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A CLASS OF PINCHED SKEW PRODUCTS

A. HARO

Abstract. In this note we construct strange attractors in a class of skew product
dynamical systems.

A dynamical system of the class is a bundle map of a trivial bundle whose base is
a compact metric space and the fiber is the non-negative half real line. The map on
the base is a homeomorphism preserving an ergodic measure. The fiber maps either
are strictly monotone and strictly concave or collapse at zero (pinching condition).
The points on the base space whose fibers collapse are the pinched points of the skew
product. We also assume that the set of pinched points has zero measure, and that there
is a pinched point whose orbit is dense in the base space. Moreover, we assume that
the zero-section is a super-repeller, in the sense that it is invariant and its Lyapunov
exponent is +∞.

For such a skew product dynamical system, we prove the existence of a measurable
but non-continuous invariant graph, whose Lyapunov exponent is negative. We will
refer to such an object as a strange attractor.

Since the dynamics on the strange attractor is the one given by the base homeo-
morphism, we will say that it is a strange chaotic attractor or a strange non-chaotic
attractor depending on the fact that the dynamics on the base is chaotic or non-chaotic.

1. Introduction

The existence of attractive non-continuous invariant graphs in non-autonomous sys-
tems is a topic that has generated great interest, specially for the case of quasiperi-
odically forced dynamical systems, that is bundle maps over irrational rotations. In
this context, such objects are known as strange non-chaotic attractors or SNA, since
the dynamics is the one given by the external irrational rotation. Their existence was
first conjectured in the seminal works [GOPY84] and [Kan84], and motivated an explo-
sion of numerical studies (see the review [PNR01]). This is a fascinating problem for
which there are also rigorous results, although for rather specific systems. So, Herman
[Her83], even before the term SNA was invented, proved the existence of such objects
for quasi-periodically Moebious transformations (see e.g. also the more recent [HP06]).
The proofs of the existence of SNA for the so-called pinched skew-products introduced
in [GOPY84] go back to the works of Keller [Kel96], and Bezhaeva and Oseledets [BO96]
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(see e.g. the further studies [Gle02, Jäg07]). We emphasize that, besides these rigor-
ous results for specific models, there are other examples in the literature for which the
existence of SNA remains unclear [BSV05, JT05, HS05].

In this note we consider such a problem of existence of strange attractors in a class of
skew product dynamical systems, which are bundle maps of a trivial bundle whose base
is a compact metric space and the fiber is the non-negative half real line. The bundle
maps of this class have fiber maps that are either strictly monotone and strictly concave
or collapse at zero. This is the so-called pinching condition mentioned above. We will
refer to the points on the base space whose fibers collapse as the pinched points of the
skew product. We also assume that the set of pinched points has zero measure, ant that
there is a pinched point whose orbit is dense in the base space. Moreover, we also assume
that the zero-section is a super-repeller, meaning that it is invariant and its Lyapunov
exponent in +∞. Since the dynamics on the attractor is that of the motion on the
base of the bundle, its dynamical properties are inherited from the base motion. As a
result, the non-continuous invariant graphs we construct are strange chaotic attractors
or strange non-chaotic attractors depending on the fact that the base motion is chaotic
or non-chaotic.

Formulation. We start now by giving a precise formulation of the problem we want to
study and, in particular, the class of skew product dynamical systems we will consider
along this paper.

Let X = Θ × [0,+∞[= {(θ, x) / θ ∈ Θ, x ≥ 0} be a trivial bundle over the compact
metric space Θ. Let ω : Θ → Θ be a homeomorphism, and let µ be a Borel probability
ergodic measure. In this note we study the dynamics of the bundle map (or skew
product)

(1.1)
T : Θ× [0,+∞[ −→ Θ× [0,+∞[

(θ, x) −→ (ω(θ), g(θ)f(x))

covering ω, where:

(g0) g : Θ → [0,+∞[ is a continuous function;
(g1) g is log-integrable with respect to µ, that is∫

Θ

log g(θ) dµ > −∞;

(f0) f : [0,+∞[→ [0,+∞[ is a continuous function, C1 in ]0,+∞[;
(f1) f(0) = 0;
(f2) f ′ :]0,+∞[→]0,+∞[ is strictly decreasing (so f is strictly increasing and strictly

concave);

(f3) lim
x→0+

xf ′(x)

f(x)
= q0, with 0 < q0 < 1.
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We are interested in the asymptotic behavior of the (forward) orbits of T . in particu-
lar, in the existence of attractors that are graphs of measurable functions Φ : Θ → [0,∞[,
that are ΓΦ = {(θ,Φ(θ)) / θ ∈ Θ}. That is, for a point (θ, x) ∈ X, we are interested in
the behavior of the distance |Φ(θn) − xn| of the points (θn, xn) = T n(θ, x) of the orbit
to the graph ΓΦ when n goes to +∞.

As we will see in Theorem 1.1, there is an attractor ΓΦ for the skew product T . What
makes a crucial difference for the regularity of the attractor is if g has zeros (pinched
case) or not (invertible case). Notice that if g has zeros, full fibers of the bundle collapse
at zero. In such a case, the points on the invariant graph in pinched fibers go to the
zero-section, and remain there under iteration of the map.

