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Abstract. In this paper we describe a unified framework for the
computation of power series expansions of invariant manifolds and
normal forms of vector fields, and estimate the computational cost
when applied to simple models.

By simple we mean that the model can be written using a finite
sequence of compositions of arithmetic operations and elementary
functions. In this case, the tools of Automatic Differentiation are
the key to produce efficient algorithms.

By efficient we mean that the cost of computing the coefficients
up to order k of the expansion of a d-dimensional invariant manifold
attached to a fix point of a n-dimensional vector field (d = n
for normal forms) is proportional to the cost of computing the
truncated product of two d-variate power series up to order k.

We present actual implementations of some of the algorithms,
with special emphasis to the computation of the 4D center manifold
of a Lagrangian point of the Restricted Three Body Problem.

Mathematics Subject Classification: 34C20,34C30,34C30,34C30,65Pxx,68W30

1. Introduction

Math is much about solving equations and Dynamical Systems is
not an exception. In order to characterize the invariance of a manifold
with respect to a given dynamical system, one uses functional equations
whose unknows give the parameterization of the manifold, and the
known terms come from the model. In normal forms computations,
the unknowns are both the conjugacy and the normal form. In this
context, the use of series expansions of the unknowns is an standard
(and old) practice, specially in Celestial Mechanics.

In this paper we present a unified framework of different methods
to numerically compute the coefficients of power series expansions of
invariant manifolds and normal forms around a fixed point of a vector
field. A similar methodology works for maps, and for invariant man-
ifolds attached to periodic orbits and invariant tori. The framework
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is inspired in the parameterization method of Cabré, Fontich and de
la Llave [7] and the semi-numerical algorithms proposed by Simó [52],
and in fact are built on the studies of Poincaré. Specialized algorithms
also appear in [4]. A reference book on the theory of normal forms and
its applications is [45].

We moreover focus on the applicability of the framework to sim-
ple models, that are written as a finite (and relatively small) num-
ber of compositions involving elementary functions such as the four
arithmetic operations, the exponential, the power functions (including
square roots), the logarithm, the trigonometric functions, etc. or even
functions that are implicitely defined by equations involving elemen-
tary functions, etc. A key observation is that many (if not most) of the
models that appear in applications are simple. A moment of reflection
will convince the reader about that.

In this context, the use of Automatic Differentiation (AD for short)
seems to be appropriate for the symbolic manipulation of the Taylor
expansions appearing in the functional equations. AD is a set of tech-
niques based on the mechanical application of the chain rule to obtain
derivatives of a function given as a computer program, and notice that
the coefficients of Taylor series are just normalized derivatives. See
e.g. the reference book [26] and the web page of the AD community
1. We explain the use of AD tools to implement the algorithms for
simple models, and evaluate their cost. We obtain that the cost to
compute the expansions up to a given order is proportional to the cost
of making the (truncated) product of two power series up to the given
order. We will refer to these algorithms as efficient. AD tools have
been used to design efficient high-order univariate Taylor methods for
the integration of ode [54, 37] 2. This kind of tools have been also used
for manipulation of Fourier and Fourier-Taylor series in computation
of invariant tori and their associated invariant manifolds [28, 30] and
for computation of normal forms of KAM tori [31]. Our purposes for
this paper are however quite modest and we will only study AD tools
for computation of Taylor expansions of parameterizations of invariant
manifolds and normal forms of fixed points in vector fields. We post-
pone an analysis of these techniques for Hamiltonian systems to the
ongoin paper [32], in which we also introduce several algorithms for
generating canonical transformations, besides the standard ones based
on generating functions (with mixed variables) and Lie series [31].

1http://www.autodiff.org
2For more information, see the web page of the course “Advanced Course on

Long Time Integrations”, http://www.imub.ub.es/lti07/
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About the efficiency of the algorithms, we point out that we prioritize
here the ease of their implementation over their optimal (asymptotic)
complexity. For instance, we use the classical convolution formula to
compute the truncated product of two power series, with a cost that is
proportional to the square of the number of coefficients involved.

We would like to mention that Carles Simó and his collaborators
introduced dynamical systems tools to perform orbit analysis of space
missions for the ESA from 1983 to 1993, developing sophisticated algo-
rithms for computation of invariant manifolds and quasi-periodic orbits
in the Restricted Three Body Problem (RTBP) and perturbations of it.
This pioneering work is partially covered in the series [21, 23, 18, 19].
The techniques include computation of high order approximations of
invariant manifolds using (partial) normal forms [53, 36]. Influenced by
this work, the space agencies ESA and NASA use dynamical systems
techniques for many libration point missions. The NASA Genesis mis-
sion is an example. The methodology has also been used in studying
certain regimes in molecular dynamics [56, 15]. The list of applications
and researchers involved is too long and by no means we intend to be
exhaustive.

These kind of problems are a perfect ground to test our algorithms,
since there is an extensive literature and they are very-well known. We
emphasize that using normal forms referred above for the computation
of an invariant manifold seems to be quite expensive, since the dimen-
sion of the object in smaller than the dimension of the phase space. For
example, the center manifold of one collinear fixed point in the RTBP
is 4D, inside a 6D phase space, and the center manifold reduction uses
6D canonical transformations. So, it is more efficient a direct compu-
tation of the center manifold. In this paper we will compute such a
manifold using AD tools, reducing drastically both the execution time
and the memory space to store the coefficients of the expansions.

We would like to comment that, in studying an specific problem, it
is sometimes more convinient using an specific software package rather
than a commercial and general-purpose symbolic manipulator. Carles
Simó has been developing specific symbolic manipulators for a long
time to study a large variety of problems in Dynamical Systems, and
has spread this work philosophy in the BCN group of Dynamical Sys-
tems, including myself [27]. In [35], Àngel Jorba reviews the Lie series
algorithm for the numerical computation of normal forms, center man-
ifolds and first integrals of Hamiltonian systems, and apply his C/C++

software package to some examples from Celestial Mechanics (see [50]
for a parallel implementation). There are also symbolic manipulators
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for dynamical systems that, spite of their generality, are extremely effi-
cient 3. Remarkable examples are TRIP 4, developed by J. Laskar and
M. Gastineau, and COSY 5, developed by M. Berz and K. Makino. We
have developed our own symbolic manipulator of multivariate power se-
ries, including AD tools (a preliminary version was used in [27]). Some
implementation details appear in Section 5, including some benchmarks
for the exceedingly meticulous reader. 6

We finally emphasize that the computation of semi-local approxima-
tions of invariant manifolds and normal forms is just a first step for
the understanding of the global dynamics. The approximations are
accurate in a possibly large neighborhood of the steady state, a funda-
mental domain estimated using goodness tests of numerical solutions of
the functional equations. Developing algorithms to globalize (and even
visualize) the manifold, that is, to grow the manifold from the funda-
mental domain far away of the equilibrium point, is an issue that have
attracted the attention of many authors. Even if we will not pursue this
study here, we just mention that for 1D manifolds this is folklore, and
for 2D manifolds there are several methods that have been proposed
in the literature. See the interesting paper [41] for a review of several
methods, some of them based on the growth of the manifold from its
linear approximations. Even if those methods can work relatively well
for the case of the stable and unstable manifolds, linear approximations
are not accurate enough for computing center manifolds, or slow mani-
folds inside the stable manifold. It would be very interesting to combine
those globalization methods with semi-local approximations. We also
emphasize that high accuracy is also very useful if one is interested in
computing accurate individual orbits on the invariant manifold, rather
that in computing the whole manifold, e.g. if one is designing a space
mission. Problems like the numerical computation of splitting of sep-
aratrices also need high accuracy and high order approximations (see
e.g. [47, 49]).

The scheme of the paper is the following. In Section 2 we review the
functional equations that characterize invariant manifolds and normal
forms. The AD tools for multivariate power series are explained in
Section 3. Section 4 is devoted to the algorithms of solution of the

3See e.g. the web pages of the “Advanced School on Specific Algebraic Manip-
ulators”, http://www.imub.ub.es/sam07/, and the “Advanced Course on Taylor
Methods and Computer Assisted Proofs”, http://www.imub.ub.es/cap08/.

4http://www.imcce.fr/Equipes/ASD/trip/trip.php
5http://www.bt.pa.msu.edu/index cosy.htm
6The source codes can be obtained upon request by contacting the author. We

however mention that, for the moment, the codes are not fully documented.
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functional equations, and we evaluate their cost. Some implementation
details of our software package,including some benchmarks, are given
in Section 5. Actual implementations of the algorithms, to compute
invariant manifolds in the RTBP, are described in Section 6. The final
Section 7 contains several conclusions and proposals of future work.

