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Abstract

We have considered the planar circular RTBP + solar radiation pressure to model the movement of a
solar sail in the Earth - Sun system. It is known that for a fixed value of the sail lightness number this
model has three 1-parametric families of equilibria parametrised by the sail orientation. Most of these fixed
points are unstable and require a control strategy to keep a sail close to them. We have studied the linear
dynamic around them and how it varies when the sail orientation is changed. We have used this information
to derive strategies to move along these families and control the trajectory of the sail close to a given fixed
point. Finally, we have tested our strategies for a particular mission.

1 Introduction

Solar Sailing is a proposed form of spacecraft
propulsion using large membrane mirrors. The im-
pact of the photons emitted by the Sun on the
surface of the sail and their further reflection pro-
duce momentum on it. Although the acceleration
produced by this reflection is smaller than the one
achieved by a ‘traditional’ spacecraft it is continu-
ous and unlimited. These makes long term missions
more accessible. As it can be seen in the litera-
ture4,3, 6, 8, 1 solar sails open a wide range of new
mission.

It is well know that a solar sail is an orientable
surface, the orientation is defined by the pitch an-
gle (α). Another important parameter is the sail
lightness number (β) used to define the sail’s effec-
tiveness. In this paper we have considered a flat
and perfectly reflecting sail, so the force due to the
solar radiation pressure is normal to its surface.

To model the dynamics of the sail we have taken the
Sun - Earth Planar Restricted Three Body Prob-
lem (RTBP) and added the solar radiation pressure
effect. This model is a perturbation of the RTBP
and depends on two parameters, the sail lightness

number β and the sail orientation α. It is well
know that the RTBP has five equilibrium points
(L1,...,5). For a small β these five equilibrium points
are replaced by five continuous families of equilibria
parametrised by the sail orientation. As β increases
4 of these families connect and then the fixed points
are displaced in three 1-parametric families4,5.

We can classify the equilibrium points by their sta-
bility. In this paper we will focus on the unstable
fixed points that have one pair of real eigenvalues
and a pair of complex eigenvalues. We will discuss
strategies2 to control the trajectory close to one of
these unstable points and we will apply them to
move the trajectory around these families of equi-
libria.

Let p0 be a fixed point for α = α0. Take ~v1, ~v2 the
stable and unstable eigenvectors and ~v3, ~v4 the real
and complex part of the complex eigenvectors. It is
well know that V = {~vi}i=1,...4 are a basis and the
couple {p0;V } is a reference system. This reference
system will help us understand the linear dynamics
around the equilibrium point and will be very used
on our strategies.

When the probe is close to the fixed point p0,
the trajectory escapes along the unstable direction
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(~v1). Changes on the sail orientation will produce
changes on the fixed point and its eigendirections.
If we want to control the trajectory close to p0 we
need to change the sail orientation so that the new
unstable direction brings the trajectory close to p0.
If we want to move the trajectory along the family
of equilibrium points we need to change the sail ori-
entation so that the sequence of unstable directions
takes the probe along this family.

We have designed a toy mission to show how these
techniques work. We have supposed that our sail is
close to an unstable equilibrium point displaced 5o

from the Sun - Earth line and we want to move the
probe along the family of equilibria until we reach a
fixed point at 10o from the Sun - Earth line. When
we reach the final destination a control strategy has
been used to control the sail close to the final point
for 10 years.

2 Equations of Motion

To describe the dynamics of the solar sail we have
supposed that Earth and Sun are point masses
moving around their mutual centre of mass. The
sail is under the gravitational effect of both bodies
and the solar radiation pressure. The units of mass,
distance and period have been normalised so that
the total mass of the system is 1, the Sun - Earth
distance is 1 and the period of rotation is 2π. With
these units the gravitational constant is also 1. We
use a rotation reference system so that Earth and
Sun are fixed on the x axis.

The radiation pressure depends on the position of
the sail, its orientation and the characteristic accel-
eration. The sail orientation is given by the pitch
angle α: the angle between the Sun - line and the
normal vector to the surface of the sail (~n). As
the sail cannot point towards the Sun we have that
α ∈ [−π/2, π/2]. Let us define φ as the angle that
gives the position of the sail with respect to the Sun
on the {x, y} - plane taking the origin of angles on
the right hand side of the Sun (see Figure 1). Then
~n = (cos(φ + α), sin(φ + α)).

In this paper we will suppose that the sail is flat
and perfectly reflecting, then:

Fsail = β
1− µ

r2
PS

cos2 α · ~n,

α

φ

~n
~rs

Sun

Earth X

Y

Figure 1: Schematic representation of the sail ori-
entation α and the angle φ.

where β is the sail lightness number.