The main result. The main result of this paper is

Theorem 1.1. Let T be a bundle map (1.1) satisfying the assumptions (g0), (g1), (f0),
(f1), (f2), (f3) described above. Let us assume also that

(gf) Mp∞ < 1, where M = max
θ∈Θ

g(θ) , p∞ = inf
x>0

f(x)

x
.

Then, there exists a function Φ : Θ → [0,+∞[ which is

(a) bounded and upper-semicontinuous, so it is measurable;
(b) log-integrable, so its set of zeros is null;

and its graph ΓΦ = {(θ,Φ(θ)) / θ ∈ Θ} is

(c) invariant under T , i.e. for all θ ∈ Θ, g(θ)f(Φ(θ)) = Φ(ω(θ));
(d) attractive, i.e. for a.e. θ ∈ Θ, for all x > 0, there exist positive constants αx < 1

and Cθ,x such that

(1.2) |Φ(θn)− xn| ≤ Cθ,xα
n
x|Φ(θ)− x| n→+∞−→ 0.

Moreover,

(e) for a.e. θ ∈ Θ, for all x > 0, the Lyapunov exponent of the orbit,

λ(θ, x) = lim
n→∞

1

n

n−1∑
k=0

log(g(θk)f
′(θk)),

does exist and equals the Lyapunov exponent of the graph,

λΦ =

∫
Θ

log g(θ) dµ+

∫
Θ

log f ′(Φ(θ)) dµ.

The continuity or strangeness of Φ depends on the existence of zeros of g:

(z0) If g has not zeros, Φ is continuous and has not zeros.
(z1) If g has zeros, Φ is not necessarily continuous and the set of zeros of Φ is a

Gδ set of zero measure. If, moreover, one of the zeros of g has a dense orbit
by ω, then the set of zeros of Φ is a residual set of zero measure, and Φ is not
continuous.
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Remark 1.2. In the case (z0) above, the convergence of orbits to the attractor is uni-
form, that is we can make the constants Cθ,x independing on θ, x in a compact neighbor-
hood of ΓΦ and, moreover, the convergence to the attractor is for all the points in such
a neighborhood. Hence, ΓΦ is a Uniform Attractor. Moreover, since Φ is continuous,
we will say that ΓΦ is a Regular Attractor.

In the case (z1) above, the convergence of orbits to the attractor is not uniform, and
the constants Cθ,x explode for certain θs. Hence, ΓΦ is a Non-uniform Attractor. If,
moreover, the orbit of a pinched point is dense in Θ, the graph can not be continuous,
just log-integrable, and we will say that ΓΦ is a Strange Attractor.

Remark 1.3. The dynamics on the attractor ΓΦ is the one given by the homeomorphism
ω : Θ → Θ. So, we will say that the attractor is Chaotic or Non-Chaotic relatively to
the dynamical behavior of ω.

Remark 1.4. Theorem 1.1 works for the skew-product

T (θ, x) = (ω(θ), g(θ)xα)

where 0 < α < 1. In fact, in Section 5 we find rather explicit formulae for the invariant
graph of this paradigmatic example.

Remark 1.5. Notice that if the ergodic measure µ is topological, that is the measure of
any non-empty open set is positive, then the homeomorphism ω is topologically transitive,
and there exist base points whose orbits are dense. The question is if some of these base
points are also pinched.

If, moreover, ω is uniquely ergodic and the invariant measure µ is topological, then ω
is minimal, and all the orbits are dense.

Related results. The consequences of Theorem 1.1 are close to the results of Keller’s
paper [Kel96], in which the present note is highly inspired. There are, however, several
differences.

Among the hypotheses, notice that in [Kel96], and most of the papers in the literature
dealing with the so called Strange Non-Chaotic Attractors, the skew product map is
defined over an irrational rotation on the torus Θ = R/Z, while here this assumption
is considerably generalized. As a result, the chaoticity or not of the strange attractor
depends on the dynamics on the base manifold.

In Keller’s paper, the function f is C1 in the closed interval [0,+∞[, implying that

lim
x→0+

xf ′(x)

f(x)
= 1, while in this note the function f is not differentiable at 0, in fact

f ′(0) = +∞. So, even some of the arguments are similar to those in [Kel96], the ones
that in [Kel96] rely on the hypothesis f ′(0) < +∞ have to be overcome. Hypotheses
such as f ′(0) = +∞ appear in other contexts, for instance in Economics is known as an
Inada condition.
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Notice also that from the log-integrability assumption on the function g, which is not
assumed in [Kel96], we are able of proving the log-integrability of the invariant graph.
We emphasize that log-integrability is close to the property of temperedness, typical in
Ergodic Theory.

Finally, we emphasize that the fact that the forcing introduced by θ is multiplicative
is not essential for our results, and they could be adapted to more general pinched
skew-products in the spirit of [Gle02, Jäg07].

