacobian matrix of the
vector field at L3. From this initial condition, we follow the invariant manifold numerically
integrating the system of ODE, forward (backward) in time under the test check that along
the integration the Jacobi constant value must remain constant and equal to C = C3.
The computations have been done using double or even quadruple precision and a check
computation taking s = 10−5 or s = 10−7 gives rise to the same results.

The exploration of the existence of symmetric and non-symmetric homoclinics to L3 is
done for values of µ ∈ [0.0002, 0.02]. Given a value of µ, the branch W

u/s
± consists of a

single orbit and in order to find homoclinic connections we have to deal with one branch
of each invariant manifold. It becomes natural to distinguish between four different types
of homoclinic orbits, depending on which branches are involved. We consider a Poincaré
section Σ fixed values j, k ∈ N , and for each value of µ we follow one branch of W u

and one branch of W s up to the j-th and k-th crossing with the section Σ, respectively.
Each intersection is a point qu

j (µ) = (xu, yu, x′u, y′u), on the unstable branch, and qs
k(µ) =

(xs, ys, x′s, y′s) on the stable one. We define a homoclinic orbit of type (+j, +k) if following
the branch W u

+ and W s
+ up to the j-th and k-th crossing with the section Σ respectively,

the condition

qu
j (µ) = qs

k(µ) (4)

is satisfied. Similarly we define a homoclinic orbit of type (+j,−k), (−j,+k), (−j,−k) by
considering the suitable branches in the corresponding regions (see Fig. 2 for examples).
This definition depends strongly on the section Σ considered, as we will see.

Observe that the homoclinic connections of type (+j,+k) or (−j,−k) are non-symmetric.
Furthermore, due to the symmetry (3), if there is a non symmetric homoclinic orbit of type
(−j,−k), the mutually symmetric orbit is also an homoclinic connection of type (+j,+k).
We also remark that homoclinic connections of type (−j,+k) or (+j,−k) are symmetric.

Given µ, in order to check the existence of a homoclinic orbit of a given type (ie j, k
and signs) we follow this simple method: we take Σ = {x = c}, being c a constant, and we
consider the corresponding points qu

j (µ) = (xu, yu, x′u, y′u) and qs
k(µ) = (xs, ys, x′s, y′s) and

the functions:

dy(µ) = yu − ys, dx′(µ) = x′u − x′s, dy′(µ) = y′u − y′s

since xu = xs. Observe that these functions depend on j and k although we have skipped
explicitly this dependence in the notation. We also remark, and this will be seen later on,
that when we fix a j and a k, these functions may not be continuous due to the appearance
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of loops in the manifolds. Taking into account the direction of the orbits at the intersection
of the manifolds with the section and that the energy is the same for both branches, the
condition (4) of homoclinic connection is satisfied if two of these functions are equal to zero.

When varying µ some observations with respect to the behavior of the invariant mani-
folds are needed.

• As µ increases, the separation between the branches increases and the minimum dis-
tance to the small primary decreases, see Fig. 1 where the projection in the (x, y) plane
of the branches W u− and W s− until the first and second intersections (respectively) with
Σ, for different values of µ, are plotted. In fact, for µ > 0.01173615 the projection in
the configuration space of the branch W s− enters the upper half region {x < 0, y > 0}.
This means that for µ > 0.01173615, the dynamics around the small primary and the
equilibrium points L1 and L2 play a role (and the corresponding Lyapunov orbits and
their invariant manifolds). In particular, there exist values of µ for which one of the
invariant manifolds collides with the small primary (see Barrabés and Ollé, 2006) and
values of µ for which there are not homoclinic but heteroclinic connections between
L3 and a Lyapunov periodic orbit around L1 or L2 (see Fig. 1). At these values, the
functions d∗(µ) present discontinuities, so the exploration must be done carefully.

• For small values of µ, and considering few intersections with Σ, the invariant manifolds
have a (half) horseshoe shape, see Fig. 1. But as µ increases, this shape is not
conserved anymore and the invariant manifolds perform complete loops around the
big primary, see Fig. 2. This behavior must be taken into account when considering
different values for the number of intersections j and k.

• For µ small, (µ < 0.0002), all functions d∗(µ) take very small values, less than 10−6.
For this range of values of µ, the functions d∗(µ) are very sensitive to the distance of
L3 that we have taken for the linear approximation of the invariant manifolds. We
have excluded these values of our exploration.

The results obtained are summarized next, where we have typically used Σ = {x =
µ− 1/2}.

