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STATION KEEPING CLOSE TO UNSTABLE EQUILIBRIUM
POINTS WITH A SOLAR SAIL

Ariadna Farrés and Àngel Jorba ∗

We have considered the movement of a solar sail in the Sun - Earth system.
Using the Circular RTBP adding the solar radiation pressure as a model
we have a 2D family of equilibrium points parametrised by the two angles
defining the sail orientation. Most of these points are unstable and require
a control strategy to maintain a sail on a small neighbourhood of the fixed
point the for a long time. The knowledge of the variation of the invariant
manifolds with respect to the sail orientation has permitted us design a
control strategy to keep its trajectory close to one of these unstable points.
This strategy has been tested for two known missions, the Polar Observer
and the Geostorm Warning Mission. Simulations up to 30 years have been
done taking into account errors in the position determination and on the
sail orientation. In this paper we present details on the implementation of
the control strategy and the results obtained for both missions.

INTRODUCTION

Solar Sailing is a proposed form of spacecraft propulsion using large membrane mir-
rors. The impact of the photons emitted by the Sun on the surface of the sail and their
further reflection produce momentum on it. Although the acceleration produced by this
reflection is smaller than the one achieved by a ‘traditional’ spacecraft it is continuous and
unlimited. These makes long term missions more accessible.

It is well know that a solar sail is an orientable surface, the orientation of the sail
is defined by two angles, the pitch (α) and yaw (δ) angle. Another important parameter
is the sail lightness number (β) used to define the sail’s effectiveness. In this paper we
have considered that the sail is a perfectly reflecting surface so the force due to the solar
radiation pressure is normal to the surface of the sail.

To model the dynamics of the sail we have taken the Sun - Earth Restricted Three
Body Problem (RTBP) and added the solar radiation pressure effect. This model is a
perturbation on the RTBP and depends on three parameters,, the sail lightness number
β and the two angles defining the sail orientation α, δ. It is well know that the RTBP has
five equilibrium points (L1,...,5). For a small β these five equilibrium points are replaced
by five continuous families of equilibria parametrised by the sail orientation (α, δ). As β
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increases 4 of these families connect and then the fixed points form 2 connected surfaces
S1 and S2. In4 it can be seen that S1 is diffeomorfic to a sphere and S2 is diffeomorfic to
a torus.

We can classify these fixed points by their stability. In this paper we will focus on
those fixed points that are unstable and that the differential of the flow on the fixed
point has one pair of real eigenvalues and two pair of complex eigenvalues. Although the
complex eigenvalues can have real positive part this one will be very small compared with
the instability produced by the real eigenvalues. Hence, as a first approximation we will
suppose that the linear dynamic around these fixed point is saddle × centre × centre. The
real effect will be considered later.

Let p0 be a fixed point for α = α0 and δ = δ0. Take ~v1, ~v2 the stable and unstable
eigenvectors, ~v3, ~v4 and ~v5, ~v6 the real and complex part of the two complex eigenvectors.
It is well know that V = {~vi}i=1,...6 are a basis and the couple {p0;V } is a reference system.
From now on, the trajectory followed by the probe can be written in terms of this reference
system, which will help us understand the linear dynamics around the equilibrium point.

When the probe is close to the fixed point p0, the trajectory escapes along the unstable
direction. We want to change the sail orientation α = α1, δ = δ1 so that the unstable
direction of the new equilibrium point brings the trajectory close to the stable direction
of p0. Then we will restore the original orientation and so on. The projection of the
trajectory on the central behaviour are rotations around the different equilibrium points.
This process can produce an unbounded trajectory, so we have to take into account the
central behaviour when choosing the new sail orientation.

In the literature we can find two different missions that need to keep a solar sail close
to an unstable fixed point. These two missions are the Geostorm Enhanced Warning1–4,7

and the Polar Observer3,4 missions. We will give a small overview of the main objectives
of these two missions and we will apply our control strategy to them. A 1000 simulations
with random initial conditions have been done and the results are successful. As we will
see for all of these initial conditions the control strategies manages to keep the sail close
to the equilibrium point.

Finally, we have tested our control strategy with different fonts of errors. We have
introduced errors on the sail orientation and errors in the position and velocity determina-
tion. The errors on the sail orientation will affect to the probe’s trajectory and the second
type of errors will affect to the decisions taken by the control strategy. We have made
1000 simulations with the same initial conditions as before including these two effects. We
will discus the results.