In the rotating frame the equations of motion are,

ẍ = 2ẏ + x− (1− µ)
x− µ

r3
PS

− µ
x + 1− µ

r3
PT

+ κ cos(φ + α),

ÿ = −2ẋ + y −
(

1− µ

r3
PS

+
µ

r3
PT

)
y

+ κ sin(φ + α),

(1)

where κ = β
1− µ

r2
PS

cos2 α.

Notice that the equations depend on two parame-
ters: β and α. If β = 0 or α = ±π/2 the equations
are the same as in the RTBP.

3 Equilibrium Points

It is well known that the RTBP7 has five equilib-
rium points L1,...,5. For small values of β these five
points are replaced by five families of equilibrium
parametrised by the sail orientation α. As β in-
creases 4 of these families will merge having the
fixed points displaced in 3 curves parametrised by
α.

As it can be seen in Figure 2, for the fixed values of
β considered here, there is one curve C1 containing
L2 at the left hand-side of the Earth, another curve
C2 containing L1,3,4,5 that surrounds the Sun and
leaves the Earth on its left and a third curve C3

similar to C2 but closer to the Sun. As β increases
C3 comes closer to the Sun.

McInnes4 has shown that the equilibrium points of
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Figure 2: Equilibrium points for different values
of β. In red the T1 points and in green the T2

points.

the system are in general unstable. We can see that
in the plane the equilibrium points can be classi-
fied in two classes depending on the eigenvalues of
the differential matrix at a fixed point. The first
class (T1) includes the equilibrium points with one
pair of real eigenvalues and one complex eigenvalue
and the second class (T2) has two pairs of complex
eigenvalues. In Figure 2 we can see the relation
between these point on the plane.

In this paper we will focus on the dynamic close
to equilibrium points of the first class. We want
to understand the natural dynamics around these
points and how it varies when the sail orientation
is changed in order to control the dynamics at our
will.

3.1 Linear dynamic around the equilib-
rium points

As it has already been mentioned the equilibrium
points of the first class have one pair of real eigen-
values (±λ) and one pair of complex eigenvalues
(ν±iω). Although ν can be different from zero, on
the cases that we are considering it will be small, as
a first approximation we will consider ν = 0. This
means that the linear dynamic around the equilib-
rium point is saddle × centre. The real effect will
be considered later during the simulations.

Let p0 be a fixed point for α0 and take the reference
system R0 = {p0;~v1, ~v2, ~v3, ~v4}. Where ~v1, ~v2 are
the unstable and stable eigenvectors respectively
and ~v3, ~v4 are the real and imaginary part of the
complex eigenvectors. When the probe is close to
p0 the linear dynamics is the one that matters and
the trajectory can be described in terms of R0. The
trajectory of the probe will escape along the unsta-

ble direction and rotates on its central projection
as can be seen in Figure 3.

Figure 3: Schematic representation of different
trajectories of the probe on the reference system
R0 = {p0;~v1, ~v2, ~v3, ~v4}.

When the sail orientation is changed the fixed point
varies and so do the eigenvectors. We want to un-
derstand the effect of these changes to the trajec-
tory of the probe, i.e. we have a different reference
system.

Let p1 be a new fixed point for α1 and suppose
that |α0 − α1| is small. The new eigenvectors will
be close to ~vi i = 1, . . . , 4. When the sail orienta-
tion is changed from α0 to α1 the trajectory of the
probe will change from escaping along the unsta-
ble direction of p0 to escaping along the unstable
direction of p1. If we choose an appropriate sail
orientation we can: make the trajectory stay close
to one of these equilibrium points or make the tra-
jectory move along this family.

3.2 Linear approximation of the surface
of equilibria

As in the RTBP we do not have an explicit expres-
sion for the equilibrium points p(α). As changes in
the sail orientation will be small the linear approx-
imation of these curves around a fixed point will be
enough.

If p(α0) is the position of the equilibrium point for
a fixed angle α0, it is a known fact that the linear
approximation is given by,

p(α) = p(α0) +
∂p

∂α

∣∣∣∣
α0

(α− α0). (2)

It is easy to see that ∂p
∂α can be computed by solving,

Dxf(p0, α0)
∂p

∂α
= −∂f

∂α
(p0, α0),

where f(x, α) is the function defining the flow.
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4 Surfing through the family of
equilibria

As it has been mentioned before we want to use
the invariant manifolds to control the trajectory
of the sail close to an unstable equilibrium point
and move around the family of unstable equilibrium
points. We will start discussing how to control the
trajectory of a probe around an equilibrium points
and we will extend these ideas to move around the
family of equilibria.