1. Non symmetric homoclinic orbits. As we have already said, it is enough to explore
the connections of type (−j,−k).

When varying µ ∈ [0.0002, 0.01173615] and according to the behavior of the invariant
manifolds, typically horseshoe shaped orbits, a necessary condition for the existence
of homoclinic orbits is to consider j + k ≥ 3. In particular, we study the cases
j = 1, k = 2, j = 2, k = 3 and j = 3, k = 4. For these values, the numerical
exploration does not reveal the existence of non symmetric homoclinic connections
to the equilibrium point L3. Of course, for other cases (bigger values of µ and given
j, k), the same procedure might be carried out.

2. Symmetric homoclinic orbits (SHO). We now look for connections of type (−j,+k) or
(+j,−k) (notice that a connection of type (−j,+k) is also of type (−(j− i), +(k + i))
for any i = 0 . . . j, and similarly with the (+j,−k) connections). We explore both
couple of branches, as their shape can be very different, see Fig. 2. Again taking into
account the behavior of the invariant manifolds, we look for homoclinic connections
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Figure 1: Σ = {x = µ − 1/2}. Projection in the configuration space of the invariant
manifolds of L3 until W u− ∩ Σ1 and W s− ∩ Σ2 for µ = 0.001 (top left), µ = 0.005 (top
right), µ = 0.02 (bottom left). Bottom right: heteroclinic orbit for µ = 0.014562349014.
(Trajectories in W u and W s in red and blue respectively.)
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µ = 0.00196201 µ = 0.012143988024852 µ = 0.0133233
(−2,+3) (+2,−5) (−2, +3)

Figure 2: Σ = {x = µ− 1/2}. Projection in the configuration space of homoclinic connec-
tions to L3 for the indicated values of the mass parameter and type. (Trajectories in W u

and W s in red and blue respectively.)

such that j + k ≥ 5. We have explored in detail the cases (−2, +3), (+2,−5) and
(−4, +5), and we have found homoclinic connections in all of them. In Fig. 2 some of
these connections are plotted. In Fig. 3 the functions dy(µ) and dy′(µ) are plotted in
the cases (−2, +3) and (−4,+5) and for a certain range of values of µ just to show
that there exist many values of the mass parameter for which an homoclinic orbit
exists. With respect to their computation it is worth doing some observations:
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(a) in particular, for type (−2, +3) there exists a sequence of values of µ tending to
zero with an homoclinic connection to L3. See Fig. 3 left. This will be clear in
next Section.

(b) connections of type (+2,−5) appear for µ > 0.00435846, which is the first value
of µ for which we have found a homoclinic connection of this type. This is due
to the fact that these types of connections are not horseshoe shaped and this
behavior appears only when µ increases. See Fig. 2 right.

(c) connections of type (−4, +5) may be related to the phenomenon of double-round
homoclinic orbits. See Fig. 3 right. Actually the analysis of symmetric one-round
and multiple-round homoclinic orbits is the purpose of the next sections.
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Figure 3: Functions dy(µ) and dy′(µ) for the (±j,±k) cases indicated and for different range
of values of µ. Each intersection of both functions at the horizontal axis for the same value
of µ corresponds to a value of the mass parameter for which a homoclinic connection to L3

exists.

4 One-round homoclinic orbits

From now on, we will consider only symmetric homoclinic orbits, SHO. For that reason, in
all that follows we will consider Σ = {y = 0} as surface of section. Denote by x′j(µ) the x′

coordinate of the j–th intersection of a branch of a manifold of L3 (e.g. W u−) with Σ. If this
j–th cut is orthogonal, that is,

x′j(µ) = 0, (5)

the application of symmetry (3) to a trajectory following W u− up to its j–th cut with y = 0
forward in time will give rise to a symmetric trajectory following W s

+ backward in time,
which will intersect the first one at the j–th cut with the x axis, at a point with y = x′ = 0,
giving rise to a SHO.

In what follows, the x′j(µ) functions will refer to the W u− branch. We will consider a
one–round homoclinic trajectory as a horseshoe–shaped SHO, as in Fig. 2 left. A j–round
SHO will therefore be a homoclinic connection that surrounds j times L3, L4 and L5. Define
the set

Λj = {µ > 0 / there exists a j-round SHO}.
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In order to detect numerically values µ ∈ Λj for a given j, we look for values of µ for which
condition (5) is satisfied.