Overview. In Section 2 we establish several elementary properties of the functions
g and f that will be useful in the sequel. In Section 3 we start the study of the
asymptotic behavior of the orbits of T , in particular we bound their (upper) Lyapunov
exponent. In Section 4 we adapt the results of [Kel96] to prove the existence of an upper-
semicontinuous invariant graph, and we prove also that it is log-integrable, finishing the
proof of Theorem 1.1. Section 5 is devoted to the explicit computation of the invariant
graph for the paradigmatic example of Remark 1.4, and we also obtain a lower bound
for the invariant graph in the general case.

2. Preliminary results

In this section we state several very elementary properties of the functions g and f ,
that will be important for our purposes.

Properties of the function g. Since g : Θ → [0,+∞[ is a continuous function, we
can define

m = min
θ∈Θ

g(θ) ≥ 0 , M = max
θ∈Θ

g(θ).

Notice that the cases m > 0 and m = 0 are rather different. If m > 0, the function
g has not zeros, and the map T is invertible. If m = 0, the function g has zeros, and
whole fibers of the bundle X, those that are supported on zeros of g, are mapped to the
zero section.

The following proposition says that, even if m = 0, the map T is invertible from a
measure theoretic point of view. The result has to do with the measure of the set of
zeros of g.

Proposition 2.1. The set of zeros of g, Zg = {θ ∈ Θ / g(θ) = 0}, is null. Moreover,

the set of points that are eventually zero of g, Z̃g = {θ ∈ Θ / ∃k ≥ 0 : g(ωk(θ)) = 0}, is
null.

Proof. Since g : Θ → [0,+∞[ is a continuous and non-negative log-integrable function,
µ(Zg) = 0, because otherwise its integral would be −∞.

Moreover, since

Z̃g =
⋃
k≥0

Zg◦ωk =
⋃
k≥0

ω−k(Zg),

and ω preserves the measure µ, µ(Z̃g) = 0. �
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Properties of the function f . From the hypothesis on the function f , it is important
for us to consider the continuous functions p, q :]0,+∞[→]0,+∞[ defined by

(2.1) p(x) =
f(x)

x
, q(x) =

xf ′(x)

f(x)
.

The following proposition states several properties of those functions.

Proposition 2.2. The functions p, q defined in (2.1) satisfy the following properties:

(p0) p is strictly decreasing, and

f ′(0) = lim
x→0+

p(x) = +∞ , lim
x→+∞

p(x) = p∞ ≥ 0;

(q0) for all x > 0, q(x) < 1.

Proof. Since the function f satisfies the hypothesis (f0)-(f2), and in particular f is
strictly concave, then for all x > 0

f ′(x) <
f(x)

x
,

which proves (q0). Notice that

p′(x) =
f ′(x)x− f(x)

x2
=
f(x)

x2
(q(x)− 1) < 0,

so p is strictly decreasing. As a result

lim
x→+∞

p(x) = inf
x>0

p(x) = p∞.

Since both the functions f ′ and p are strictly decreasing, the limits f ′0 = lim
x→0+

f ′(x)

and p0 = lim
x→0+

p(x) do exist, although they could by +∞. In fact, by the Mean Value

Theorem, both limits are equal. Finally, the limit can not be finite, because in such a
case lim

x→0+
q(x) = 1. This proves (p0). �

Remark 2.3. The function f satisfies what in Economics are known as Inada condi-
tions:

lim
x→0+

f ′(x) = +∞ , lim
x→+∞

f ′(x) = p∞.

Even in many cases one assumes that p∞ = 0. Notice that in such a case the assumption
(gf) of Theorem 1.1 is automatic.

Remark 2.4. The function q is what in Economics is known as the elasticity of the
function f . Since f(0) = 0 and f is strictly concave, the elasticity is bounded from
above by 1. In fact, under assumption (f3), the elasticity never reaches 1. We define
q(0) = q0, making the function q continuous in [0,+∞[.
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Remark 2.5. If we write qf (x) = xf ′(x)/f(x), in order to emphasize the f -dependence
of q, notice that

qf1+f2(x) ≤ max(qf1(x), qf2(x)) , qaf (x) = qf (x),

where f1,f2, f are functions satisfying (f0)-(f3) and a is a positive constant. Notice also
that qf1f2(x) = qf1(x) + qf2(x).

As a result, the linear combination f(x) = a1f1(x) . . . anfn(x) of functions f1, . . . fn
satisfying (f0)-(f3) with positive coefficients a1, . . . an satisfies also (f0)-(f3).

Finally, we give some examples of functions satisfying the assumptions (f0)-(f3).

Example 2.6. Our paradigmatic example is f(x) = xα, where α ∈]0, 1[. This function
has constant elasticity q(x) = α. Moreover, p(x) = xα−1, so p∞ = 0.

Example 2.7. The functions

f(x) = xα(1 + cx)−β,

where 0 < β ≤ α < 1 and c > 0, have elasticity q(x) = α−cβx(1+cx)−1 ≤ α, so q0 = α
and q is strictly decreasing. Moreover, p(x) = xα−1(1 + cx)−β, so p∞ = 0.