4.1 Control around a fixed point

In this section we will focus in controlling the tra-
jectory of a probe around an unstable equilibrium
point. This strategy has already been tested in
some particular missions2.

Let p0 be a fixed point for a given sail orientation
α = α0. As it has already been said in section 3.1
when the probe is close to p0 its trajectory will es-
cape along the unstable direction ~v1. We want to
find a new sail orientation α = α1 such that the
unstable direction of the new fixed point p1 brings
the trajectory close to p0 (see Figure 4). When the
trajectory is close to p0 we will restore the sail ori-
entation to α = α0 and repeat this process. It is
important to note that the projection on the cen-
tral plane of the trajectory can grow: as the cen-
tral behaviour are rotations around the different
equilibrium points and this process can result un-
bounded. For this reason we have to be careful
when we choose the new sail orientation.

Sadd–1

Sadd–2

Trajectory

Fixed Points

Figure 4: Schematic representation of the idea
of controlling the instability due to the saddle.

From now on the sail trajectory will be de-
scribed in term of the reference system R0 =
{p0;~v1, ~v2, ~v3, ~v4} (see section 3.1). Hence, in this
reference system the trajectory of the probe is:

z(t) =
4∑

i=1

si(t) · ~vi,

where s1,2(t) describes the projection of the trajec-
tory on the saddle plane and s3,4(t) its projection
on the centre plane. As time goes by s1(t) → ∞,
s2(t) → 0 and

√
s2
3(t) + s2

4(t) is constant.

For our control strategy we need to define the pa-
rameters εmax and εmin, were 0 < εmin < εmax <<
1 define the region of motion around the equilib-
rium point on the saddle projection. To find the
position of the new fixed point we will use the pa-
rameter d, see Figure 5.

εmax

εmin

d

Figure 5: Schematic representation of the param-
eters εmax, εmin and d on the saddle plane.

When |s1(τ1)| ≥ εmax we will change the sail ori-
entation, i.e. the fixed points position. We need
u1 > s1(t∗) for the trajectory to come back close
to p0. We will take u1 = d with d ∈ (εmax,M) (M
is an upper bound for the linear approximation of
the dynamics around p1). The new sail orientation
(α = α1) is found by solving equation (2). In the
reference system R0 equation (2) is:

p̂(α) =
∂p̂

∂α

∣∣∣∣
α=α0

(α− α0). (3)

Hence,
α1 = α0 +

u1

(∂p̂/∂α)1
,

and

ui = (∂p̂/∂α)i

(
u1

(∂p̂/∂α)1

)
, , i = 2, 3, 4. (4)

Then the sail orientation is changed and s1(t) →
0, when |s1(τ2)| ≤ εmin the sail orientation will
be restored α = α0 and this process is repeated.
Notice that this is true if the stable and unstable
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direction of p0 and p1 do not vary much w.r.t each
other. As the variation of the sail orientation will
be small the eigenvectors will vary slightly.

It can be seen that if this process is repeated over
and over s1(τ2i+1) stabilises, so the sail orientation
tends to change only between two fixed values.

The saddle projection of the motion can be de-
scribed by the following equation:

s1(t) = û1(α) + (s10 − û1(α))eλ(α)t

s2(t) = û2(α) + (s20 − û2(α))e−λ(α)t

}
, (5)

where (û1(α), û2(α)) are the different equilibrium
point depending on α and (s10, s20) is the position
of the probe when the α is changed. It can be
checked that the time it takes to go from εmin to
εmax is:

∆t1 =
1

λ(α)
log

(
εmax

εmin

)
,

and the time to go from εmax to εmin is:

∆t2 =
1

λ(α)
log

(
u1 − εmax

u1 − εmin

)
.

These are some good estimation of the time be-
tween manoeuvres. As we can see these times
mainly depend on εmax, εmin and d, which can be
changed to satisfy certain constraints if needed.

Let us now focus on the dynamic on the central
behaviour. As it has already been said the central
projection of the trajectory will be a sequence of
rotations around the different equilibrium points.
The angle of rotation will depend on ∆t1,∆t2 and
ω, the imaginary part of the complex eigenvalue.

Lemma: The composition of rotations of angle θ1

and θ2 around two fixed points x1 and x2 is a rota-
tion of angle θ1 + θ2 around a new point x3, whose
position depends on θ1, θ2, x1 and x2.