Let us start analyzing the set Λ1. We vary the µ parameter and we consider the function
x′1(µ) given in Fig. 4 left. Its behavior provides numerical evidence of the existence of a
decreasing sequence of values of µ, with µ1

1 < 0.01, such that x′1(µ
1
n) = 0 and µ1

n → 0 when
n →∞, so µ1

n ∈ Λ1, n ∈ N (see Font (1999) for an expression of such values). For any given
value of µ1

n, the corresponding SHO (that surrounds once L4 and L5) has an orthogonal
crossing with the {y=0} axis with x < xL3 . From now on we call each µ1

n a transversal value
since the function x′1(µ) intersects transversally the µ axis (on the (µ, x′1) plane) at µ1

n. In
Fig. 4 right, we show a homoclinic orbit for the transversal value µ = µ1

n = 0.0037257851523.
We remark that the function x′1(µ) presents jump discontinuities for some values of µ.

This is due to the fact that, for µ close to each jump discontinuity, the (x, y) projection
of the W u− branch has a loop that intersects the x axis close to L3, see Fig. 5 (a similar
figure can be found in Llibre et al. (1985)). In order to compute the values of µ for which
an SHO with a loop exists, we must consider the function x′2(µ). Consider Fig. 6, where
the functions x′1(µ) and x′2(µ) are plotted. Inspection of the function x′2(µ) reveals that, in
a neighborhood of each discontinuity of the function x′1(µ), a piece of the function x′2(µ)
cuts the horizontal axis. That is, there is a value of µ, that we will call loop value from now
on, such that the corresponding unstable manifold becomes a SHO and its (x, y) projection
has an orthogonal crossing just in the middle of the loop with x < xL3 . The situation is
illustrated in Fig. 5. As µ increases, the loop moves down and stops intersecting the section,
so the function x′1(µ) presents a discontinuity. However, this is a local property of the orbit,
since globally the homoclinic orbit surrounds just once L4 and L5, so this loop value belongs
to Λ1. Fig. 5 right displays an example of such a SHO. Fig. 4 left shows the existence of a
sequence of loop values of µ, that we will denote as µ1

n ∈ Λ1, such that µ1
n ∈ Λ1 → 0 when

n → ∞. These values are in Λ1 together with µ1
n. From now on, bars will refer to loop

values.
When considering the branch W u

+, the function x′1(µ) shows the same qualitative be-
havior, giving rise also to two sequences of values of µ ∈ Λ1. The actual values are different
from the ones obtained with W u−.
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Figure 4: Left. Function x′1(µ). Right. Homoclinic invariant manifold –(x, y) projection–
for µ = 0.0037257851523.

8



-0.14

-0.1

-0.06

-0.02

 0.02

 0.86  0.9  0.94  0.98  1.02

y

x

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y

x

Figure 5: Left: two different unstable manifolds having a loop close to L3 (projection in
the (x, y) plane). Right: homoclinic manifold with the orthogonal crossing at half loop.

5 Double-round homoclinic orbits

From now on we will consider only the branch W u−. At the end of this Section we will
comment the results obtained taking the branch W u

+.
In order to study the existence of 2-round SHO, we start considering the function x′2(µ).

In the absence of loops, the zeros of this function will give the values of µ for which L3

has a double–round SHO. In the presence of loops, double–round SHO will be given by the
zeros of x′j(µ) for j ≥ 3. Fig. 6 represents the x′1(µ) and x′2(µ) functions simultaneously. In
order to discuss it, we will distinguish between transversal and loop values in the function
x′1(µ). See also Fig. 8 for a zoom.
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Figure 6: Functions x′1(µ) (in red) and x′2(µ) (blue).

Close to a transversal value of µ, µ1
n, a zoom of Fig. 6 (for example, see Fig. 8) in a

neighborhood of each one of these values reveals the existence of two sequences of values
of µ given by zeros of x′2(µ). One of these sequences, that will be denoted as {µ1,2−

n,m }m, is
increasing, whereas the other one, that will be denoted as {µ1,2+

n,m }m, is decreasing. They
satisfy

µ1,2−
n,m < µ1

n < µ1,2+
n,m , lim

m→∞µ1,2−
n,m = lim

m→∞µ1,2+
n,m = µ1

n.

For each value of µ belonging to either of the sequences, the corresponding SHO (that
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describes two rounds) has an orthogonal crossing at the second intersection with the {y = 0}
axis with x > xL3 . See Fig. 7 top left.