Example 2.8. The third example is the family of functions

f(x) = px+ xα

where α ∈]0, 1[ and p > 0. The elasticity is q(x) = 1 − (1 − α)xα(px + xα)−1 < 1, so
q0 = α and q is strictly increasing (with supremum 1). In this case, p(x) = p+ x1−α, so
p∞ = p > 0.

3. Orbits

Given (θ, x) ∈ X, we define the (forward) orbit {(θn, xn) = T n(θ, x) / n ≥ 0}. Its
(forward) upper Lyapunov exponent is

λ(θ, x) = lim sup
n→∞

1

n
logLn(θ, x),

where

Ln(θ, x) =
∂xn
∂x0

=
n−1∏
k=0

g(θk)f
′(xk).

If the lim sup is a lim we will write λ(θ, x), the Lyapunov exponent.
In the definitions above, if θ /∈ Z̃g, we take λ(θ, 0) = λ(θ, 0) = +∞. In a sense, the

zero-section Γ0 is a super-repeller.
In the following proposition, we show that the orbits of T are bounded.

Proposition 3.1. For all (θ, x) ∈ X there exist Kx > 0 such that for all n ≥ 0, xn ≤ Kx.
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Proof. Since the function p is strictly decreasing, with lim
x→0+

p(x) = +∞ (see Proposi-

tion 2.2) and lim
x→+∞

p(x) = p∞ ≥ 0 with p∞ < M−1 (see assumption (gf) in Theorem 1.1),

there exist a unique R > 0 such that p(R) = M−1. As a result:

• for all θ ∈ Θ, x ≤ R, πx◦T (θ, x) = g(θ)f(x) ≤Mf(R) = R;
• for all θ ∈ Θ, x ≥ R, πx◦T (θ, x) = g(θ)f(x) ≤MxM−1 = x.

The proof of the proposition follows by taking Kx = max(R, x). �

Since f is strictly increasing, it is obvious that the orbits are ordered.

Proposition 3.2. If θ ∈ Θ and 0 ≤ x ≤ y, then for all n ≥ 0, 0 ≤ xn ≤ yn. Moreover,
if θ /∈ Z̃g and 0 < x < y, then for all n ≥ 0, 0 < xn < yn.

In the following proposition, we prove that the orbits come closer exponentially fast.

Proposition 3.3. For all θ ∈ Θ and 0 < x < y, there exist positive constants αx < 1
and Cx such that for all n ≥ 0, yn − xn ≤ Cxα

n
x(y − x). As a result,

lim
n→∞

(yn − xn) = 0 , lim
n→∞

1

n

n−1∑
k=0

(yk − xk) = 0.

Proof. We will assume that θ /∈ Z̃g, otherwise the result is trivial. Notice that, from
Proposition 3.2, for all n ≥ 0, 0 < xn < yn. Since

yn − xn
yn−1 − xn−1

= g(θn−1)
f(yn−1)− f(xn−1)

yn−1 − xn−1

≤g(θn−1)f
′(xn−1) = q(xn−1)

xn
xn−1

,

where in the inequality we use that f is concave, then

yn − xn ≤ q(x0) . . . q(xn−1)
xn
x0

(y0 − x0) ≤
Kx

x
αnx(y − x),

where
αx = sup

0<t≤Kx

q(t).

As a result, Cx = Kx/x = max(R/x, 1) and αx < 1. �

Using similar arguments, it is easy to see that the upper Lyapunov exponent of a
positive orbit is negative.

Proposition 3.4. For all θ /∈ Z̃g and x > 0, λ̄(θ, x) ≤ logαx < 0.

Proof. Since

(3.1) Ln(θ, x) =
n−1∏
k=0

g(θk)f
′(xk) =

xn
x0

n−1∏
k=0

q(xk)

then
Ln(θ, x) ≤ Cxα

n
x
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and the proof follows immediately. �

4. Invariant graphs

Let ψ : Θ → [0,+∞[ be a measurable function, and Γψ = {(θ, ψ(θ)) / θ ∈ Θ} be its
graph. Notice that T transfers the graph of ψ to the graph of the measurable function
T ψ defined as

(4.1) T ψ(θ) = g(ω−1(θ))f(ψ(ω−1(θ))).

In particular, we say that ψ is invariant under T , or that Γψ is an invariant graph, if
for all x ∈ Θ,

(4.2) g(θ)f(ψ(θ)) = ψ(ω(θ)).

In other words, ψ is invariant iff T ψ = ψ. We then define its Lyapunov exponent as

λψ =

∫
Θ

log g(θ) dµ+

∫
Θ

log f ′(ψ(θ)) dµ.

For example, the zero-section Γ0 is an invariant graph and its Lyapunov exponent is
λ0 = +∞.

In the following two propositions we review the results of [Kel96] to construct an
attractive invariant graph, which is unique up to sets of zero measure.