This lemma shows that if we rotate around two
different equilibrium points the trajectory will be
bounded as the points where the sail orientation is
changed will be a rotation around a different fixed
point. In Figure 6 we can see where these points
will be placed. It is easy to see that their position
will depend on the position of the probe at the be-
ginning of the trajectory and on the rotation angles
θ1 and θ2.

The two angles θ0 and θ1 depend on εmax, εmin and
d. We will change εmax and εmin in an appropriate

ini

x2

x1

x3

θ2 θ1

trajectory

Figure 6: Schematic representation of the tra-
jectory on the centre projection.

way to reduce the projection of the trajectory on
the centre manifold. This will only be done if this
projection is big and the linear approximation is
not good enough.

4.2 Moving along the family of equilib-
rium points

In this section we will explain how to move in a
controlled way along the family of unstable equi-
librium points using similar ideas to the previous
section.

Now we want to go from the vicinity of a fixed point
p0 to another point pf in a controlled way. We want
to be able to control the probe once we reach pf .

We recall that when the probe is close to the equi-
librium point p0 the trajectory escapes along the
unstable direction. We want to find a sequence of
changes of the sail orientation αi so that the tra-
jectory keeps close to the family of equilibria. The
idea is that the unstable directions of the equilib-
rium points pi takes the trajectory from the vicinity
of one point to the other (see Figure 7). The main
idea is to use a variation of the control strategy
described before but moving the reference system.

Let pi be a sequence of fixed points for the sequence
of sail orientation αi. For each pi we will con-
sider the reference system Ri = {pi;~vi1, ~vi2, ~vi3, ~vi4}
where as before ~vi1, ~vi2 are the unstable and stable
eigenvectors of pi and ~vi3, ~vi4 are the real and imag-
inary part of the complex eigenvectors.

Let us suppose we are close to p0 and we want to go
to pf . First of all we need to know the relative posi-
tion of pf w.r.t p0 in the saddle plane. We need this
information to know the direction of the sequence
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Sadd–1

Sadd–2

Trajectory

Fixed Points

Figure 7: Schematic representation of the saddle
projection of the trajectory.

of fixed points. Then we must use a modified con-
trol strategy to the one explained in section 4.1 to
place the trajectory in the desired side of the sad-
dle. Usually we will make some control to start
with a small enough central projection.

As before we need to define the parameters εmax,
εmin and d, where again 0 < εmin < εmax << 1
define the region of motion around the equi-
librium point on the saddle projection. Now
to find the position of the new fixed point we
need d ∈ (εmin, εmax). In Figure 8 we can see a
schematic representation of these values.

εmax

εmin

d

Figure 8: Schematic representation of the param-
eters εmax, εmin and d on the saddle plane.

Once the trajectory is been placed on the appro-
priate side on the saddle plane we can start the
transfer from p0 to pf . As before the trajectory
will be seen on terms of the reference system R0 so

z(t) =
4∑

i=1

si(t)~vi.

When |s1(τ1)| ≥ εmax we will change the sail orien-
tation. Now we need the new fixed point to satisfy
u1 = d with d ∈ (εmin, εmax). As before the new
sail orientation is found by solving equation (2) and

α1 = α0 +
u1

(∂p̂/∂α)1
.

Now we must change the reference system from R0

to R1 and repeat the process until the trajectory
comes close to pf .

If we focus on the central behaviour we will have
rotations around the different equilibrium points.
This rotations can also result unbounded. Notice
that if the changes between the fixed points are
small we will be slightly moving the fixed point and
we will end up having a spiralling trajectory on the
central projection (see Figure 9). Nevertheless, if
the central behaviour starts to grow we can perform
a control strategy around the equilibrium point to
reduce the central projection.

x0

x1

x2

x3 x8
. . .

trajectory

Figure 9: Schematic representation of the centre
projection of the trajectory.

As before equation (5) describes the movement
around the different equilibrium points on the sad-
dle projection and can be used to estimate the time
between manoeuvres. Now

∆t =
1

λ(α)
log

(
εmax

u1 − εmax

)
.

Notice that the time between manoeuvres now just
depends on the parameter d, the position of the
new fixed point and εmax. These parameters can
be changed to control the speed in which we move
around these family. But we must be careful not
to take very big values for εmax as we can we can
blow the central part or the linear approximation.