In a zoom of Fig. 6 near to a µ1
n value, (see Fig. 8 left) the jump discontinuities of the

x′2(µ) function that can be seen accumulating to the µ1
n value give two new sequences of

values of µ. One of them, that will be denoted as {µ1,2−
n,m }m, is increasing, whereas the other

one, which will be denoted as {µ1,2+
n,m }m, is decreasing. Together with the two previous ones,

they satisfy
µ1,2−

m,n < µ1,2−
m,n < µ1

n < µ1,2+
m,n < µ1,2+

m,n .

These two new sequences correspond to SHO that do not have a loop at the first crossing
with {y = 0}, but have one at the second crossing, so that the orthogonal crossing is the
third one, in a point with x > xL3 . These SHO correspond to zeros of the x′3(µ) function
close to a jump discontinuity of the x′2(µ) function, being in turn close to a zero of the x′1(µ)
function. An example of such an SHO is given in Fig. 7 top right.

Note in Fig. 7 top, that the two-round SHO displayed, corresponding to particular values
of the sequences µ1,2−

n,m and µ1,2−
n,m close to µ1

n, closely resemble to the one associated with
µ1

n, to which both sequences tend to. We remark that the existence of such four sequences
of values of µ is in accordance with the analytical results in Koltsova’s paper (see Koltsova
(2003)).

Consider now a loop value of µ, that is, a value in the µ1
n sequence. In this case in an

interval of values of µ near µ1
n (see Fig. 8 right) for which the (x, y) projection of the W u−

branch of the manifold of L3 has the first three crossings with the x axis, corresponding to
a loop on the left of L3, the function x′4(µ) has to be taken into account. This function is
also represented in Fig. 8 right. In this case, by the same argument as above, we obtain
again four sequences of values {µ1,2±

n,m }m, {µ1,2±
n,m }m in Λ2, corresponding to zeros and jump

discontinuities of x′4(µ), respectively. In the case of a loop discontinuity, the exact value
µ1,2±

n,m for which a SHO exists is given by a zero of x′5(µ). See Fig. 7 bottom for a particular
two-round SHO with a loop on the left of L3 for µ1,2−

n,m = 0.004192163077 close to µ1
n.

We have also carried out the exploration of the set Λ2 for the W u
+ branch of the manifold

of L3. We have omitted the results because the qualitative results are the same, although
the values obtained for the {µ1,2±

n,m }m, {µ1,2±
n,m }m, {µ1,2±

n,m }m, {µ1,2±
n,m }m sequences are different.

6 Multi-round homoclinic orbits

From the analytical results in Grotta Ragazzo (1997); Mielke et al. (1992) a cascade phe-
nomenon of multi-round homoclinic orbits in the parameter value µ follows, in the sense
that there are not only 2–round, but also 3–round,. . . , k–round SHO, for any k ∈ N, for
values of µ tending to a value µ1

n or µ1
n in Λ1. In this section we would like to illustrate this

cascade phenomenon for the RTBP in terms of the x′j(µ) functions.
Therefore we will take a particular value of µ, µ1

l = 0.0037257851523, and we will
consider a very narrow neighborhood I of it. The results for any other values µ1

n are
qualitatively the same. See Fig. 8 left.

In order to analyze the set Λk, for k ≥ 3, we compute the functions x′k(µ), for k = 3, 4, 5
in I, see Fig. 9 and 10. Due to the fact that we are using the linear approximation for the
manifold of L3 and double precision, we are not able to compute numerically the function
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Figure 7: Top: Double-round SHO for µ1,2−
n,m = 0.00371179 (left) and for µ1,2−

n,m = 0.00371559
(right) close to µ1

n. Bottom: double-round SHO for µ1,2−
n,m = 0.004192163077 close to µ1

n.
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Figure 8: Left: functions x′1(µ) and x′2(µ) around µ1
n = 0.0037257851523 and µ̄1

n =
0.00419758. Right: functions x′i(µ), i = 1, . . . , 4 for µ close to µ1

n = 0.00419758.

x′k(µ) for any value of k ∈ N, but the behavior of such functions when increasing k seems
to follow a pattern with common properties that we now describe.