EQUATIONS OF MOTION

To describe the dynamics of a solar sail we have supposed that Earth and Sun are
point masses moving in a circular orbit around their common centre of mass. The sail is
under the gravitational attraction of these two bodies and the effect of the solar radiation
pressure. The units of mass, distance and time have been normalised so that the total
mass of the system is 1, the Sun - Earth distance is 1 and the period of the orbit is 2π.
With these units, the gravitational constant is also 1. We use a rotating reference system
so that Earth and Sun are fixed on the x axis, z is perpendicular to the ecliptic plane and

2



y defines a orthogonal positive oriented reference system (Figure 1, left).
The force of the solar radiation pressure depends on the position of the sail, the

orientation and the characteristic acceleration of the sail. The orientation of the sail is
defined by two angles, say α and δ: α is the angle between the Sun - line and the projection
on the ecliptic plane of the normal vector to the sail ~n; δ is the angle between the ecliptic
plane and ~n (see Figure 1, right). As the vector ~n cannot point towards the Sun then
α ∈ [−π/2, π/2] and δ ∈ [−π/2, π/2]. There are other possibilities to define these angles,
see1,4, 5.
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~FS

~FSail

Earth Sun

µ1− µ

α

δSun -line

~n

Figure 1 Left: Relation between the forces due to the sail and the gravitational attraction
of the Earth and Sun. Right: Relation between the sail’s angles (α and δ) and the the
Sun - line

In the rotating frame, the equations of motion for the probe are

ẍ = 2ẏ + x− (1− µ)
x− µ

r3PS

− µ
x+ 1− µ

r3PT

+ κ cos(φ+ α) cos(ψ + δ),

ÿ = −2ẋ+ y −
(

1− µ

r3PS

+
µ

r3PT

)
y + κ sin(φ+ α) cos(ψ + δ), (1)

z̈ = −
(

1− µ

r3PS

+
µ

r3PT

)
z + κ sin(ψ + δ),

where κ = β
1− µ

r2PS

cos2 α cos2 δ is the force exerted by the sail with β as the sail lightness

number. The angles φ, ψ refer to the position of the probe w.r.t. the Sun. They are given
by

φ = arctan
(

y

x− µ

)
, ψ = arctan

(
z√

(x− µ)2 + y2

)
, (2)

with φ ∈ [−π, π] and ψ ∈ [−π/2, π/2]. Note that the equations of motion depend on three
parameters: β, α and δ. It is clear that if β = 0 or α = ±π/2 or δ = ±π/2 ,i.e. sail
aligned with the Sun - line, the equations are the same as in the RTBP.
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EQUILIBRIUM POINTS

It is well known that the RTBP has five equilibrium points. It is easy to see that for
small β, these points are replaced by five continuous families of equilibria parametrised by
α, δ. The equations for the fixed points are obtained setting ẋ = ẍ = ẏ = ÿ = ż = z̈ = 0
in Eq 1. As we have already mentioned, for α = ±π/2 or δ = ±π/2 this model coincides
with the RTBP and hence, it has five well known equilibrium points L1,...,5 (Szebehely6).

We have computed these families numerically by means of a continuation method. For
β fixed and small we have five disconnected families, as β increases four of these families
merge and the fixed points form two disconnected surfaces, S1 and S2, parametrised by
the two angles α and δ. It can be seen that S1 is diffeomorphic to a sphere and contains
L2 and that S2 is diffeomorphic to a torus and is located around the Sun and contains
L1,3,4,5. In Figures 2 and 3 we can see different slices of this surface for different values of
β.

Figure 2 Equilibrium points in the {x, y}- plane for β1 = 0.06, β2 = 0.1, β3 = 0.15, β4 = 0.3. The
red points have a pair of real eigenvalues and two pair of complex eigenvalues and the green
points have three complex eigenvalues.

McInnes4 has shown that the equilibrium points of this system are in general unstable
but controllable. We can classify the fixed points in three classes depending on the eigen-
values of the differential matrix of the flow on the fixed point. The first class includes the
equilibrium points that have three pair of complex eigenvalues. The second one includes
those with one pair of complex eigenvalues and two pair of complex eigenvalues and the
third class includes the ones with two pair of real eigenvalues an a pair of complex eigen-
values. In this work we will describe a control strategy around the equilibrium points of
the second class.

Linearisation Around the Equilibrium Points

From now on the value of sail lightness number (β) will be considered fixed. Hence,
the fixed points are parametrised by α and δ. We are interested in knowing the variation
of the fixed points when we change α and δ.
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Figure 3 Equilibrium points in the {x, z} plane for β1 = 0.06, β2 = 0.1, β3 = 0.15, β4 = 0.3. The
red points have a pair of real eigenvalues and two pair of complex eigenvalues and the blue
points have two pair of real eigenvalues and one pair of complex eigenvalues.