2. The functional equations

Let us start reviewing the functional equations characterizing the
invariance of a manifold with respect to a discrete dynamical system
(a map), and then we will consider the continuous case (a flow), that
is in fact the main subject of this paper. The present formulation is
known under the name of parameterization method, from the papers
[7, 8, 9]. For the sake of simplicity of the exposition, we will assume
that all the objects (manifolds, maps, vector fields, etc.) are sufficiently
differentiable, C∞ or even analytic.

Given a map F : N → N in an n-dimensional manifold N , a d-
dimensional manifold W = Φ(W ) embedded in N through an immer-
sion Φ : W → N is invariant under F if there exist a map f : W → W
such that

(1) F ◦Φ = Φ◦f .

Notice that a point z = Φ(s) ofW , parameterized by s ∈ W , is mapped
to a point

(2) F (Φ(s)) = Φ(f(s))

of W , parameterized by f(s) ∈ W . We can think of Φ as a semiconju-
gacy, and f as a subsystem of F .

Similarly, given a vector field F in an n-dimensional manifold N ,
a d-dimensional manifold W = Φ(W ) embedded in N through the
immersion Φ : W → N is invariant under F if there exist a vector field
f on W such that

(3) F ◦Φ = TΦ f ,

where T is the tangent functor (the differential). Notice that the vector
field TΦ f is tangent to W in N . Using local coordinates z for N and
s for W , the vector field in N is written ż = F (z), the vector field in
W is ṡ = f(s), and the invariance equation is

(4) F (Φ(s)) = DΦ(s) f(s) .

Observe that in both invariance equations (1) and (3) (or the lo-
cal versions (2) and (4)) there are two unknowns Φ and f , meaning
respectively the parameterization of the invariant manifold and the
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dynamics on it. So then, the number of equations is n while the num-
ber of unknowns is n + d, and both equations are underdetermined.
The underdeterminacy comes from the fact that if (Φ, f) is a solution
of (1) (resp. (3)), then (Φ◦h, h−1◦f ◦h) (resp. (Φ◦h, (Th)−1f ◦h)) is also
a solution.

There are two main philosophies in order to solve the equations (1)
or (3):

• The graph transform method: looking for an uncomplicated pa-
rameterization of the manifold, Φ, e.g. a graph with respect to
certain coordinates, and afterwards find f ;
• The parameterization method: adapt the parameterization Φ to

the shape of the manifold (even including turns, which is not
possible with the graph representation), in such a way that the
equations of the reduced dynamics, f , are uncomplicated, e.g.
in normal form (linear or polynomial ifW is an stable manifold
of a fixed point, or a rotation if W is a torus, or a product of
a linear map times a rotation if W is the stable manifold of a
torus, etc.).

We can also use a mixed strategy, combining graph representation for
some variables, and normal form representation for the rest of the vari-
ables. So, one can define an style of the parameterization. We em-
phasize that the parameterization method includes the computation of
normal forms (total or partial) as a particular case. In this view, if
W = N and Φ : N → N is a diffeomorphism, then the f in (1) and
(3) is just the F written in new coordinates.

Both methodologies give rise to rigorous proofs on existence of in-
variant manifolds. The celebrated theorems of the stable manifold or
the center manifold have been proved many times in the literature
using the graph local representation, a methodology that goes back
to Hadamard (see e.g. [39]). More recently [7], the parameterization
method have been introduced to prove the existence and uniqueness
of a variety of invariant manifolds, including the classical stable and
strong stable manifolds, but also the so called slow manifolds. Par-
abolic manifolds have been also studied using this method in [3, 2].
The parameterization method has been applied to produce rigorous
results of existence of invariant tori and whiskers in quasiperiodically
forced systems, giving rise to algorithms that have been implemented
in several examples [29, 28, 30]. Different styles of normal forms are
considered in [45].

Let us consider now the case of invariant manifolds (and normal
forms) of fixed points. In this case, one can expand both Φ and f
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as Taylor series, and recursively compute their coefficients from the
functional equations (2) or (4). These power series provide semi-local
approximations of the objects.

Looking both sides of (2) and (4), we first notice that in their left
hand side, F is known and Φ is unknown. One possibility to perform
the composition F ◦Φ is compute first the Taylor expansion of F around
the fixed point, and then substitute formally the power series of Φ in
such Taylor expansion. There are even close form expressions of the
coefficients of the composition, say the Faà di Bruno’s formula. But this
is a hard computational task, that have been paid a lot of attention in
the computer science literature (see e.g. [6, 40]). Fortunately, in many
cases the given system F is simple, so one can produce efficient ways
of performing F ◦Φ. We will use here the AD tools to compute these
compositions efficiently. This is the object of Section 3.

In the right hand side both Φ and f are unknown. Here both equa-
tions (2) and (4) are very different. The discrete case appears to be
more difficult computationally than the continuous case, since the com-
position in (2) turns a matrix product in (4). After all, the infinitesimal
version of the composition is the product. Notice that, especially in the
discrete case, the use of the parameterization method is more efficient
since one looks for the simplest f , so the simplest way of performing
the composition Φ◦f(s). In the continuous case, there is not a great
computational gain, since one has to do DΦ(s) f(s), which involves
products of power series. The methods to compute recursively the un-
knowns Φ and f for equation (4) are explained in Section 4. See e.g.
[24] for some implementations of the methodology to solve (2) using
the parameterization method, and e.g. [27] for the graph method for
2D and 3D invariant manifolds.

In this paper we consider equations (2),(4) at a formal level. So, the
unknown functions (Φ, f) are represented as power series around the
origin. Real-analytic functions are certainly represented in this way,
but power series are also asymptotic Taylor expansions of C∞ func-
tions. For functions that are finite differentiable one should consider
only truncated power series. Sometimes, one has to appeal to the com-
plexification trick, so one has to use complex power series. All these
standard considerations are left to the reader.

3. Multivariate power series

In this section, we are interested in how to handle the left hand side
of (2),(4), in case that the equations describing the models described
by F are simple.
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3.1. Algebraic manipulations of power series. Given a commu-
tative ring K, a (formal) power series in the variables x = (x1, . . . , xd)
with coefficients in K is an element of the ring K[[x]] = K[[x1, . . . , xd]],
whose elements are of the form

(5) f(x) =
∞∑
k=0

fk(x) ,

where each fk(x) is a homogeneous polynomial of order k, that is an
element of Kk[x]. Notice that the modifier “formal”, that we will omit
from now on, has to do with the fact we only consider the algebraic
structure of K[[x]], and we are ignoring questions of convergence of the
expansions.

In this paper we will only consider real and complex power series,
that is the fields K = R and K = C. If, for instance, K is the ring of
Fourier series, then the elements of K[[x]] are Fourier-Taylor series.

Notice also that K[[x]] =
⊕∞

k=0 Kk[x] is a graded algebra. This point
of view is specially important for us since the solution of the functional
equations (2),(4) is made “order by order”. So, in the computer im-
plementation of our symbolic manipulator of power series, we take into
account that a series is an infinite sum of homogeneous polynomials
representing each order, see (5). Of course, we can only hope to store
the homogeneous polynomials up to a finite degree, that is a truncated
power series. We will write

f≤k̄(x) =
k̄∑
k=0

fk(x),

the truncated series up to degree k̄. We will also use the obvious
notations f<k̄(x), f>k̄(x), etc.

Remark 3.1. There are other ways of grouping terms that are useful
in some cases, if the variables enter in the problem object of study in
different ways. For example, if the system depends on parameters and
one uses expansions w.r.t the state variables and the parameters. In
fact, one can use power series w.r.t. to the parameters, with coefficients
being power series w.r.t to the state variables.

Notice that we can represent (and store) a homogeneous polynomial
of order k

fk(x) =
∑

m1+···+md=k

fm1,...,md
xm1

1 . . . xmd
d =

∑
|m|=k

fmx
m



AUTOMATIC DIFFERENTIATION IN DYNAMICAL SYSTEMS 9

(we use the standard multi-index notation) as a vector with

hd(k) :=

(
d+ k − 1

d− 1

)
coefficients,

which are ordered, e.g., using the lexicographic order w.r.t the expo-
nents (m2, . . . ,md). The total number of coefficients of a polynomial
of degree k is

nd(k) :=

(
d+ k

d

)
∼ 1

d!
kd ,

where ak ∼ bk means that lim
k→∞

ak
bk

= 1. This is important to estimate

the computer memory space needed to store the coefficients.
Let us discuss briefly the four basic arithmetic operations in K[[x]].

Let a(x) =
∑∞

k=0 ak(x), b(x) =
∑∞

k=0 bk(x) be two power series. The
scalar multiplication of the series a(x) by a scalar α ∈ K is just

α · a(x) =
∞∑
k=0

α · ak(x) ,

and the addition/subtraction of both series a(x) and b(x) is

a(x)± b(x) =
∞∑
k=0

(ak(x)± bk(x)) .

Obviously, these operations are implemented at each order just like the
scalar multiplication and addition/subtraction of vectors.