The functions x′k(µ), for k = 3, 4, 5 exhibit an oscillating behavior with maximum (min-
imum) values of the function decreasing (increasing) to 0 as µ tends to µ1

l . Such oscillations
are the responsible for the existence of infinitely many values µ ∈ Λk ∩ I on both sides of
µ1

l .
From the behavior of the function x′3(µ) plotted in Fig. 9, we observe that there is one

increasing sequence of values of µ ∈ Λ3 tending to µ1
l on the left, and another decreasing

one tending to µ1
l on the right. These values correspond to the three zeros of the x′3(µ)
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function in each interval of the form (µ1,2−
l,m , µ1,2−

l,m+1) and (µ1,2+
l,m+1, µ

1,2+
l,m ) that are away from

the edges of the intervals (see Fig. 9 right). They give rise to two sequences {µ1,3−
l,m }m and

{µ1,3+
l,m }m in Λ3, which are increasing and decreasing, respectively. The zeros of x′3(µ) near

the edges of these intervals are exactly the values µ1,2±
l,m , µ1,2±

l,m+1 (see the previous Section).
Very close to these zeros of x′3(µ), there are jump discontinuities of x′3(µ) that correspond
to points in Λ3 with a loop in the second passage close to L3, and the orthogonal crossing
at the fifth intersection with the x axis. They are, therefore, zeros of x′5(µ). These zeros
give rise to sequences {µ1,3−

l,m }m and {µ1,3+
l,m }m.

Concerning the function x′4(µ) (see Fig. 10, left), we remark a main difference with the
function x′3(µ). We have just seen that, related to µ values in Λ2, there is a finite number of
values of Λ3, which all together accumulate to µ1

l . Instead of this, magnifications of Fig. 10
show that, associated to each value in Λ2, there is an infinity of values in Λ4 accumulating
to it, giving rise to a double infinity of values of Λ4 accumulating to µ1

l . This is due to the
fact that SHO in Λ4 are two–round with respect to SHO in Λ2, so the theoretical results
in Grotta Ragazzo (1997); Mielke et al. (1992) imply the existence of an infinity of SHO
in Λ4 for each SHO in Λ2. Taking loops into account, we obtain sequences {µ1,2±,4±

l,m,k }m,k,

{µ1,2±,4±
l,m,k }m,k, {µ1,2±,4±

l,m,k }m,k, {µ1,2±,4±
l,m,k }m,k.

With respect to the function x′5(µ), Fig. 10 shows that its behavior relative to x′4(µ) is
very similar to the behavior of x′3(µ) with respect to x′2(µ). We therefore have sequences
{µ1,5±

l,m }m, {µ1,5±
l,m }m. The fact that the obtained graph for x′5(µ) has some thickness instead

of being an smooth curve reveals that we are approaching the limit of numerical accuracy.
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Figure 9: Left: functions x′k(µ), for k = 1 (in red), k = 2 (in blue), k = 3 (in magenta).
Right, the same functions for k = 2, 3 in a range corresponding to two consecutive discon-
tinuities of x′2(µ), where three zeros of x′3(µ) exist (see the text for more details).

7 Conclusions

In this paper we deal with multi-round homoclinic orbits to the collinear equilibrium point
L3 of the restricted three-body problem. A multi-round homoclinic orbits tends to L3

forwards and backwards in time while the projection of the orbit in the (x, y)-plane follows
a horseshoe shaped path that surrounds several times the equilibrium points L4 and L5.
First, we examine the existence of simple (one round) homoclinic connections to L3 varying
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Figure 10: Letf: functions x′2(µ) and x′4(µ). For display purposes, the function x′4 has been
rescaled using the arcsinh(x) function, and the y axis has been labeled accordingly. Right:
functions x′4(µ), x′5(µ).

the mass parameter µ. We find that there exist two sequences of values of µ tending to
zero for which a one round homoclinic connection exists. The difference between the two
sequences is in the number of intersections of the orbit with the horizontal axis: in one case
there is only one intersection, while in the other there are three due to the presence of a
loop at y = 0. Next, for each fixed value of µ corresponding to a one-round homoclinic
connection, the existence of multi-round homoclinic orbits is studied. The analytical results
in Grotta Ragazzo (1997); Mielke et al. (1992) show that there exists a cascade phenomenon
of multi-round homoclinic orbits in the parameter value µ tending to that fixed value. We
illustrate this fact for two, three and four-round homoclinic connections to the L3 point,
pointing out the similarities and differences on the results obtained depending on the number
of revolutions considered.
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Near Libration Point Orbits – Volume 4: Advanced Methods for Triangular Points. World
Scientific. Reprint of ESA Report Study of Poincaré Maps for Orbits Near Lagrangian
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Gómez, G., W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, and S. D. Ross (2004).
Connecting orbits and invariant manifolds in the spatial Restricted Three-Body Problem.
Nonlinearity 17 (5), 1571–1606.
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Gómez, G., J. J. Masdemont, and J. M. Mondelo (2003). Libration Point Orbits: A survey
from tye dynamical point of view. In G. Gómez, M. W. Lo, and J. J. Masdemont (Eds.),
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