Let p0 = p(α0, δ0) be the coordinates of a fixed point of Ẋ = f(X,α, δ), that is,
f(p0, α0, δ0) = 0. The Implicit Function Theorem implies that ∂p

∂α(α0, δ0) and ∂p
∂δ (α0, δ0)

are found by solving,

DXf(p0, α0, δ0)
∂p

∂α
(α0, δ0) = −∂f

∂α
(p0, α0, δ0),

DXf(p0, α0, δ0)
∂p

∂δ
(α0, δ0) = −∂f

∂δ
(p0, α0, δ0).

As we do not know explicitly p(α, δ) and the variation on the sail orientation will be
small we will deal with its linear approximation. If p(α0, δ0) is a given fixed point then,

p(α, δ) = p(α0, δ0) +Dp · h, (3)

where h = (α− α0, δ − δ0)T and Dp =
(

∂p
∂α(α0, δ0), ∂p

∂δ (α0, δ0)
)
.

STATION KEEPING

In this section we will focus on a linearly unstable equilibrium point and we will
use the information of its local dynamics to design a control strategy. The idea is to
change the sail orientation (i.e. the phase space) to make the system act as we wish.
When the spacecraft is in a neighbourhood of a fixed point the linear approximation gives
an accurate description of the dynamics. As we have already said we are interested in
controlling unstable points that have two real eigenvalues (±λ) and two pairs of complex
eigenvalues. One of the pairs of complex eigenvalues can have non-zero real part (ν1± iω1)
and the other pair of eigenvalues is purely imaginary (±ω2).

From now on we will make the assumption that ν1 = 0, supposing that the dynamic
given in this central direction is a rotation around the origin instead of spiralling inwards
or outwards, depending on the sign of ν1. If ν1 < 0 this supposition just adds more
difficulties on the central behaviour as this is naturally stable. Instead, if ν1 > 0 our
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assumption might make the control strategy fail in the real case. But we will see that the
control strategy designed reduce the amplitude of the central behaviour. If this reduction
is bigger than the expansion that the spiral experiences we will be able to control the sail.
Besides, this spiralling is really small and it is not very relevant for short times. Hence,
here we assume that the linear dynamics around the fixed points is saddle × centre ×
centre.

Let p0 be the fixed point for α = α0 and δ = δ0. If the sail is close to p0 its trajectory
will escape through the unstable direction. We want to change the orientation of the sail
(α = α1, δ = δ1) so that the unstable direction of this new fixed point sends the probe back
to the neighbourhood of p0. Then, we restore the initial orientation of the sail, α = α0

and δ = δ0, and so on. It is important to note that, during this process, the projection
of the dynamics into the central part of the equilibria can grow: as the central behaviour
are rotations around each of the fixed points, the composition of central motions with
different centre of rotation can result in an unbounded growth of the central component
of the motion. For this reason we have to be careful when we chose the sail orientation.
We have to be able to control the instability given by the unstable direction and to make
sure that the central behaviour does not grow.

As we have already said we are supposing that the linear behaviour of the fixed points
is saddle × centre × centre. Hence, let p0 ∈ R6 be the fixed point and ±λ, ±iω1 and ±iω2

the eigenvalues. If the sail orientation is slightly changed then p0 is also slightly changed
as well as the eigenvalues and eigenvectors.

From now on we will describe the trajectory of the probe by its projection on the
three different planes centred on p0. The first one is generated by the two eigenvector
with real eigenvalues (~v1, ~v2), where the saddle behaviour is described. The other two are
generated by the real and imaginary part of the two pairs of complex eigenvectors (~vi,
~vi+1 for i = 3, 5). The projection of the orbit on these two planes describes the central
behaviour of the motion. In this reference system the trajectory of the probe is given by
(x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)).

We want to obtain a sail orientation so that the unstable direction of the new fixed
point brings the probe back to a neighbourhood close to the initial fixed point p0. As we
know the fixed points live in a 2D surface and we have a 6D phase space, so we have some
limitations in the positions of the new fixed point.

For the moment let us suppose that there are no limitations in the position of a
new fixed point and we will try to understand the behaviour of the probe when the sail
changes in the projection on the saddle plane and on a centre plane. Understanding these
behaviour we will be able to design a control strategy.

Behaviour on the Saddle Plane

Suppose that for α = α0 and δ = δ0 the fixed point is at the origin so the motion of
the saddle part is,

x1(t) = x10e
λ(t−t0)

y1(t) = y10e
−λ(t−t0)

}
, (4)

where (x10, y10) is the initial condition.
When the sail orientation is changed α = α0 + εα and δ = δ0 + εδ the fixed point and
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Figure 4 Representation of the important parameters in the control of the saddle part. The
bounce region is the location of the future fixed points, we will chose one of them, and the
bounce direction are the eigendirections for those fixed points.

the eigenvalues and eigenvectors change slightly. From now on we will just consider that
the eigenvectors are the same as the ones at the origin. If (x̄1, ȳ1) is the new fixed point
and ±λ̄ are the real eigenvalues for (x̄1, ȳ1), then the movement of the probe is,

x̄1(t) = x̄1 + (x̄10 − x̄1)eλ̄(t−t0)

ȳ1(t) = ȳ1 + (ȳ10 − ȳ1)e−λ̄(t−t0)

}
, (5)

where (x̄10, ȳ10) is the initial condition.
To control the saddle behaviour we will define two bounds B1 = {x1 = εmin} (the

minimal distance to the stable direction) and B2 = {x1 = εmax} (the maximal distance
to the stable direction), that define the region of movement (between B1 and B2). When
the trajectory reaches one of these two bounds the sail orientation is changed.