Proposition 4.1. Let ψ : Θ → [0,+∞[ be an invariant measurable function and let
Zψ = {θ ∈ Θ / ψ(θ) = 0} be its set of zeros. Then:

• Either µ(Zψ) = 0 or µ(Zψ) = 1;

• If µ(Zψ) = 0 and if ψ̃ : Θ → [0,+∞[ is an invariant measurable function with

µ(Zψ̄) = 0, then ψ(θ) = ψ̃(θ) for a.e. θ.

Proof. Since f(0) = 0, the set of zeros Zψ is invariant under ω (i.e. ψ(θ) = 0 implies
ψ(ω(θ)) = 0). Since µ is an ergodic invariant measure for ω, either µ(Zψ) = 0 or
µ(Zψ) = 1.

Let us now consider the function ∆(θ) = |ψ(θ) − ψ̃(θ)|, and for N > 0 we define
∆N(θ) = min(∆(θ), N). That is, ∆ is the limit point of the increasing sequence of non-
negative and integrable functions ∆N . For each N , using Birkhoff Ergodic Theorem, for
a.e. θ ∈ Θ∫

Θ

∆N(θ) dµ = lim
n→∞

1

n

n−1∑
k=0

∆N(ωk(θ)) ≤ lim
n→∞

1

n

n−1∑
k=0

∆(ωk(θ)) = lim
n→∞

1

n

n−1∑
k=0

|ψ(θ)k−ψ̃(θ)k|,

and the last limit is zero provided that, moreover, θ /∈ Zψ and θ /∈ Zψ̃. See Proposi-
tion 3.3. As a result, for each N we have ∆N(θ) = 0 for a.e. θ, and so then ∆(θ) = 0
for a.e. θ. �
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Now we construct an invariant graph of T , which will be positive a.e. by Proposi-
tion 4.4.

Proposition 4.2. Let Φ : Θ → [0,+∞[ be the limit point function defined as

Φ(θ) = lim
n→∞

πx◦T n(ω−n(θ), R),

where R is given in Proposition 3.1. Then:

• Φ is bounded by R from above, and upper-semicontinuous;
• Φ is invariant under T ;
• ZΦ is a (possibly empty) Gδ set.

Proof. The key point in [Kel96] is that the transfer operator of graphs defined in (4.1),
T , preserves the order of the graphs. That is, for two functions ψ1, ψ2 : Θ → [0,+∞],

If ∀θ ∈ Θ, ψ1(θ) ≤ ψ2(θ), then ∀θ ∈ Θ, T ψ1(θ) ≤ T ψ2(θ).

For n ≥ 0, let Φn : Θ → [0,+∞[ be the function defined by Φn(θ) = πx◦T n(ω−n(θ), R).
The sequence of functions Φn satisfies the recurrence relation

(4.3) Φ0(θ) = R, Φn(θ) = T Φn−1(θ).

Notice that, since

Φ1(θ) = T Φ0(θ) = g(ω−1(θ))f(Φ0(ω
−1(θ))) ≤Mf(R) = R = Φ0(θ),

and T preserves the order of the graphs, the sequence Φn is decreasing. The limit
point function of the decreasing sequence of non-negative continuous functions Φn is a
non-negative upper-semicontinuous function Φ.

Notice also that taking limit in (4.3), we obtain Φ(θ) = T Φ(θ), where we use that f
is continuous. As a result, ΓΦ is an invariant graph.

Since Φ is upper-semicontinuous, for all ε > 0 the set {θ ∈ Θ / Φ(θ) < ε} is open.
Then,

ZΦ =
⋂
m>0

{
θ ∈ Θ / Φ(θ) <

1

m

}
is an intersection of a decreasing sequence of open sets, so it is a Gδ set. �

Remark 4.3. Notice that if θ0 ∈ Zg, then Φ(ω(θ0)) = g(θ0)f(Φ(θ0)) = 0, that is
ω(θ0) ∈ ZΦ. As a result, for all n ≥ 1, ωn(θ0) ∈ ZΦ. As a result, if the orbit of θ0 is
dense in Θ, the set ZΦ is a Gδ-dense set (a residual set).

In particular, if ω is minimal (all its orbits are dense in Θ) and g has zeros, the set
of zeros of Φ is a residual set.

With the proof of Proposition 4.2 we have proved (a),(c) of Theorem 1.1. We have
also proved that the set of zeros of Φ is “small” from a topological point of view (that
it is a Gδ set). We will prove now that it is also “small” from a measure theoretic point
of view, that the set of zeros of Φ is null. In fact, we will prove much more, that the
function Φ is log-integrable.
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Proposition 4.4. The invariant function Φ is log-integrable, that is∫
Θ

log Φ(θ) dµ > −∞.

In particular, Φ is positive a.e., that is µ(ZΦ) = 0.