The product of the two series is defined as

a(x) · b(x) =
∞∑
k=0

(
k∑
l=0

al(x)bk−l(x)

)
.

Hence, using this convolution formula one has to multiply at each order
homogeneous polynomials of complementary order.

The fourth arithmetic operation is the division of two power series

a(x)/b(x) =
∞∑
k=0

dk(x) ,

where d0 = a0/b0 (assuming that b0 is invertible, e.g. in our case of
study, b0 6= 0), and the rest of terms are computed recursively by

dk(x) =
1

b0

(
ak(x)−

k−1∑
l=0

dl(x)bk−l(x)

)
.

Notice that the cost for computing the division up to order k is essen-
tially the same as the product of two series up to order k.
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Remark 3.2. The (truncated) multiplication of two power series is
the most critical operation because, as in the definition of the division,
this and many other functions are built up on the product. Moreover,
the cost of the scalar multiplication and the addition/subtraction is
negligible compared with the cost of the product. So, having a good
implementation for the product is crucial for having a good symbolic
manipulator.

Remark 3.3. We use the naive way of multiplying power series, based
on the definition, but we emphasize that there are (asymptotically)
faster algorithms, based e.g. in Karatsuba or Toom-Cook methods
[38, 55, 11, 5], FFT [51, 6, 40, 57, 58], including multipoint-evaluation
and interpolation techniques [42, 46]. In fact, finding fast algorithms for
multiplying polynomials is object of current research. Unfortunately,
who writes these lines is not an expert in these matters, and we will
use the classical convolution formula. In our defense we will say that
the degree of the polynomials at which these fast algorithms start to be
much better than the naive method seems to be quite large, say, higher
than 100. Another alternative it would be paralellized computation.

Remark 3.4. One can also use Newton method for finding the (trun-
cated) inverse of a power series, say d(x) = 1/b(x). So, at each step m
of Newton method, starting from d0(x) = 1/b0, one computes

dm(x) = dm−1(x)(2− dm−1(x)b(x)) .

It is easy to see that the error series em(x) = dm(x)b(x)− 1 is zero up
to order 2m − 1 (in fact, em(x) = −(em−1(x))2), so at each step one
doubles the number of correct terms. This strategy can be used for
many other power series computations.

We emphasize, however, that, using the convolution formula to per-
form the products of the Newton recursion, the computational cost to
compute the inverse of the power series up to order k = 2m − 1 is
essentially the same as using the naive recursion. The way of making
the Newton method more competitive is using fast methods to perform
the products (see e.g. [43]).

3.2. A definition of algorithmic complexity. In the following, we
are interested in a definition of complexity of an algorithm manipu-
lating power series which is independent from the specific algorithm
and implementation used to compute truncated products, and which
is useful to obtain easy estimates of the running times in actual imple-
mentations of the algorithm.

Definition 3.5. Let pd(k) be the cost to compute the truncated prod-
uct up to order k of two d-variate power series. Given an algorithm



AUTOMATIC DIFFERENTIATION IN DYNAMICAL SYSTEMS 11

to compute expansions of d-variate power series up to order k (for a
given problem, e.g. compute invariant manifolds), we will say that the
algorithm is efficient if its cost is proportional to the cost of the product,
cpd(k), where the constant c does not depend on k and it is referred to
as the complexity of the algorithm.

This will be our working definition of complexity along the paper, in
which the cost of the truncated product of power series is a parameter,
depending on the specific algorithm and the implementation used.

3.3. Radial derivative. An elementary operator that we have found
very useful is the radial derivative. The radial derivative of a function
f(x) is defined by

Rf(x) = gradf(x) · x =
d∑
i=1

∂f

∂xi
· xi .

It is a derivation in the algebra of differentiable functions, that is to
say for all functions f ,g and constants α,

• R(αf) = α ·Rf , R(f + g) = Rf +Rg (R is linear);
• R(fg) = Rf · g + f ·Rg ( Leibniz rule).

What is the most important for us is the behavior of R acting on ho-
mogeneous functions, and in particular, on homogeneous polynomials.
If fk is a homogeneous function of order k, then Rfk(x) = kf(x), which
is the famous Euler’s identity.

So, it is quite natural to define the radial derivative of a power series
f(x) =

∑∞
k=0 fk(x) as

Rf(x) =
∞∑
k=0

kfk(x) .

The radial derivative is also a derivation in the algebra K[[x]].

3.4. Elementary functions of power series. Composition of power
series is the bottleneck in many algorithms. For instance, if ϕ = ϕ(z)
is function in the one dimensional variable z and f(x) =

∑∞
k=0 fk(x) is

a power series, one can certainly compute the composition ϕ(f(x)) by
expanding ϕ around f(0), computing the powers fm and adding up.
The same ideas work if the function ϕ is multivariate.

But if ϕ simple, that is composed by arithmetic operations and el-
ementary functions, it is better to derive specific formulae. This is
the philosophy of Automatic Differentiation [26]. The following is a
generalization to several variables of some tricks appearing e.g. in the
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Knuth’s magnus opus “The Art of computing programming” [40]. We
will explain them with the aid of the radial derivative.

An elementary observation is that, for an univariate function ϕ =
ϕ(z) and a multivariate function f = f(x),

(6) R(ϕ◦f)(x) = ϕ′(f(x)) Rf(x) .

We can think of (6) also at a formal level. So if ϕ satisfies e.g. some
elementary differential equation, we can use (6) to obtain a recurrence
for the homogeneous terms gk of the power series g = ϕ◦f , starting
from the seed g0 = ϕ(f0). In the following lines, we will specify this
idea in some examples.
The exponential. As a first example, consider ϕ(z) = ez, and e(x) =
exp(f(x)). The zero order term is e0 = exp(f0). Since ϕ′(z) = ϕ(z),
then Re(x) = e(x)Rf(x) and the series e(x) = exp(f(x)) is computed
recursively by

ek(x) =
1

k

k−1∑
l=0

(k − l)fk−l(x)el(x) .

Notice that the cost up to order k is ∼ pd(k).
The power function. Consider now the power function of exponent
α 6= 0, ϕ(z) = zα. Here it is the computation of p(x) = (f(x))α, whose
zero order term is p0 = fα0 (we assume f0 6= 0). From the identity
f(x)Rp(x) = αp(x)Rf(x), we obtain the recurrence

pk(x) =
1

k f0

k−1∑
l=0

(α(k − l)− l) fk−l(x)pl(x) .

Notice that the case α = −1 corresponds to p(x) = 1/f(x) (compare

with the division algorithm), and α = 1
2

corresponds to p(x) =
√
f(x).

Notice that the cost up to order k is ∼ pd(k).
A special case is α = 2, because we can compute p(x) = f(x)2 by

using the recurrence

pk(x) =

k
2
−1∑
l=0

fl(x)fk−l(x) + f k
2
(x) if k is even

pk(x) =

k−1
2∑
l=0

fl(x)fk−l(x) if k is odd

Hence, the cost of making the square up to order k is ∼ 1
2

pd(k).
Similar recurrences can be obtained e.g. for the logarithmic function,

with a cost ∼ pd(k).
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Trigonometric functions. Since the trigonometric functions sin and
cos satisfy the same second order linear differential equation, we com-
pute them at the same time, even if in our model appears only one
of them. If s(x) = sin(f(x)) and c(x) = cos(f(x)), then Rs(x) =
c(x) Rf(x) and Rc(x) = −s(x)Rf(x), and we obtain the recurrences

sk(x) =
1

k

k−1∑
l=0

(k − l)fk−l(x)cl(x),

ck(x) = −1

k

k−1∑
l=0

(k − l)fk−l(x)cl(x),

that we start from s0 = sin(f(0)) and c0 = cos(f(0)). Notice that, in
this case, the cost is ∼ 2pd(k).

Similar recurrences can be obtained for the composition with the
hyperbolic functions sinh and cosh, with a cost ∼ 2pd(k). Again, a
similar construction can be used to compute recurrences for the com-
position with Jacobi elliptic functions (fixed an elliptic modulus), since
the three functions sn, cn, dn satisfy a system of 3 quadratic differential
equations. So, in this case one obtains a cost ∼ 3pd(k).

In summary, as a general (and heuristic) rule, one can derive effi-
cient formulas for the composition ϕ◦f if ϕ satisfies a simple differen-
tial equation. In the cases mentioned above the elementary functions
ϕ where univariate and satisfied algebraic ordinary differential equa-
tions. There is some kind of recursivity in the definition of elementary
function. For instance, as long as a function satisfies an algebraic dif-
ferential equation whose coefficients are previously defined elementary
functions, then such a function can also be considered as elementary.