5 Results for a concrete applica-
tion

To test our algorithms we have considered a sail
with a characteristic acceleration a0 = 0.3mm/s2.
This is the same a0 that has been used to study
the Geostorm Warning Mission4,8, 3. We will start

6



with the probe close to an unstable equilibrium
point p0 displaced 5o from the Sun - Earth line at
3003461.3km from the Earth. We want to transfer
the trajectory from the neighbourhood of p0 to the
vicinity of a fixed point p1 displaced 10o from the
Sun - Earth line at 3027723.26km from the Earth.
Once the sail is close to p1 we will use the control
strategy described in section 4.1 to maintain the
sail close to p1 for 10 years. In Figure 10 we have
a schematic representation of this mission.

Figure 10: Schematic representation of the pro-
posed mission.

Our mission is divided in three phases. In phase 1
we control the sail’s trajectory in a vicinity of p0

and prepare it for phase 2. In the second phase
the sail orientation is changed so that the invariant
manifolds take the probes trajectory to a vicinity
of p1 in a controlled way. Finally, in phase 3 we will
use the control strategy to maintain its trajectory
close to p1 up to 10 years.

We have taken random initial conditions close to p0.
In Figure 11 we can see the final trajectory followed
by the sail. The trajectory is plotted in different
colours depending on the phase of the mission.

The first phase is need to place the sail in the ap-
propriate side of the saddle. In this case the ini-
tial condition is placed on the opposite side and we
need to apply some control. In Figure 12 we can
see the variation in the sail orientation during the
first phase. Figure 13 shows the saddle and centre
projection of the trajectory followed by the probe
on this phase. We can clearly see how the probe is
moved to the correct side of the saddle and bounces
from one side to the other until the central move-
ment is small enough to start phase 2.

It takes 2.36 years to go from p0 to p1. We need to

Figure 11: The trajectory followed by the sail.
In red the first phase of the trajectory, in green
the second phase and in blue the third phase.

Figure 12: Phase 1: Variation of the sail orienta-
tion w.r.t time.

do changes in the sail orientation every 17.8 days.
These changes are always around 0.02o. In Fig-
ure 14 we can see the variation on the sail orienta-
tion w.r.t time.

In Figure 15 we can see the projection of part of
the trajectory on the saddle and centre planes de-
fined by R0. Notice that in the saddle projection
we can see the saddle type motion for the differ-
ent equilibrium points. In the centre projection we
can see how the trajectory rotates around the dif-
ferent equilibrium points. In this plot we have used
two different colours to illustrate the different sail
orientation.

For this particular case we have considered εmin =
5 ·10−5, εmax = 10−4 and d = 2.5 ·10−5. If we want
the transfer trajectory of the probe to come closer
to the equilibrium points we must choose a smaller
εmax but this will make the transfer time increase.

When the probe reaches the desired 10o phase 3
starts. During the control strategy the time be-
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Figure 13: Phase 1: From left to right projec-
tions of the sail’s trajectory on the saddle plane
(~v1, ~v2) and on the centre plane (~v3, ~v4).

Figure 14: Phase 2: Variation of the sail orien-
tation w.r.t time.

tween manoeuvres oscillates between 136 and 40
days. This difference is due to the choice of the
different fixed points as one the probe escapes from
one fixed point quicker than from the other. The
angle variation in the sail orientation varies around
the 0.016o. In Figure 16 we can see the variation
of the sail orientation during the control.

Figure 17 show the projection of the trajectory on
the saddle and centre planes respectively. We have
plotted the trajectory in two colours depending on
the sail orientation. In red when p1 is the fixed
point and green when the appropriate sail orien-
tation is chosen. We can see clearly the bouncing
between the saddles in the saddle projection. On
the centre projection we can see how the trajectory
is maintained bounded. In this case no extra ma-
noeuvres to reduce the central behaviour have been
done.

6 Conclusions

In this paper we have shown a control strategy to
maintain a solar sail close to an unstable equilib-
rium point. We have also developed a strategy

Figure 15: Phase 2: From left to right projec-
tions of the sail’s trajectory on the saddle plane
and on the centre plane.

Figure 16: Phase 3: Variation of the sail orien-
tation w.r.t time.

to move around the family of unstable equilibrium
points.

These strategies have been applied to go from one
region to another. As a particular case we have
chosen to go from a fixed point displaced 5o on the
Sun - Earth line to a fixed point at 10o of this line,
but these techniques are valid to move around the
family of unstable equilibrium points.

They are based on using the natural dynamics of
the system. Understanding how the invariant man-
ifolds vary as the sail orientation is changed has
been the key. In this work we have only used the
information given by linear dynamics. This is use-
ful if we want to be close to the equilibrium points,
but might be a constraint in some cases. We could
use higher order terms to go further away of the
equilibrium point.
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Figure 17: Phase 3: From left to right projec-
tions of the sail’s trajectory on the saddle plane
and on the centre plane.
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