Proof. Let us define the constant

(4.4) α = sup
0<t≤R

q(t) < 1,

and the function h :]0,+∞[→]0,+∞[ by h(x) =
f(x)

xα
. Notice the h is decreasing in

]0, R], because

h′(x) =
f(x)

xα+1
(q(x)− α) ≤ 0

if 0 < x ≤ R.
We also define

γ =

∫
Θ

log g(θ) dµ ∈]−∞,+∞[,

and, for all n

ϕn =

∫
Θ

log Φn(θ) dµ ∈ [−∞, logR],

where the sequence Φn is given in Proposition 4.2. In particular, ϕ0 = logR.
Then, using that f(x) = xαh(x),

ϕn =

∫
Θ

log
(
g(ω−1(θ))Φn−1(ω

−1(θ))αh(Φn−1(ω
−1(θ)))

)
dµ

= γ + αϕn−1 +

∫
Θ

log h(Φn−1(θ)) dµ

≥ αϕn−1 + γ + log h(R) ,

where in the second equality we use that µ is an invariant measure, and in the inequality
we use that Φn−1(θ) ≤ R and h is a decreasing function in ]0, R]. The previous arguments
prove that the functions Φn are log-integrable.

From the Monotone Convergence Theorem, the limit point of the increasing sequence
of non-negative integrable functions logR−log Φn, which is logR−log Φ, is a measurable
function and ∫

Θ

(logR− log Φ(θ)) dµ = lim
n→∞

∫
Θ

(logR− log Φn(θ)) dµ .

As a result,

(4.5) logR ≥
∫

Θ

log Φ(θ) dµ = lim
n→∞

ϕn ≥
1

1− α
(γ + log h(R)).
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Hence, log Φ is integrable, and the set of zeros of Φ has zero measure. �

With this proof we prove statement (b) of Theorem 1.1.
The following proposition is an immediate consequence of Proposition 3.3, and states

that almost all orbits approach the invariant graph exponentially fast. This is (d) of
Theorem 1.1.

Proposition 4.5. For all θ /∈ ZΦ, for all x > 0, there exist Cθ,x > 0 such that

|Φ(θn)− xn| ≤ Cθ,xα
n|Φ(θ)− x|,

where α = sup
0<t≤R

q(t) < 1.

Proof. From Proposition 3.3, it suffices to take Cθ,x = R
min(x,Φ(θ))

. �

Remark 4.6. We emphasize that, if Φ is bounded from below (for instance, Φ is con-
tinuous and has no zeros, see Proposition 4.11 below) then the approach of orbits to
the graph is uniform. That is, the constant Cθ,x can be made independent from θ in a
compact neighborhood of the graph.

On the other side, if Φ has zeros, then the approach in not uniform, and the constants
Cθ,x can explode.

We are going now to relate the Lyapunov exponents of orbits and the invariant graph
Φ. The first result is a consequence of Birkhoff Ergodic Theorem.

Proposition 4.7. For a.e. θ ∈ Θ, λ(θ,Φ(θ)) = λΦ ≤ logα < 0.

Proof. We have

λ(θ, ψ(θ)) = lim
n→∞

1

n

n−1∑
k=0

log g(ωk(θ)) + lim
n→∞

1

n

n−1∑
k=0

log f ′(Φ(ωk(θ)))

=

∫
Θ

log g(θ) dµ+

∫
Θ

log f ′(Φ(θ)) dµ = λΦ,

where the second equality holds for a.e. θ ∈ Θ, by Birkhoff Ergodic Theorem. Notice
that log g : Θ → R ∪ {−∞}, log+ g ∈ L1

µ because g is bounded from above (in fact,

hypothesis (g1) says that log g ∈ L1
µ), and log f ′◦Φ : Θ → R ∪ {+∞}, log− f ′◦Φ ∈ L1

µ

because f ′◦Φ is bounded from below. The proof follows from Proposition 3.4, taking
into account that for x = Φ(θ), αx = α. �
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Remark 4.8. Notice also that

λΦ =

∫
Θ

log g(θ) dµ+

∫
Θ

log f ′(Φ(θ)) dµ

=

∫
Θ

log q(Φ(θ)) dµ+

∫
Θ

log

(
g(θ)f(Φ(θ))

Φ(θ)

)
dµ

=

∫
Θ

log q(Φ(θ)) dµ+

∫
Θ

(log(Φ(ω(θ)))− log(Φ(θ))) dµ

=

∫
Θ

log q(Φ(θ)) dµ ≤ logα,

where in the fourth equality we use that Φ is log-integrable (and µ is ω-invariant), and
the last inequality follows from the fact that Φ(θ) ≤ R, incidentally proving again the
estimate in Proposition 4.7. As a result, the Lyapunov multiplier of the invariant graph,
ΛΦ = expλΦ, is the geometric mean of the elasticity of the function f on the invariant
graph:

(4.6) ΛΦ = exp

(∫
Θ

log q(Φ(θ)) dµ

)
.

Remark 4.9. Equality (4.6) can also be obtained from Keller’s hypotheses. One has to
apply a general measure theoretic result (Lemma 2 in [Kel96]).

Up to now, we have bounded from above the upper Lyapunov exponent of most orbits
(see Proposition 3.4) and we have computed the Lyapunov exponent for orbits on the
invariant graph (see Proposition 4.7). Moreover, in the arguments we have used that
α = sup0<t≤R q(t) < 1, but not that q is continuous at 0 with 0 < q(0) = q0 < 1. Using
this hypothesis (f3), we will prove that for almost all orbits the Lyapunov exponent
equals the Lyapunov exponent of the graph.