3.5. The complexity of a simple model. In the examples described
above, the cost of the computation of the composition of a power series
with an elementary function up to order k is proportional to the cost
of the product pd(k). Hence, rather than giving a formal definition of
what a simple model is, we will appeal to the common sense and say
that:

• a model (map, vector field, Hamiltonian, etc.) is simple if we
can decompose the equations of the model in a finite sequence
of single expressions, being a single expression any of the arith-
metic operations or the elementary functions such as exponen-
tial, logarithm, sinus, etc.;
• the length of the model is the number of single expressions in

which the model is decomposed;
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• the complexity of the model is the sum of the complexities of the
single expressions, where: the complexity of the scalar multipli-
cation, the addition and subtraction is zero; the complexity of
the product, division, exponential, logarithm, power function,
etc. is 1; the complexity of the square is 0.5; the complexity
of the trigonometric functions sin and cos, the hyperbolic func-
tions sinh and cosh is 2; the complexity of any of the three
elliptic functions sn, cn, dn is 3; etc.

If in the model appears other functions, one has to incorporate them
into the definitions and in the implementation of the software package,
and compute their corresponding complexities.

Notice also that, when doing compositions of the model with power
series, the memory space needed to store all the intermediate steps to
compose the single expressions of the model has to do with the length
of the model, and the velocity to make effectively the computation has
to do with the complexity of the model.

We also emphasize that both the length and the complexity are not
absolute definitions and they depend on the ability (or the laziness)
of who writes the codes, etc. For instance, if in the equations of the
model appear the tangent function tan, but not sin and cos, rather
than computing first both sin and cos and then divide both, all of this
with a complexity 3, one can compute tan directly with a complexity
1.5. The researcher has to decide if gaining 1.5 is crucial or not for the
computation.

3.6. The cost of a (truncated) product. In previous sections we
have seen that the elementary operations of (truncated) series are built
on the (truncated) product. So, this is the key operation and it is
useful to know what is its computational cost. We use the classical
convolution formula.

We measure the cost in terms of the number of operations with the
coefficients, meaning essentially by operation “make one product and
one addition, and index the result”, which is the step that has to be
repeatedly done when doing the product of polynomials. Notice that
the cost of a single operation depends on the type of coefficient (in-
teger, real, interval, complex, Fourier series, etc.) and the precision
(single, double, multiprecision, etc.), but it also depends on the index-
ing algorithm to put the results on the data structure encoding the
series. So, good implementations should consider not only the number
of arithmetic operations and their cost, but also the time consumed
indexing the results. In cases in which arithmetic operations are much
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more expensive computationally than indexing, such as when the coef-
ficients are in multiprecision or are (truncated) Fourier series, indexing
routines are not so relevant. In our package, with the naive method
using trees, specific indexing routines are not used. See Section 5 for
implementation details and benchmarks.

Since we use the naive method, given two d-variate homogeneous
polynomials of orders l and m, the cost of making the product is

phd(l,m) :=

(
d+ l − 1

d− 1

) (
d+m− 1

d− 1

)
number of operations. Hence, the number of operations in making the
truncated product of two d-variables series up to degree k is

(7) pd(k) =
k∑

m=0

m∑
l=0

phd(l,m− l) =

(
2d+ k

2d

)
∼ 1

(2d)!
k2d .

Remark 3.6. As a result of this combinatorial formulae, one easily
obtains that

pd(k) ∼ d!2

(2d)!
n2.

where n = nd(k) is the number of coefficients. Karatsuba-type methods
satisfy

pd(k) ∼ CK n1+ε ,

for some ε in ]0, 1[. Asymptotically faster algorithms (with quasi-linear
complexity, e.g. based on FFT) have costs like

pd(k) ∼ CF n logα(n) logβ(log n),

where α ≥ 1, β are non-negative exponents. We note that the constants
CK and CF are usually “big”.

4. Computation of invariant manifolds and normal forms

In this section we review different methods to solve formally (4), that
is, to find power series expansions of invariant manifolds attached to
fixed points of vector fields. We also determine the complexity of the
derived algorithms, specifically for simple vector fields.

4.1. The invariance equation. To start with, let

(8) ż = F (z) ,

be an n-dimensional vector field, where z = (z1, . . . , zn). Given a fixed
point z0, with a d-dimensional invariant subspace for the linearization
ż = DF (z0)z around z0, we want to associate an invariant manifold for
the whole system tangent to such linear subspace.
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Without loss of generality, we assume that

• The fixed point is the origin: F (0) = 0;
• The linearization has a block diagonal form:

DF (0) =

(
A1 B
0 A2

)
,

with respect to the splitting z = (x, y), x = (x1, . . . , xd), y =
(y1, . . . , yn−d), where d ≤ n.

These assumptions are not restrictions, because we can obtain this for-
mulation around a fixed point by using affine maps, which are negligible
in computations. We then write the vector field (8) as

(9)
ẋ = F x(x, y) = A1x+By + F x

≥2(x, y)
ẏ = F y(x, y) = A2y + F y

≥2(x, y) .

In the following, we will also use notations such as vx or vy to denote
the projections of v ∈ Rn in x or y components, respectively.

For the sake of simplicity, we also assume that A1 = diag(λ1, . . . , λd)
and A2 = diag(µ1, . . . , µn−d). If there are complex eigenvalues, we ap-
peal to the complexification trick. Even if most of what follows works
also for triangular matrices A1,A2, as in the Jordan normal form, or
even for general matrices, the computer implementation of the algo-
rithms is not so straightforward. See [4, 45].

Let z = Φ(s) be a parameterization of the invariant manifold, where
s = (s1, . . . , sd) are the coordinates, with Φ(0) = 0. The motion on the
manifold is described by the vector field ṡ = f(s), with f(0) = 0. The
invariance equation is

(10) F (Φ(s)) = DΦ(s)f(s) ,

that we consider in terms of power series (for the unknowns Φ and f).
So, we write

(11)

x = ϕ(s) = s+
∑
k≥2

ϕk(s) ,

y = ψ(s) =
∑
k≥2

ψk(s) ,

for the parameterization and

(12) f(s) = A1s+
∑
k≥2

fk(s) ,

for the reduced vector field on the manifold.
Notice that if the vector field ż = F (z) is simple, the composition

in the left hand side of (10), F (Φ(s)), up to degree k has a low cost:
c pd(k), where c is the complexity of the system F .
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4.2. The homological equations. The standard procedure to solve
(formally) (10) is substituting the expansions (11) and (12) in (10), and
find their homogeneous terms order by order. Notice that first order
terms of both (11) and (12) are already known.

In the step k > 1, we want to compute Φk(s) = (ϕk(s), ψk(s))
> and

fk(s), assuming that we have already computed Φ<k(s) and f<k(s).
Moreover, when starting the step k we have already computed and
stored from the previous steps the left hand side of (10) up to order
k − 1, that is, [F (Φ<k(s))]<k.

The first computation we have to do is [F (Φ<k(s))]k. In fact, when
doing this computation we not only have [F (Φ<k(s))]<k, but also all
the intermediate steps in the evaluation of F . In case F is simple, we
have stored all the results of the simple operations up to order k − 1.
So the only thing we have to do is obtaining the k-order terms of these
intermediate operations. This is done using AD tools.

Then, the k-order terms in the invariance equation (10) lead us to
the k-order homological equation
(13)

DΦk(s)A1s−AΦk(s)+DΦ1(s)fk(s) = [F (Φ<k(s))]k−
k−1∑
l=2

DΦk−l+1(s)fl(s) ,

where the unknowns are ϕk(s), ψk(s) and fk(s). The splitting of the
equation in (x, y) variables is

Dϕk(s)A1s− A1ϕk(s) + fk(s) = Rx
k(s) +Bψk(s) ,(14)

Dψk(s)A1s− A2ψk(s) = Ry
k(s) ,(15)

where Rk(s) denotes the right hand side of (13), that is known from
the previous order terms.

After solving (13) (or (14) and (15)), we compute [F (Φ≤k(s))]≤k just
adding AΦk(s) to [F (Φ<k(s))]k.

Let us consider now the solution of (13). From now on, we will also
use the notation

Φ(s) = (ϕ1(s), . . . , ϕd(s)︸ ︷︷ ︸
ϕ(s))>

, ψ1(s), . . . , ψn−d(s))︸ ︷︷ ︸
ψ(s)>

)>.

First, we solve (15). We denote ψ̂k(s) = Ry
k(s). Since the matri-

ces A1, A2 are diagonal, then we can also diagonalize the homological
equations (15), writing for j = 1, . . . , n− d

λ1
∂ψjk
∂s1

s1 + · · ·+ λd
∂ψjk
∂sd

sd − µjψjk(s) = ψ̂jk(s) .
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If ψjk(s) =
∑
|m|=k ψ

j
ms

m and ψ̂jk(s) =
∑
|m|=k ψ̂

j
ms

m, then

ψjm =
ψ̂jm

λ ·m− µj

provided that the denominators are non zero. So, we can solve (15)
(and (13)) at all orders if ∀|m| ≥ 2 , ∀j = 1, . . . , n−d, λ·m−µj 6= 0. We
will refer to the pairs (m, j) ∈ Nd×{1, . . . , n−d} with |m| ≥ 2 such that
λ·m−µj = 0 as primary resonances. These are obstructions to solve the
homological equations, and so to the computation of the expansions of
the paramaterizations. So, we will refer to the non-existence of primary
resonances as the primary non-resonance condition.