If the sail orientation is fixed to α = α0 and δ = δ0 the trajectory followed is given by
Eq 4 and goes from B1 to B2. When the sail orientation is changed to α = α1 and δ = δ1
the trajectory is given by Eq 5 and goes from B2 to B1.

In order to control the instability the new fixed point (x̄1, ȳ1) must satisfy x̄1 > εmax.
As we are supposing that all the eigenvectors are the same then the new fixed points
unstable direction will bring the probe back to B1 (see Figure 4).

Behaviour on a Centre Plane

Suppose that for α = α0, δ = δ0 the fixed point is at the origin and let (x20, y20) be

the initial condition. Then if r0 =
√
x2

20 + y2
20 and τ0 = arctan

(
y20

x20

)
the motion on the

central plane is,
x2(t) = r0 cos(ω1(t− t0) + τ0)
y2(t) = r0 sin(ω1(t− t0) + τ0)

}
. (6)

When the sail orientation is changed to α = α0 + εα and δ = δ0 + εδ, the fixed point
changes as well as the eigenvalues and eigenvectors. As before we will just consider that
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the eigenvectors are the same as the ones at the origin. If (x̄2, ȳ2) is the new fixed point
and ±iω̄1 are the pair of complex eigenvalues for (x̄2, ȳ2). Then,

x̄2(t) = x̄2 + r̄0 cos(ω̄1(t− t0) + τ̄0)
ȳ2(t) = ȳ2 + r̄0 sin(ω̄1(t− t0) + τ̄0)

}
, (7)

where r̄0 =
√

(x̄2 − x̄20)2 + (ȳ2 − ȳ20)2, τ̄0 = arctan
(
ȳ2 − ȳ20

x̄2 − x̄20

)
and (x̄20, ȳ20) is the

initial condition.
The movement in the centre plane will be a sequence of rotations around each of the

fixed points. The composition of rotations around different fixed points does not need to
be bounded and we would like to place the fixed points so that this movement does not
grow. In fact we will find a sequence of fixed points so that the trajectory tends to the
origin.

As we have already said, we are assuming that for α = α0, δ = δ0 the fixed point is
at the origin and the trajectory is an arc starting at the initial condition (x20, y20) and
radius r0 =

√
x2

20 + y2
20. Let (ζ2, η2) be the point where the sail orientation is changed,

we want to find a fixed point (x̄2, ȳ2) so that arc described around (x̄2, ȳ2) ends closer to
the origin than (x20, y20).

Depending on the position of (x̄2, ȳ2) with respect to the (ζ2, η2) the arc will or will not
be totally included in the disk centred at the origin and radius r0 (D0). We are interested
in taking fixed point so that the arc described by the probe is totally included in D0. It
is easy to see that if the new fixed points must be placed on line between the origin and
(ζ2, η2). More over if (x̄2, ȳ2) = (ζ2/2, η2/2) the distance to the origin will be minimised.
Figure 5 is a schematic representation of the sequence of fixed points that must be taken
so that the centre trajectory tends to the origin.

Choosing the New Sail Orientation (α, δ)

We have found an ideal sequence of fixed points to control the instability of the fixed
point. As it has already mentioned the fixed points live on a 2D surface parametrised by
α and δ in a 6D phase space. So we might not be able to find a sail orientation α1 and δ1
so that the fixed point is one of the described before.

As we do not know explicitly the 2D surface of fixed points (p(α, δ)) and the variation
on the sail orientation will be small we will deal with the linear approximation of this
surface. So we would like to find h = (α− α0, δ − δ0)T such that,

p̄− p0 = Dp · h, (8)

where p̄ is the desired new fixed point. The position of p̄ is as described previously, the
saddle part must be fixed on the appropriate side of the saddle and both centres have to
be at the middle distance between the position of the probe at the change moment and
p0. Notice that Eq 8 is Eq 3 rewritten and that it has 6 equations and 2 unknowns. We
would like to find α1, δ1 such that ‖p̄− p(α1, δ1)‖ is small enough.