Proposition 4.10. For a.e. θ ∈ Θ, for all x > 0, λ(θ, x) = λΦ.

Proof. We recall that

(4.7) λ(θ, x) = lim
n→∞

1

n
log

(
xn
x0

)
+ lim

n→∞

1

n

n−1∑
k=0

log q(xk)

(see (3.1)), if both limits exist. These are the limits we are going to compute below.
Firstly, notice that xn = yn + zn, with yn = Φ(θn) and zn = xn − Φ(θn). If θ /∈ ZΦ,

|zn| ≤ Cαn, for a certain constant C = Cθ,x|x− Φ(θ)|, and α < 1 (see Proposition 4.5).
On the other side, since Φ is log-integrable (see Proposition 4.4) then it is tempered,
i.e. for a.e. θ ∈ Θ,

lim
n→∞

1

n
log yn = lim

n→∞

1

n
log Φ(θn) = 0
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(this follows from Birkhoff Ergodic Theorem). Let us take ε > 0 small enough such that
α < 1− ε, so for n sufficiently big we have (1− ε)n < yn. Then,

lim
n→∞

1

n
log(yn + zn) = lim

n→∞

1

n
log

(
1 +

zn
yn

)
,

and the r.h.s equals zero because∣∣∣∣znyn
∣∣∣∣ < Cαn(1− ε)−n −→ 0.

These arguments prove that

(4.8) lim
n→∞

1

n
log

(
xn
x0

)
= 0.

Secondly, notice that

lim
n→∞

(log q(xk)− log q(Φ(θk)) = 0,

because lim
n→∞

|xk − Φ(θk)| = 0 and, by hypothesis (f3), log q is uniformly continuous in,

say, [0, 2R]. As a result,

(4.9) lim
n→∞

1

n

n−1∑
k=0

log q(xk) = lim
n→∞

1

n

n−1∑
k=0

log q(Φ(θk)) =

∫
Θ

log q(Φ(θ)) dµ,

for a.e. θ ∈ Θ.
From (4.7), (4.8) and (4.9), we end up with the proof of Proposition 4.10. �

With the proof of Proposition 4.10 we prove statement (e) of Theorem 1.1.
Finally, we will show that, if g has no zeros, then the invariant graph Φ is continuous.

Proposition 4.11. Assume that Zg = ∅. Then, Φ : Θ →]0,+∞[ is continuous (and
ZΦ = ∅).

Proof. Recall that for all θ ∈ Θ, 0 < m ≤ g(θ) ≤ M . From Proposition 2.2, there exist
(a unique) r > 0 such that p(r) = m−1. Hence, for all θ ∈ Θ,

T (θ, r) = g(θ)f(r) ≥ mrm−1 = r.

Using similar arguments to those of the proof of Proposition 4.2, the sequence of con-
tinuous functions

Ψn(θ) = πx◦T n(ω−n(θ), r)
is increasing, and bounded from above by R. The limit point Ψ is then invariant under
T , so Ψ = Φ a.e.

In fact, for all θ ∈ Θ, we have the ordering

r ≤ Ψ1(θ) ≤ · · · ≤ Ψn(θ) ≤ . . .Ψ(θ) ≤ Φ(θ) ≤ . . .Φn(θ) ≤ · · · ≤ Φ1(θ) ≤ R.
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Then, by Proposition 3.3, for all θ ∈ Θ,

Φ(θ)−Ψn(θ) ≤ πx◦T n(ω−n(θ), R)− πx◦T n(ω−n(θ), r) ≤
R

r
(R− r)αn,

that goes to zero uniformly when n goes to +∞. Hence, the sequence of continuous
functions Ψn converges uniformly to Φ, so it is a continuous function. �

Hence, we have already proved statement (z0) of Theorem 1.1.
The proof of statement (z1) is just to quote Remark 4.3 and to note that, if one of

the pinched points (zeroes of g) has a dense orbit, then the function Φ has a dense
set of zeroes. If Φ were also continuous, then it should be constant zero, which is in
contradiction with the fact that the set of zeroes of Φ is null.

With these final arguments we are done with the whole proof of Theorem 1.1.

5. A paradigmatic example

In this section we will particularize the results for the skew-product Tα(θ, x) =
(ω(θ), g(θ)xα), that is the case f(x) = xα. Notice that in such a case q(x) = α < 1. We
will see that the bounds of the Lyapunov exponents and of the invariant graph obtained
in the previous sections saturate. We can make rather explicit calculations.

For instance, given (θ, x) ∈ X, its (forward) orbit (θn, xn) is given by

(5.1) xn =
n−1∏
k=0

g(ωk(θ))α
n−k−1

xα
n

We can also compute its Lyapunov exponent.

Proposition 5.1. For a.e. θ ∈ Θ, for all x > 0, λ(θ, x) = logα < 0.