Notice that there many ways of grouping the eigenvalues for which
the primary non-resonance condition holds. Among them:

• stable manifold: Reλi < 0,Reµj ≥ 0 ;
• unstable manifold: Reλi > 0,Reµj ≤ 0;
• center manifold: Reλi = 0,Reµj 6= 0;
• center-stable manifold: Reλi ≤ 0,Reµj > 0;
• center-unstable manifold: Reλi ≥ 0,Reµj < 0;

where Re denotes the real part of a complex number.
Let us consider (14), and denote ϕ̂k(s) = Rx

k(s) + Bψk(s) (at this
point, we already know ψk(s)). Again, we split (14) in d equations,
writing for i = 1, . . . , d,

λ1
∂ϕik
∂s1

s1 + · · ·+ λd
∂ϕik
∂sd

sd − λiϕik(s) + f ik(s) = ϕ̂ik(s) .

We have some freedom to solve it, and there are several ways of finding
solutions. Among them:

• Graph transform method. We take at each step ϕk(s) = 0 and
fk(s) = ϕ̂k(s). This corresponds to obtain the invariant mani-
fold as a graph y = ψ(x) =

∑
k≥2 ψk(x). Notice that the con-

struction is equivalent to solve Dψ(x)f(x, ψ(x)) = g(x, ψ(x)),
and get f(x) = f(x, ψ(x)).
• Parameterization method. We reduce the dynamics on the man-

ifold, as obtaining a normal form for f (in fact, if n = d this is
doing a normal form of the vector field). To do so, for |m| = k
and i = 1, . . . , d, we choose

f im = 0 , ϕim =
ϕ̂im

λ ·m− λi
, if λ ·m− λi 6= 0;(16)

f im = ϕ̂im , ϕim = 0, if λ ·m− λi = 0.(17)
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We refer to the pairs (m, i) ∈ Nd×{1, . . . , d} with |m| ≥ 2 such
that λ ·m− λi = 0 as secondary resonances.

In summary, primary resonances λ · m − µj = 0 are obstructions
to solve the homological equations and compute the expansions, while
secondary resonances λ ·m − λi = 0 are obstructions to linearization
(or simplification) of the dynamics on the manifold.

Remark 4.1. If the matricesA1, A2 are not diagonal, the non-resonance
conditions are the same, but the solution of the homological equations
is harder [4, 45]. A possibility is using BLAS (Basic Linear Algebra
Subprograms), included e.g. in LAPACK and GSL.

For instance, if we compute the stable manifold, there are not pri-
mary resonances and only a finite number of secondary resonances, so
the equations on the stable manifold can be reduced to polynomial (or
even to linear, if there are no secondary resonances), just like in the
Poincaré-Dulac normal form. We can also use the parameterization
method if the eigenvalues λ1, . . . , λd have negative real part, and there
are no primary resonances. If the eigenvalues are those that have “less
negative” real part, the invariant manifold is a slow manifold, that dom-
inates the dynamics on the stable manifold [7]. Similar considerations
work for the case of eigenvalues with positive real part.

If we compute the center manifold, that is the eigenvalues λ1, . . . , λd
are those with zero real part, there are infinitely many secondary res-
onances, so the graph method is a good choice. (There are cases in
which one can use a more refined parameterization method for a center
manifold, to eliminate “most” of the secondary resonances. See [3, 2]).
Even if generically the power series expansions of center manifolds are
divergent, they provide good local approximations.

One can also used a mixed strategies. For instance, in the parameter-
ization of a center-stable manifold one can distinguish between center
parameters and stable parameters, for which one uses a combination
of the graph representation and the parameterization method.

Finally, we emphasize that the freedom to solve the homological
equations is also suitable for stability of numerical computations. One
can save the close to resonance coefficients, in order to avoid small
divisors. This is also useful in parameter depending models crossing
a resonance, since one gets smooth dependence on parameters of the
parameterizations and dynamics of the manifold.

4.3. Computational cost. We will estimate now the computational
cost of solving the invariance equation (10) up to order k. The solutions
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are either paramaterizations of invariant manifolds (d < n) or normal
form transformations (d = n), with different styles.

The cost of solving the homological equations at each step is negli-
gible (e.g. for diagonal matrices A1 and A2), so at each step the cost is
concentrated in the right hand side of (13). There are two terms, one
is the composition of the parameterization Φ with the model F , and
the second involves both Φ and f .

As a result, the computation up to order k of the power series ex-
pansion of the parameterization of a d-dimensional invariant manifold
of a simple n dimensional vector field of complexity c, and the corre-
sponding reduced vector field, has a cost wn,d(k) that is

wn,d(k) ∼ c pd(k) + nd pd(k).

In fact, this is an overestimate of the cost, and specific methods (i.e.
graph and parameterization) give rise to lower estimates.

• In the graph transform method, Φ(s) = (s, ψ(s))>, so in the
computation of DΦ(s)f(s) one has to do (n−d)d products, the
cost is

(18) wn,d(k) ∼ c pd(k) + (n− d)d pd(k).

• In the parameterization method, if there are only a finite num-
ber of secondary resonances, so then we can get f(s) of poly-
nomial type, the cost is

(19) wn,d(k) ∼ c pd(k),

because multiplying a power series with a polynomial (which
has bounded degree, and in practice assumed to be small w.r.t.
k) has a negligible computational cost. Notice that d = n in
the case of computation of the Poincaré-Dulac normal form.

In summary, we obtain the following estimate.

Proposition 4.2. Let wn,d(k) be the computational cost of solving (10)
up to order k. Then,

wn,d(k) ∼ Cpd(k),

where the constant C depends only on n, d, the complexity of the simple
vector field F (c), and the style of parameterization (and n = d for
normal forms, total or partial).

5. Some implementation details of a symbolic manipulator

In this section we explain some details of actual implementations of
a computer package to manipulate multivariate power series using AD
tools. This is the core of the programs to compute invariant manifolds



AUTOMATIC DIFFERENTIATION IN DYNAMICAL SYSTEMS 21

and normal forms. We have implemented the algorithms using the
programming language C.

5.1. On the implementation. In our implementation of the sym-
bolic manipulator, we use a combination of vector and tree data struc-
tures to handle homogeneous polynomials, that involves the idea of
recursivity. In a few words, a homogeneous polynomial of d variables
x = (x1, . . . , xd) of degree k is a combination of k + 1 homogeneous
polynomials of the firts d − 1 variables x̂ = (x1, . . . , xd−1) of degrees
k, k − 1, . . . , 0:

fk(x) = fdk (x̂) + fdk−1(x̂)xd + · · ·+ fd0 (x̂)xkd .

The coefficients are ordered in the vector following such scheme, that is
using a lexicographical order. This methodology allows us to construct
a very general symbolic manipulator, that works in principle for any
number of variables (save the limits imposed by the computer memory
capacity). Moreover, one avoids the use of indexing routines to locate
coefficients and hash tables, an approach that is used e.g. in [35, 16].

The vector representation is used e.g. when implementing the addi-
tion or the scalar multiplication of homogeneous polynomials, while the
tree representation is specially useful when implementing the product
of homogeneous polynomials. The routines for the product are written
in recursive form, making the codes easy to write and easy to read, at
least when using the naive algorithm.

5.2. Benchmark for the truncated product. In Table 1 we display
several execution times, in seconds, for making the truncated product
of polynomials (d is the number of variables and k is the degree). The
velocity is measured in megaflops, i.e. millions of operations per second.
The computation has been carried out in two machines, which we call
Mac I and Mac II. See below for details.

There are several points the reader has to take into account when
reading the results:

• The algorithm: we use the naive formula for the truncated prod-
uct of polynomials, so the number of operations, pd(k), counts
all the multiplications of the coefficients in the definition of the
product. Notice that a single operation (what we define here
as one flop) involves one multiplication of two monomials, lo-
cating the monomial in the result, and finally the addition of
monomials.
• The implementation: we have written our programs in C, mak-

ing the implementation quite efficient both in computer mem-
ory management and execution time. The use of commercial
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symbolic manipulators like Mathematica or Maple, etc. could
multiply the running time by several hundreds or even thou-
sands.
• The coefficients: these are real numbers using double-precision

floating-point arithmetic, the variable type double in C. This
amounts 8 bytes per coefficient. Changing to other types, like
long double, complex, etc. slow the times.
• The computer: we use two Macs for doing the benchmarks,

both running under the operating systems Mac OS X 10.4.11
(Tiger). Their technical specifications are:

– Mac I: MacBook Pro 15”; Processor: 2.16 GHz Intel Core
Duo, 2 MB L2 Cache; Memory: 2 GB 667 MHz DDR2
SDRAM;

– Mac II: iMac; 2 GHz Intel Core Due, 4MB L2 Cache; Mem-
ory: 1 GB 667 MHz DDR2 SDRAM.