Notice that although ‖p̄−p(α1, δ1)‖ can be small p(α1, δ1) may not be able to control
the instability due to the saddle part: If the projection of p(α1, δ1) on the saddle plane
is on the left hand side of B2 then the unstable direction of p(α1, δ1) will not bring the

8



(ζ
(0)
2 , η

(0)
2 )

(ζ
(1)
2 , η

(1)
2 )

(ζ
(2)
2 , η

(2)
2 )

(ζ
(3)
2 , η

(3)
2 )

(ζ
(4)
2 , η

(4)
2 )

(ζ
(5)
2 , η

(5)
2 )(x̄

(0)
2 , ȳ
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Figure 5 Sequence of fixed points and the projection of the probe’s trajectory in the centre
plane.

probe back (see Figure 6). So we will fix one of the components of p̄, having to find the
fixed points in a 1D surface.

We will now give more details of the process described above. As said before, p̄ is
the ideal position for the new fixed point. The coordinates of this position are in the
{p0;~v1, . . . , ~v6} reference system and Eq 8 is in synodical coordinates, so we must change
the base. Let Mv be the matrix that has ~vi for i = 1, . . . , 6 as columns and s = (s1, . . . , s6)
are the coordinates of p̄ in this reference system. If A = M−1

v Dp then Eq 8 becomes,

sT = A · h. (9)

To avoid problems in the saddle behaviour we will fix s1:

1. If a11 = a12 = 0 ⇐⇒ ∂p
∂α ,

∂p
∂δ ⊥ ~v1:

In this case there are no fixed points using the linear approximation for which its
saddle behaviour brings the sail back.

2. If |a11| = max(|a11|, |a12|):

s1 = a11h1 + a12h2 ⇒ h1 =
s1 − a12h2

a11
, (10)

3. If |a12| = max(|a11|, |a12|):

s1 = a11h1 + a12h2 ⇒ h2 =
s1 − a11h1

a12
, (11)
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Figure 6 Possible position of the new fixed point p(α1, δ1) in the saddle projection that will
not control the unstable behaviour.

This reduces Eq 9 into ŝ = Â · ĥ (5 equations and 1 unknown).
Then ĥ so that ‖ŝ− Â · ĥ‖ is minimal is,

ĥ = (ÂT Â)−1ÂT s. (12)

Summary of the Control Algorithm

Suppose p0 is a fixed points for α = α0, δ = δ0 that is linearly unstable. Let
{λi, ~vi}i=1,...,6 be the eigenvalues and eigenvectors for DXf(p0). We will fix a reference
system {p0;~v1, . . . , ~v6} where,

• p0 is the fixed point.

• ~v1 is the unstable eigenvector (+λ).

• ~v2 is the stable eigenvector (−λ).

• ~v3, ~v4 is the couple that defines one of the central movements (±iω1).

• ~v5, ~v6 defines the second central movement (±iω2).

From now on the trajectories will be seen in this reference system (x(t∗) =
∑
si~vi),

being (s1, . . . , s6) the coordinates of the trajectory.
Let εmax be the maximal distance we will allow to escape from the fixed point and

εmin the closest distance to the fixed point, needed when the probe is coming back. These
constants depend on the mission objectives and the dynamical properties of the region
around p0.

We start with the probe close to the fixed point p0 with α = α0, δ = δ0. When
|s1| > εmax, the probe is far from p0, we chose the appropriate α1, δ1 that takes the probe
back to a neighbourhood of p0 and change the sail orientation (α = α1, δ = δ1). When
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|s1| < εmin, the sail is close to p0 and we change the sail orientation back to α = α0,
δ = δ0. This process is then restarted.

MISSION APPLICATION

We have seen a technique that uses dynamical system tools and permits a solar sail
maintain its trajectory close to an unstable fixed point. We would like to illustrate how this
control technique behaves with missions that are now being developed as the Geostorm
and the Polar Observer missions.

First we will give a brief introduction of the aims of each mission. Second, we have
tested our control strategy for both missions for 1000 simulations with random initial
conditions. We will see that the probe manages to maintain its trajectory close to the
fixed point for all these simulations. Finally, we will see the effect of errors during the
control strategy. We have considered errors on the position and velocity determinations
and errors on the sail orientation.

The Geostorm Mission

Its primary goal is to provide enhanced warning of geomagnetic storms to take pre-
ventive actions to protect vulnerable systems. Geomagnetic storms are principally the
result of Coronal Mass Ejections (CME), the violent release of large volumes of plasma
from the solar corona. The impact of CME on the Earth’s magnetosphere can change its
magnetic field and produce electromagnetic storms.

Currently predictions of future activity are made by the National Oceanic Atmo-
spheric Administration (NOAA) Space Environment Centre in Colorado using terrestrial
data and real-time solar wind data obtained from the Advanced Compositions Explorer
(ACE) spacecraft. The ACE spacecraft is stationed on a halo orbit near L1, at about 0.01
AU from the Earth.