Proof. From (5.1), we obtain that

Ln(θ, x) =
n−1∏
k=0

g(ωk(θ))α
n−k−1

αnxα
n−1,

so, for all θ /∈ Z̃g, for all x > 0,

λ(θ, x) = lim
n→∞

1

n

n−1∑
k=0

αn−k−1 log g(ωk(θ)) + logα.
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Moreover,

lim
n→∞

1

n

n−1∑
k=0

αn−k−1 log g(ωk(θ)) = lim
n→∞

∑n−1
k=0 α

−k log g(ωk(θ))

nα1−n

= lim
n→∞

α−n log g(ωn(θ))

(n+ 1)α−n − nα1−n

=
1

1− α
lim
n→∞

1

n
log g(ωn(θ)),

and the last limit is 0 a.e. θ, by the Birkhoff Ergodic Theorem. �

We will denote by Gα : Θ → [0,+∞[ the positive a.e. invariant function for the
skew-product Tα, obtained in Proposition 4.2 (see Theorem 1.1).

Proposition 5.2. The function Gα is expanded by

Gα(θ) =
∞∏
k=1

g(ω−k(θ))α
k−1

Moreover, ∫
Θ

logGα(θ) dµ =
1

1− α

∫
Θ

log g(θ) dµ.

Proof. We have just to perform the construction of Proposition 4.2, with Rα = M
1

1−α ,
obtain that the nth iterate is

Gn(θ) =
n∏
k=1

g(ω−k(θ))α
k−1

(Rα)
αn

,

and realize that lim
n→∞

(Rα)
αn

= 1.

The integral formula is straightforward. (See also Proposition 4.4). �

Remark 5.3. A complementary result is that the geometric means of a positive or-
bit, a.e. θ , x̂n = (x0x1 . . . xn−1)

1
n tend to a power of the geometric mean of g, ĝ =

exp
∫

Θ
log g(θ) dµ:

(5.2) lim
n→∞

x̂n = ĝ
1

1−α .

For the proof, just notice that we can also write

λ(θ, x) = lim
n→∞

1

n

n−1∑
k=0

log g(ωk(θ)) + logα+ lim
n→∞

1

n

n−1∑
k=0

(α− 1) log xk

=

∫
Θ

log g(θ) dµ+ logα− (1− α) lim
n→∞

1

n

n−1∑
k=0

log xk,
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and, since λ(θ, x) = logα, we obtain

lim
n→∞

1

n

n−1∑
k=0

log xk =
1

1− α

∫
Θ

log g(θ) dµ,

which is equivalent to (5.2).

Finally, we will see that the invariant graph Gα of Tα provides a lower bound for the
invariant graph Φ of T .

Proposition 5.4. Let Φ be the positive a.e. invariant graph of the bundle map T
satisfying the hypothesis of Theorem 1.1. Then, for all θ ∈ Θ,

Φ(θ) ≥ R

Rα

Gα(θ),

where p(R) = M−1, α = sup
0<t≤R

q(t) and Rα = M
1

1−α .

Proof. Let us denote Ψ(θ) = AGα(θ), with A = R
Rα

. Notice that Ψ(θ) ≤ ARα = R. It

suffices to prove that T Ψ(θ) ≥ Ψ(θ). To do so,

T Ψ(θ) = g(ω−1(θ))f(Ψ(ω−1(θ))) = g(ω−1(θ))AαGα(ω
−1(θ))αh(Ψ(ω−1(θ)))

≥ AαGα(θ)h(R) = Aα−1h(R)Ψ(θ),

where in the inequality we use that Gα is invariant for Tα, and h is a decreasing function
in [0, R]. Finally, notice that

Aα−1h(R) = Rα−1h(R)R1−α
α = p(R)M = 1,

and we are done with the proof of Proposition 5.4. �

Remark 5.5. We are now to give an alternative proof of Proposition 4.4. Notice that,
from Proposition 5.4∫

Θ

log Φ(θ) dµ ≥ log

(
R

Rα

)
+

∫
Θ

logGα(θ) dµ = log

(
R

Rα

)
+

1

1− α

∫
Θ

log g(θ) dµ,

incidentally proving the lower bound (4.5), because

1

1− α
log h(R) =

1

1− α
log

(
p(R)R1−α) =

1

1− α
log

(
R1−α

M

)
= log

(
R

Rα

)
.
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[Jäg07] Tobias H. Jäger. On the structure of strange non-chaotic attractors in pinched skew prod-
ucts. Ergodic Theory Dynam. Systems, 27(2):483–510, 2007.

[JT05] A. Jorba and J. C. Tatjer. A mechanism for the fractalization of invariant curves in quasi-
periodically forced 1-d maps. 2005.
Preprint http://www.maia.ub.es/dsg/2005/0501jorba.pdf.

[Kan84] Kunihiko Kaneko. Fractalization of torus. Progr. Theoret. Phys., 71(5):1112–1115, 1984.
[Kel96] Gerhard Keller. A note on strange nonchaotic attractors. Fund. Math., 151(2):139–148,

1996.
[PNR01] Awadhesh Prasad, Surendra Singh Negi, and Ramakrishna Ramaswamy. Strange nonchaotic

attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11(2):291–309, 2001.
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