• The compiler: we use gcc, version 4.0.1, with different options
and flags. Finding better options for the actual computer is a
kind of art. In fact, we found that for both Macs the options
and flags should be different to improve the performance of the
programs. Use of other compilers, like icc, can also change
running times.
• The plug: execution time can vary a lot if a laptop is not

plugged in and work with the battery (depending on the system
preferences with respect to the battery).

The list of contingencies does not finish here.
Notice that, in Table 1, the number of megaflops depends on the

number d of variables of the polynomials, and grows with respect to
the order of the truncated product. So, it seems that time is sublinear
in the number of operations (or subquadratic on the degree). But, using
the convolution formula, the cost of the truncated product should be
linear in the number of operations (or quadratic in the degree). We
have fit the timings in Table 1 (in fact, an extended table including k’s
that are multiple of 5), with respect to n = nd with functions of the
form t(n) = A nb, and the results for the Mac I computer are shown in
log-log scale in Figure 1. The estimates of the parameters a = log10A
and b are:

• For d = 3: a = −8.57± 0.06, b = 1.72± 0.01;
• For d = 4: a = −8.77± 0.06, b = 1.73± 0.01;
• For d = 5: a = −8.85± 0.05, b = 1.71± 0.01;
• For d = 6: a = −8.93± 0.06, b = 1.70± 0.01.
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Mac I Mac II
d k nd(k) pd(k) time (s) Mflops time (s) Mflops
3 10 286 8008 4.956e–05 161.6 4.080e–05 196.3
3 20 1771 230230 8.984e–04 256.3 7.595e–04 303.1
3 30 5456 1947792 5.916e–03 329.3 4.977e–03 391.3
3 40 12341 9366819 2.458e–02 381.1 2.072e–02 452.1
3 50 23426 32468436 7.744e–02 419.3 6.564e–02 494.7
3 70 62196 218618940 4.650e–01 470.1 4.005e–01 545.9
3 80 91881 470155077 9.630e–01 488.2 8.390e–01 560.4
3 90 129766 927048304 1.848e+00 501.6 1.620e+00 572.3
3 100 176851 1705904746 3.323e+00 513.3 2.937e+00 580.9
4 10 1001 43758 3.019e–04 145.0 2.458e–04 178.0
4 20 10626 3108105 1.462e–02 212.5 1.181e–02 263.2
4 30 46376 48903492 1.773e–01 275.9 1.457e–01 335.7
4 40 135751 377348994 1.157e+00 326.2 9.592e–01 393.4
4 50 316251 1916797311 5.237e+00 366.0 4.377e+00 438.0
4 60 635376 7392009768 1.857e+01 398.1 1.563e+01 472.9
4 70 1150626 23446881315 5.528e+01 424.1 4.687e+01 500.3
4 80 1929501 64276915527 1.443e+02 445.3 1.232e+02 521.6
4 90 3049501 157366449604 3.399e+02 463.0 2.923e+02 538.3
4 100 4598126 352025629371 7.377e+02 477.2 6.384e+02 551.4
5 10 3003 184756 1.352e–03 136.7 1.122e–03 164.6
5 20 53130 30045015 1.624e–01 185.0 1.332e–01 225.5
5 30 324632 847660528 3.565e+00 237.8 2.945e+00 287.8
5 40 1221759 10272278170 3.597e+01 285.6 2.996e+01 342.9
5 50 3478761 75394027566 2.319e+02 325.1 1.937e+02 389.3
5 60 8259888 396704524216 1.109e+03 357.6 9.292e+02 426.9
5 70 17259390 1646492110120 4.274e+03 385.3 3.599e+03 457.5
6 10 8008 646646 4.863e–03 133.0 4.140e–03 156.2
6 20 230230 225792840 1.356e+00 166.6 1.110e+00 203.5
6 30 1947792 11058116888 5.226e+01 211.6 4.300e+01 257.2
6 40 9366819 206379406870 8.109e+02 254.5 6.725e+02 306.9
6 50 32468436 2160153123141 7.400e+03 291.9 6.205e+03 348.1

Table 1. Benchmark of the execution time of the trun-
cated product of two polynomials of d variables up to
degree k, with the computers Mac I and Mac II. The
number of coefficients per polynomial is nd(k), and the
total number of operations using the naive algorithm is
pd(k). See the text for more details.

So, the exponent in the power law dependence of the time cost of the
truncated product w.r.t. the degree is close to 1.70 (and similar esti-
mates for the Mac II computer), rather than the theoretical estimate
2. This is possibly due to the fact that the theoretical estimate counts
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Figure 1. Timings of the truncated product as a func-
tion of the truncated order, in log-log scale.

the total number of arithmetics operations and addressings of the co-
efficients, and one assumes that the total time depends linearly on all
of them. But addressing depends a lot on the type of data structure
in the implementation, so its total cost is non-linear w.r.t. the number
of addressed coefficients. Moreover, in modern architectures, address-
ing memory is performed in an orderly fashion so that CPU cache can
work very efficiently, processors support multi-threading (instruction
level parallelism, allowing speed up), or even processors are multi-core,
etc. All these eventualities (and many others this author ignore) make
the total time sublinear w.r.t. the total number of operations (for the
examples in the present paper, with exponents around 0.92).

Even if we present here the timings for two Mac computers, we have
also compiled and run the programs in several Linux PC’s, and in
a cluster system of 46 Sun Fire V20z servers (each of them with two
2.2Ghz AMD Opteron processors, 4 GB of RAM) running under Linux.

Since all the estimates of the cost of the algorithms are based on the
cost of a product, one can easily make time estimates using his/her
routines for the product. Of course, better algorithms and better im-
plementations of the product of homogeneous polynomials improve the
efficiency and execution times of the algorithms.



AUTOMATIC DIFFERENTIATION IN DYNAMICAL SYSTEMS 25

Remark 5.1. We emphasize again that, besides the computational
complexity of the algorithms, there are many other factors to be con-
sidered in actual implementations of those algorithms, and depend also
on the kind of problems one is dealing with. For instance, in [46] are
proposed several fast algorithms for computing truncated multivariate
power series, based on multipoint evaluation and interpolation tech-
niques. When computing local expansions of invariant manifolds, it is
not clear how to choose the interpolation nodes, and how the election
influences the accuracy of the computations. Moreover, the computer
language, the data structures, etc. are also important. In the same ref-
erence, the computation of the truncated exponential up to order 10 of
a 10-variate power series, using double-precision floating-point arith-
metic in Mathematica on a PC, took hours (a few years ago), while
with our C programs based on the slow classical algorithms the same
computation took around 0.20 seconds.

6. An example: invariant manifolds in the Restricted
Three Body Problem

In this section we present a specific example of computation of in-
variant manifolds: center, center-stable and center-unstable manifolds
of a collinear equilibrium point in the Restricted Three Body Prob-
lem. The motivation is two-fold: the example is non-trivial (since the
manifolds are 4D and 5D, in a 6D phase space), and computation of
these manifolds has a long tradition in the astrodynamics literature (see
[17, 53, 36, 35, 21, 23, 18, 19, 35, 20] and a long etcetera). Notably,
similar computations have been also done in studying some problems
in chemical dynamics [56]. Moreover, we also mention that there are
more recent studies including globalization of center manifolds using
numerical computation of the periodic orbits and invariant tori laying
in its interior [22, 44].

So, by no means we intend to redo all these exhaustive studies, which
have been carried out with a rather ad hoc methodology. Our intention
is just to show how our methodology is effective to do computations of
invariant manifolds in this and many other non-trivial problems.