The enhanced storm warning provided by ACE is limited by the need to orbit the
L1 point. However, since solar sails add an extra force to the dynamics of the orbit, the
location of L1 can be artificially displaced. The goal of Geostorm is to station a solar sail
twice as far from the Earth than L1 while remaining close to the Sun - Earth line as can
be seen in Figure 7. As the CME will be detected earlier than by ACE, the warning times
will be at least doubled.

In this paper we are just interested in testing our station keeping process. We want the
sail to be at a double distance from the Sun - Earth L1 point, so we need a characteristic
acceleration of a0 = 0.3mm/s2. As we also want a constant communications with the
Earth we must displace the probe approximately 10o from the Sun - Earth line. In this
region the fixed points are linearly unstable (see Figure 2).

We have taken a reference system ({p0;~v1, . . . , ~v6}) such that the p0 is a fixed point
satisfying the requirements explained above for a fixed sail orientation α0, δ0. We have
done 1000 simulations with different initial conditions chosen in a random way. The
control strategy has been applied up to 30 years and we have measured for each one the
time between manoeuvres, the variation of the sail orientation (α, δ) and the variation of
the trajectory w.r.t p0.
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Figure 7 Schematic representation of the position of the Geostorm Mission (not to scale).

On the left hand side of Figure 8 we can see for each simulation the maximum and
minimum time between manoeuvres. As we can see the minimum time between manoeu-
vres is around 40 days and the maximum time is around 146 days. On the right hand
side of Figure 8 we have the maximum angular variation between the fixed point (p0) and
the probe’s trajectory seen from the Earth for each simulation. Notice that the maximum
variation experienced is less than 0.45 degrees. The variation of the sail orientation is
reflected in the variation of two angles α and δ. For these simulations we have seen that α
varies around 0.0695 degrees every time the sail orientation is changed and δ varies around
0.005 degrees.

Figure 8 Left: maximum and minimum time between manoeuvres vs number of simula-
tion. Right: maximum angular variation between p0 and the probe trajectory vs number of
simulation.

Finally in Figure 9 we can see one particular orbit after applying the control strategy
on the {x, y}- plane (left), the {x, z}- plane (middle) and the 3D trajectory (left). Figure 10
shows the projection of this orbit on the saddle plane generated by the eigenvector ~v1, ~v2
(left) and the projection on the other two central planes ~v3, ~v4(middle) and ~v5, ~v6 (right).
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Figure 9 Trajectory followed by the probe for 30 years. Left: {x, y}- projection, Middle:
{x, z}- projection, Right: {x, y, z}- projection

Figure 10 Trajectory followed by the probe for 30 years. Left: Projection of the trajectory
on the saddle plane, Middle: Projection of the trajectory in one of the centre planes (~v3, ~v4),
Right: Projection of the trajectory in the other centre planes (~v5, ~v6). In red the trajectory
when the sail is set to α0, δ0 and in green other orientations.

The Polar Observer Mission

High latitude regions are of importance for a number of military, commercial and
environmental interests. During the cold war the Arctic was a strategically important
region, also the growing interest for the oil and mineral extraction of these regions may
lead to a growing demand for communication services. The Arctic and Antarctic are
also of great environmental importance and there is a requirement for relaying data from
remote weather stations and automated monitoring platforms. Additional environmental
requirements for polar services include continuous imaging of polar weather systems and
monitoring of polar ice coverage for climate studies between others.

As solar sails provide a wide range of new artificial equilibrium points, some of these
equilibrium points can be used to place a sail to have constant viewing of the Polar regions
of the Earth. As the Earth’s inclination is of about 23.4o we must place the solar sail at
66.6o from the ecliptic plane. Notice that as the Earth orbits around the Sun, the sail will
maintain its fixed position with respect to the Earth but it will not always have the same
view at the pole due to the Earth’s inclination, see Figure 11. Having the sail perfectly
situated on the north pole during the summer solstice, and during the winter solstice the
sail will appear displaced over the horizon, having still some imaging of the north pole.

As the sail performance increases the equilibrium points come closer to the Earth. But
as a first mission we are dealing with small resolution sails. We will take a characteristic
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Figure 11 Schematic representation of the Polar Observer Mission (not to scale).

acceleration a0 = 0.46mm/s2 as it is the minimum sail’s characteristic acceleration that
makes the solar sail be placed over the north pole. In these region the points are also
linearly unstable (see Figure 3).

As before we have also taken a reference system {p0;~v1, . . . , ~v6} so that the fixed
point p0 satisfies the required conditions for a fixed sail orientation α0, δ0. We have also
done a 1000 simulations applying the control strategy up to 30 years with random initial
conditions and measured the time between manoeuvres, the variation of the sail orientation
and the angular variation w.r.t p0.

In the left hand side of Figure 12 we can see for each simulation the maximum and
minimum time between manoeuvres. Now the minimum time between manoeuvres is
always around 59 days and the maximum time is around 187 days. In the right hand side
of Figure 12 we have the maximum angular variation between the fixed point (p0) and
the probe’s trajectory for each simulation, where the maximum variation experienced is
around 0.3 degrees. In these simulations we have seen that α varies around 0.03 degrees
and δ around 0.02 degrees every time the sail orientation is changed.

Figure 12 Left: maximum and minimum time between manoeuvres vs number of simula-
tion. Right: maximum angular variation between p0 and the probe trajectory vs number of
simulation.

Finally Figure 14 shows the projection of this orbit on the saddle plane gener-
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ated by the eigenvector ~v1, ~v2 (left) and the projection on the other two central planes
~v3, ~v4(middle) and ~v5, ~v6 (right).

Figure 13 Trajectory followed by the probe for 30 years. Left: {x, y}- projection, Middle:
{x, z}- projection, Right: {x, y, z}- projection

Figure 14 Trajectory followed by the probe for 30 years. Left: Projection of the trajectory
on the saddle plane, Middle: Projection of the trajectory in one of the centre planes (~v3, ~v4),
Right: Projection of the trajectory in the other centre planes (~v5, ~v6). In red the trajectory
when the sail is set to α0, δ0 and in green other orientations.

Sensitivity to Errors

It is a known fact that during a mission the position and velocity of the probe will not
be determined exactly, this has an effect on the decisions taken by the control algorithm.
Errors on the sail orientation will also be made and have an important effect in the probe’s
trajectory. We will see the effect of these errors in our control strategy.

Let us first consider the errors on the determination of the position and velocity of
the probe. As we have seen in previous sections the sail orientation will be changed when
the probe is at a certain distance of the fixed point in the saddle plane projection. Each
time the algorithm asks itself if the sail orientation has to be changed, the probe’s position
in the phase space has some small error. If the sail orientation is changed the new fixed
point will be found using the wrong position of the probe. If this errors are not very big
the difference between changing the sail orientation a little before or after in time will not
affect on the control of the probe.

We have supposed that all the errors follow a normal distribution with mean value
0. We have taken a precision on the space slant of 1m and 2 − 3milli-arc-seconds in the
angle determination. The precision in speed is around 20−30micro/seconds. These errors
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magnitudes reflect as errors of order 10−8 in the saddle plane projection, these effects are
almost neglected.

We have done 1000 simulation taking the same initial conditions as before adding
the uncertainty in the position and velocity measurement. We will see that the results
obtained similar for all the 1000 simulations in both missions the probe’s trajectory does
not escape after 30 years. The average time between manoeuvres is slightly changed and
so are the angular variation on the trajectories position w.r.t the initial fixed point seen
from the Earth (see Table 1 and 2).

Let us now consider the errors due to the sail orientation, these errors have a more
important effect on the sail trajectory and the controllability of the probe. Each time the
sail orientation is changed an error in its orientation is made (α = α1 + εα, δ = δ1 + εδ).
Then the new fixed point p1 is shifted p(α, δ) = p(α1, δ1) + εp and so do the stable and
unstable directions ~v1,2(α, δ) = ~v1,2(α1, δ1) + εv. These variations can make the probe’s
trajectory not come close to p0, as p(α, δ) can be placed on the incorrect side of the saddle
or the the central behaviour can blow up.

Depending on the nature of the region where the fixed point is placed the control
strategy will be able to deal with bigger errors in the sail orientation. It will all depend on
the variation of the fixed point and the eigenvectors with respect to the sail orientation.

We have also done 1000 simulations taking the same initial conditions introducing the
uncertainties on sail orientation and the probe’s position and velocity. We will see that
for different magnitude of errors on the sail orientation the control strategy is also able to
maintain all the simulations close of the equilibrium point up to 30 years.

Tables 1 and 2 sumarises the results of all these simulations for the Geostorm and Polar
Observer missions respectively. On the first line we have the results for the simulations
when no errors are taken into account. On the second line there are the results when only
error on the position and velocity determination are made. Finally the third line contains
the results when all the errors are taken into account (sail orientation and position +
velocity determination). We must mention that the errors on the sail orientation for each
mission are different. For the Geostorm the errors on the sail orientation are of order
0.01o while for the Polar Observer the errors made are of order 0.001o. As we will see
latter on this is due to the dynamics around the different equilibrium points. Column 2
shows the % of simulations that succeed in controlling the probe, column 3 and 4 have
the average maximum and minimum time between manoeuvres respectively and column
5 has the average angular variation of the trajectory w.r.t the fixed points p0 seen from
the Earth.