6.1. A brief description of the RTBP. Although the Restricted
Three Body Problem (RTBP for short) needs no presentation, we will
say a few words, mainly to fix notation. It deals with the motion of a
massless body under the gravitational forces induced by two punctual
masses, usually called primaries, that evolve in circular Keplerian mo-
tion around the center of mass. One considers a rotating coordinate
system with origin in the center of mass of the primaries, in which the
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primaries are fixed in the x axis and the z axis is perpendicular to the
ecliptic plane. Moreover, one scales units such that one year is 2π and
the total mass of the primaries is 1. So, the primaries have masses
1− µ and µ, with µ ∈]0, 1

2
], and are located at the points (µ, 0, 0) and

(µ − 1, 0, 0), respectively. With these conventions, the motion of the
massless body is described by the three degrees of freedom Hamiltonian

(20) H(x, y, z, px, py, pz) =
1

2
(p2
x + p2

y + p2
z) + y px − x py + V (x, y, z)

where V is the gravitational potential

V (x, y, z) = −1− µ
r1

− µ

r2

,

being r1 =
√

(x− µ)2 + y2 + z2 and r2 =
√

(x− µ+ 1)2 + y2 + z2 the
distances of the body to the primaries. The equations of motion are
(21)

ẋ = px + y , ṗx = py −
1− µ
r3

1

(x− µ)− µ

r3
2

(x− µ+ 1) ,

ẏ = py − x , ṗy = −px −
1− µ
r3

1

y − µ

r3
2

y ,

ż = pz , ṗz = − 1− µ
r3

1

z − µ

r3
2

z .

Notice that the equations of the RTBP are simple. In fact, the
complexity of the vector field (21) is cvf = 6.5, and the complexity of
the Hamiltonian (20) is cH = 8.

6.2. Computation of center manifolds in the RTBP. We have
applied our algorithms to compute the expansions of the invariant man-
ifolds of the equilibrium points of the RTBP. Once one has chosen the
mass parameter µ, the equilibrium point Lp (p = 1, 2, 3, 4, 5), the di-
mension of the manifold d and the order of its expansion k, the tangent
space at the origin (the suitable (complex) eigenvectors of the differen-
tial at the fixed point), and the representation of the manifold (in the
following, a graph), the computer program produces the coefficients of
the (complex) power series expansions of the (in the present example)
graph representation of the manifold.

The mass parameter we have chosen to illustrate the methodology is
µ = 0.0121505816234, that corresponds to the Earth-Moon system. For
such a case the collinear points L1, L2, L3 are of center×center×saddle
type, so they have attached 4D center manifolds, 5D center-(un)stable
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Mac I Mac II
d k product graph ratio product graph ratio
4 10 4.352e−04 7.790e−03 17.90 3.841e−04 6.090e−03 15.86
4 20 2.533e−02 4.048e−01 15.98 2.054e−02 3.039e−01 14.80
4 30 3.582e−01 5.497e+00 15.34 2.650e−01 3.819e+00 14.41
4 40 2.590e+00 3.921e+01 15.14 1.813e+00 2.641e+01 14.57
4 50 1.259e+01 1.900e+02 15.09 8.500e+00 1.243e+02 14.62
4 60 4.708e+01 7.104e+02 15.08 3.104e+01 4.555e+02 14.67
4 70 1.460e+02 2.207e+03 15.12 9.481e+01 1.397e+03 14.73
5 10 1.924e−03 2.640e−02 11.84 1.671e−03 2.070e−02 12.39
5 20 2.646e−01 3.176e+00 12.00 2.203e−01 2.412e+00 10.95
5 30 6.630e+00 7.851e+01 11.84 5.140e+00 5.702e+01 11.09
5 40 7.425e+01 8.786e+02 11.83 5.431e+01 6.151e+02 11.33

Table 2. Benchmark of execution time for construct-
ing expansions of the center manifold (d = 4) and the
center stable manifold (d = 5), using the graph method,
of the L1 point of the RTBP of the Earth-Moon system
(µ = 0.0121505816234). The computations have been
done with the machines Mac I and Mac II (see the text
for details).

manifolds and 1D (un)stable manifolds. The triangular points are lin-
early stable, so will be not considered here.

Even if for this example we have chosen the graph transform method,
there are still some freedom to be fixed. In this case, we can choose the
lenght of the eigenvectors (which is equivalent to scale the parameter-
ization). These choices are made to improve the numerical stability in
the whole procedure, controlling the growth of the coefficients in the
expansions. In this particular example, the natural choice is taking the
lengths of the eigenvectors as the distance of the equilibrium point to
the nearest primary. This is the standard.

In Table 2 we show some benchmarks of execution time of the com-
putation of the center manifold (d = 4) and the center stable manifold
(d = 5) of the L1 point. We include the ration between the total
time of computation and the time of the truncated product of com-
plex power series (up to order k). Notice that the theoretical ratio
between the execution time of the graph and the execution time of
the truncated product is (6.5 + 2 ∗ 4) = 14.5 for the center manifold,
and (6.5 + 1 ∗ 5) = 11.5 for the center-stable manifold. See (18). Our
numerical experiment produces close estimates of such ratios.
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Remark 6.1. We emphasize again the the computation has been done
using complex polynomials. So, the execution times of the truncated
product of polynomials shown in Table 2 roughly doubles the ones ap-
pearing in Table 1 (and this depends a lot on the processor). The
execution time for the computation of the expansions of the manifold
could be halved if we used real polynomials, either solving real homo-
logical equations or translating them into complex numbers. These
methods were used e.g. in [27].

Remark 6.2. Special symmetries of the problem are not used, so
adapted implementations of the symbolic manipulator can halve ex-
ecution times. See e.g. [35] for this approach.

6.3. Growth of the coefficients of the center manifold. Even if
the center manifold is not analytic, the coefficients of its power series
expansions can grow in a mild way. If `1(k) equals the maximum
of the `1 norms of the two vector of coefficients of the two k-order
homogeneous polynomial of the two components of the expansion of
the graph of the center manifold, then it seems to be that

`1(k) ∼ `(k) = Aλk(log k)ck.

This growth estimate was rigorously established in the unpublished
manuscript [34] for the coefficients in partial normal forms computa-
tions of the center manifold.

Figure 2 shows the fit of k
√
`1(k) to the function k

√
`(k) = k

√
Aλ(log k)c

via the parameters a = logA,b = log λ and c, where

a = −1.25± 0.05 , b = −0.212± 0.008 , c = 0.252± 0.005 .

Similar behaviour is observed in the growth of the coefficients when
considering the four components of the reduced vector field on the cen-
ter manifold. Notice that if the expansions were analytic the constant
c should be 0. Notice also that if the expansions where of Gevrey class,
the term (log k)k should be k!.

6.4. Dynamics on the center manifold. The center manifold of
the L1 point is a 4D manifold, and we are able of computing a high
order approximation of a parameterization of the manifold Φ and its
dynamics f . Notice that the computation does not rely on geomet-
ric properties of the dynamics, and in particular on its Hamiltonian
feature. The algorithms work in a general setting.

But in the present example the dynamics is Hamiltonian, so one
can obtain additional information to study it. In particular, the 4D
reduced vector field on the center manifold, f , is Hamiltonian, with
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Figure 2. Fit of k-root of the `1 norm of the k-order
terms of the expansion of the center manifold with the
function `(k)1/k = A1/kλ(log k)c via the parameters a =
logA,b = log λ,c.

Hamiltonian H◦Φ, with respect to the restricted symplectic form Φ∗ω.
In particular H◦Φ is a conserved quantity on the center manifold.

Remark 6.3. Using Darboux theorem (see e.g. [1]), we could repa-
rameterize the center manifold in such a way the restricted symplectic
form is the standard. See [27] for an example. In [13] is described an
algorithm which computes the parameterization of the center manifold
giving the (standard) symplectic structure on the center manifold.

A nowadays standard practice to study the dynamics of the 4D re-
duced Hamiltonian vector field f on the center manifold is using the
Poincaré section trick on different Hamiltonian levels to obtain a col-
lection of 2D plots. This technique was already used e.g. in [17, 36]
(see also [21, 23, 18, 19] and [35]), and has been also succesfully used
to study some problems in molecular dynamics [56, 15]. In these ref-
erences the reduction of the dynamics to the center manifold follows a
partial normal form strategy, so working in a 6D phase space to finally
consider a 4D reduced vector field. In this view, the methodology is
quite expensive, since the invariant objects to be considered are only
4D (and one has to deal with 6-variate power series). But once one
has obtained (an approximation of the) reduced dynamics, the steps to
perform a study of the reduced dynamics follows similar lines.
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Figure 3. Poincaré section at the energy H = −1.565.

For the sake of completeness, we present in Figure 3 one phase por-
trait of the 2D Poincaré section with z = 0 of the reduced dynamics on
the center manifold at the Hamiltonian level H = −1.565, visualizing
the typical features of 2D area preserving maps. Similar pictures are
shown in the references mentioned above. Even if we have computed
the expansion of both the center manifold and its dynamics up to or-
der 70, for such an energy level it is enough to consider expansions up
to order 50 in order to have a “good” accuracy in the computations,
say the invariance equation and the preservation of the Hamiltonian is
typically obtained with an error less than 10−8. See the next section.
(We emphasize that the closer to HL1 ' −1.594171 the energy level H
is, the lower order is needed. For H = −1.580, order 20 is enough, and
for H = −1.560, the whole series up to order 70 is needed in order to
get good accuracy).