Table 1

STATISTICS FOR THE GEOSTORM WARNING MISSION

Succ. Sim. Max. Time Min. Time Ang. Vari.

No Error 100% 146.77 days 40.20 days 0.3o

Error Pos. 100% 146.82 days 40.19 days 0.30

Error Orient. 100% 376.78 days 32.60 days 1.2o
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In Table 1 we can see that for the Geostorm mission all of the 1000 simulations succeed
even if errors on the sail orientation or on the determination of the probe’s position and
velocity are made. As we can see there is practically no change between including or not
the error in the position determination, but it does change if we introduce errors on the
sail orientation. This is due to the big variation in the fixed points position when these
last errors are taken into account. As we can see the angular variation between the probe’s
trajectory and the fixed point is almost doubled when all the errors are taken into account,
this is because now the probe’s trajectory moves on both sides of the saddle as can be seen
in Figure 15. In this figure we can see the difference between the trajectory followed by
the probe when errors in the sail orientation are added and the trajectory when no errors
are taken into account for the Geostorm.

Figure 15 Geostorm: In red the trajectory followed by the probe when no error during
the control algorithm are made. In green the trajectory followed by the probe when errors
on the position and sail orientation are made. From left to right the projection of the sail’s
trajectory on the saddle, centre 1 and centre 2 planes.

In Table 2 we have the results for 1000 simulations for the Polar Observer. Our control
strategy, in this particular mission, is no able to deal with errors on the sail orientation of
order 0.01o. As we have seen this magnitudes of errors were acceptable in the Geostorm,
this is due to the nature of the region: we recall that for the Polar Observer the variation
of the sail orientation was α ≈ 0.03o and δ ≈ 0.01o. This is why we need more precision
on the sail orientation to be able to control the probe.

Table 2

STATISTICS FOR THE POLAR OBSERVER MISSION

Succ. Sim. Max. Time Min. Time Ang. Vari.

No Error 100% 187.36 days 59.16 days 0.21o

Error Pos. 100% 187.86 days 58.89 days 0.210

Error Orient. 100% 246.85 days 55.08 days 0.36o

As it happened on the Geostorm mission we can see that the time between manoeuvres
practically does not change when the errors on the position determination are made,
the same happens for the angular variation, but it does change when errors on the sail
orientation are introduced.

In Figure 16 we can see two different trajectories for the same initial condition, one
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Figure 16 Polar Observer: In red the trajectory followed by the probe when no error during
the control algorithm are made. In green the trajectory followed by the probe when errors
on the position and sail orientation are made. From left to right the projection of the sail’s
trajectory on the saddle, centre 1 and centre 2 planes.

made with no errors on the control strategy and the other with errors during the control
strategy for the Polar Observer.

We must also mention that there is a big relation between the variation on the sail
orientation (∆α,∆δ) and the two bound that define the region of movement on the saddle
projection (B1 = {x1 = εmin} and B2 = {x1 = εmax}). Let ∆ε = εmax − εmin, then as
∆ε gets bigger the variation in the sail orientation is bigger. Although ∆ε cannot be too
big because we would have problems in the station keeping algorithm. Notice that εmax

must be inside the limits where the linear behaviour is valid to define the behaviour of the
probe, which is strictly related with the nature of the fixed point and its vicinity.

CONCLUSIONS

In this paper we present a new way of controlling a solar sail close to an unstable
fixed point by using dynamical system tools. We have studied the natural dynamic of the
system close to a fixed point and the variation of this one when the sail orientation (α,
δ) is change. This knowledge has permitted us design a control strategy that maintains a
probe’s trajectory close to an unstable fixed point.

We have tested this strategy with to different missions, the ‘Geostorm Warning Mis-
sion’ and the ‘Polar Observer’. In both cases the probe managed to stay close to the fixed
point for 30 years. We have also tested the controllability of the algorithm including er-
rors in the prediction of the probe’s position and velocity and errors in the sail orientation
angles (α, δ). We have seen that the errors on the position and velocity do not produce
important changes in the sail’s trajectory and its controllability. The errors on the sail’s
orientation are more relevant and give more variations on the trajectory followed by the
probe.

As we have seen, the controllability of the sail is strictly related with the nature of the
neighbourhood of the fixed point where we want to maintain the sail close. If the variations
of the fixed points and the eigendirections is understood, we can be able to understand
the difficulties of the control strategy. As we have seen in the Polar Observer Mission,
more precision on the sail orientation was required to be able to control the probe.

Finally let us mention that the strategy proposed here does not require previous
planing, the decisions taken by the probe depend only on its position on the phase space,
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that is known at each moment. These is really helpful as you do not to have to plan
the control strategy in advance, and errors made during the manoeuvres can be rectified
easily.
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