The integration of the orbits along the center manifold (and their
Poincaré sections) is performed integrating the reduced vector field,
using a Runge-Kutta method of order 7-8 with automatic step size
control (to get a local error of 10−15). Since at each step of the numeri-
cal integration method it has to evaluate the field at different points (in
fact, 13 points, and in this case these are 4D), and evaluation of power
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series is a costly task, the whole Poincaré return map is quite time
consuming (depending on the order of the expansions). Fortunately,
computing several iterations of the Poincaré map (in Figure 3, 256 it-
erations), for a collection of points in the center manifold (in Figure 3,
96 points) can be easily parallellized in a cluster of computers. For our
computations, we have used a 46 node AMD opteron cluster system.
For the example shown in Figure 3, with H = −1.565 and using power
series up to order 50, each return map took around 45 seconds, but for
H = −1.580 with series up to order 20, each map took less than one
second.

In Figure 3 we observe the planar Lyapunov orbit, which is the
boundary of the center manifold at such energy level, and in this case it
is unstable (even on the center manifold). We also observe the section
of the vertical Lyapunov periodic orbit on the x axis and both halo pe-
riodic orbits, surrounded by 1D invariant curves that correspond to 2D
invariant tori (around the vertical Lyapunov periodic orbit, these are
the Lissajous orbits; and arround the halo orbits, these are the quasi-
halo orbits). The 3D view of these periodic orbits at such an energy
level H = −1.565 is shown in Figure 4. We refer the readers to the ref-
erences mentioned above for exhaustive studies, including applications
to astrodynamics and molecular dynamics.

6.5. Error estimates. We have already mention that error bounds
depend on the energy level and the orbits themselves. For an orbit s(t)
on the invariant manifold, one can consider several error estimates,
such as the error in the invariance condition along the orbit,

eI(t) = ||F (Φ(s(t)))−DΦ(s(t))f(s(t))||∞
and the error in the preservation of the Hamiltonian

eH(t) = |H(Φ(s(t)))−H(Φ(s(0)))|.
Since the orbit Φ(s(t)) in the phase space should be a solution of the
original vector field Ż = F (Z), one can also integrate both the re-
duced field f from s(0) and the whole field F from Z(0) = Φ(s(0))
and compare the produced orbits. We then produce the orbital error
estimate

eO(t) = ||Φ(s(t))− Z(t)||∞.
We emphasize that this error has to be measured in small elapses of
time, since for orbits in the center manifold the “hyperbolic” directions
produce error growth. This is also an standard practice.

Notice that in the computation of the center manifold and its dy-
namics we do not use explicitly the Hamiltonian characteristic of the
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Figure 4. Periodic orbits on the center manifold (H = −1.565).

dynamics, so preservation of the Hamiltonian is not only a test for the
numerical integrator, but also for the quality of the approximation of
the invariant object.

In Figures 5,6,7 we show, in logarithmic scale, the error estimates
eI ,eH ,eO for, respectively, the planar Lyapunov orbit, the vertical Lya-
punov orbit and one of the halo orbits (again, for H = −1.565). The
estimates have been produced for different orders of the expansions of
the center manifold (from 10 to 60), during the corresponding periods.
Notice that the error bounds for the planar Lyapunov orbit are worse
that those estimated for the other two periodic orbits. This is due to
the fact that the planar Lyapunov orbit lays in the boundary of the
center manifold and, for the energy level considered, it is unstable.

Since in this numerical exercise we have computed the periodic orbits
inside the center manifold, we also show in each of the figures the
computed period T , and the errors e1

PO and e2
PO in the return map on

the manifold and on the whole phase space, respectively.

7. Conclusions, related and future work and challenges

In this paper we have presented a methodology for the computa-
tion of expansions of invariant manifolds and normal forms, associated
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Figure 5. Errors for the planar Lyapunov orbit (H = −1.565)
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Figure 7. Errors for the halo orbits (H = −1.565)

to equilibrium points of vector fields. In all cases, the problem is re-
duced to solving functional equations in the space of power series. We
have also evaluated the complexity of the algorithms for simple vector
fields. The complexity is estimated in terms of the number of (trun-
cated) products of power series that have to be done along the process,
and in all cases this number does not depend on the order of the expan-
sions and can be easily computed. We have also benchmarked some
implementations of the algorithms, checking that the timings fit the
obtained rigorous estimates.

The following is a mixture of some related issues and challenges for
future work.

• The adaptation of the algorithms to discrete systems given by
maps is straightforward, even if for these problems there are
some inevitable compositions. We emphasize, however, that in
absence of secondary resonances (or the existence of just a few
of them), the parameterization method is more efficient than
the graph transform method. The computation of 2D center,
and 3D center-stable and center-unstable manifolds in a 4D
(symplectic) map using graph transform method and AD tools
was carried out in [27] (in these cases, there are infinitely many
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secondary resonances). For computation of 1D and 2D invariant
manifolds using the parameterization method and AD tools in
4D models in some problems of Macroeconomics, see [24].
• Hamiltonian dynamics is an important part of the area of Dy-

namical systems, with its own methodology. For instance, in
normal form computations one has to deal with canonical trans-
formations, or stable manifolds are Lagrangian and one can take
advantage of this geometric property to improve the algorithms
of power series expansions. In the ongoin paper [32] we plan
a study of different methods to generate canonical transforma-
tions which, in combination with AD tools, are the base of
efficient methods of computation of normal forms.
• There are also the more challenging problems of computation

of invariant tori (including periodic orbits) and their associ-
ated invariant manifolds, in different types of problems (gen-
eral flows or maps, quasiperiodic systems, Hamiltonian systems,
etc.) For invariant tori, the most efficient methods are based
on Newton, see e.g. [10], where the unknowns are represented
as Fourier series. For the whiskers of the tori, if any, suit-
able representations are given by Fourier-Taylor series. Normal
forms around invariant tori are also computed using Fourier-
Taylor series [31]. Refined Newton methods for both invari-
ant tori and whiskers in quasiperiodic systems are discussed in
[29, 28], and actual implementations of the algorithms including
AD tools are described in [30]. For KAM and lower dimensional
tori, there is some current work to implement the algorithms,
arising from the rigorous results described in [12, 14, 25]. See
[25, 33]. It would be very useful to have an unified view of all
these methodologies, and producing efficient software packages
to manage with them, comparing different techniques (e.g. AD
versus FFT) from different points of view (e.g. velocity, accu-
racy, stability), ... Partial work have been already done in these
directions, but much more effort is demanded.
• In all the problems mentioned above, one can ask also about

the possibility of paralellization of the algorithms. Paralelliza-
tion has been already considered with promising results in [50]
for the case of computation of normal forms in Hamiltonians
systems [35], and in [48] for the computation of invariant tori
in quasiperiodic systems [28, 30].
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• The routines of multiplication of homogeneous polynomials are
the core of the programs. We have used here the naive for-
mula to perform the product (combined with a tree data struc-
ture to handle the homogeneous polynomials), even if we are
aware that there are (asymptotic) faster algorithms. See e.g.
[38, 55, 11, 5, 51, 6, 40, 57, 58, 42, 46], and many other pa-
pers, for different approaches. In fact, finding fast algorithms
for multiplying polynomials (and other “hard” operations, such
as composition) is object of current research. It would be in-
teresting to study the applicability of these fast methods in
computational dynamical systems. We emphasize that, besides
computational complexity of the algorithms, there are other is-
sues that also important, such as accuracy and stability, and
ease of actual implementations. So, comparing those methods
from these different perspectives, is an important issue. (In
Computer Algebra, the coefficients are in many cases “exact”,
e.g. integer or rational numbers, elements in some finite field,
etc. so accuracy and stability is not an issue in this area).
• The methods to compute the power series expansions of the in-

variant manifolds are based on the parameterization method of
[7]. See also [45] for an extensive study of normal forms. Of
course, this part of the algorithms works for general systems,
not only for simple systems. For general systems, one has to
perform composition of power series. Finding methods for fast
composition of power series is again an important issue in Com-
putational Algebra (see e.g. [6, 40]). Another interesting issue
is considering composition of power series with functions that
are defined through recursions.
• In order to solve the functional equations, one can also use the

Newton method. So, instead of solving the equations “order
by order”, one could double the number of correct terms at
each step. But, since the multiplications of polynomials are in-
evitable, there is no gain in the total algorithmic complexity
if one uses the classical definition. We however think that the
combination of Newton method and fast polynomial multipli-
cation could lead to optimal complexity algorithms [43].
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http://www.ma.utexas.edu/users/ghuguet/tesi/.

[34] A. Jorba and R. de la Llave. Regularity properties of center manifolds and
applications. Manuscript.
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[36] Àngel Jorba and Josep Masdemont. Dynamics in the center manifold of the
collinear points of the restricted three body problem. Phys. D, 132(1-2):189–
213, 1999.
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