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Abstract. We numerically analyse different kinds of one-dimensional and
two-dimensional attractors for the limit return map associated to the unfolding
of homoclinic tangencies for a large class of three-dimensional dissipative diffeo-
morphisms. Besides describing the topological properties of these attractors,
we often numerically compute their Lyapunov exponents in order to clarify
where two-dimensional strange attractors can show up in the parameter space.
Hence, we are specially interested in the case in which the unstable manifold
of the periodic saddle taking part in the homoclinic tangency has dimension
two.

1. Introduction. From the time of Poincaré [18] to the present days, the homo-
clinic phenomena have been extensively studied for parameter families of diffeomor-
phisms defined in two-dimensional manifolds, see [16] for a complete overview on
the subject. In a few words, homoclinic orbits appear when an intersection bet-
ween the stable and the unstable manifolds of a periodic saddle point takes place,
and the first homoclinic orbit (the degenerate homoclinic orbit that firstly appears
as parameters are moved), usually called a homoclinic tangency, corresponds to
a tangential connection between those invariant manifolds. For the bidimensional
case, a great program has been developed in order to describe the intrincate dy-
namics appearing in the unfolding of a homoclinic tangency. We cite [4], [14] and
[15] to recall the complicated dynamical objects (infinitely many sinks, persistent
strange attractors and infinitely many strange attractors) which may accompany
the unfolding of homoclinic tangencies in the bidimensional setting.

By an attractor for a transformation f defined in a manifold M we mean a
compact, f -invariant and transitive set A whose stable set

W s (A) = {z ∈ M : d (fn (z) , A) → 0 as n →∞}
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2 A. PUMARIÑO AND J. C. TATJER

has nonempty interior. An attractor is said to be strange if it contains a dense orbit
{fn (z1) : n ≥ 0} displaying exponential growth of the derivative: There exists some
positive constant c such that, for every n ≥ 0,

‖Dfn (z1)‖ ≥ exp (cn) .

We have chosen this definition because it is more convenient from the numerical
point of view. Another possibility is to ask for sensitive dependence to initial condi-
tions, but this is difficult to check in computations. In any case, there are different
definitions of strange attractors and even of attractors in the literature (see e. g.
[12]). The above-mentioned bidimensional results are strongly based on the exis-
tence of limit return maps defined in a neighbourhood of the homoclinic orbit for
values of the parameter close enough to that one giving rise to the first homoclinic
tangency. Since we are specially interested in the unfolding of certain homoclinic
tangencies for diffeomorphisms defined in three-dimensional manifolds, let us re-
cover from [24] a general definition of limit return maps. Before that, let us recall
that a fixed point p of a diffeomorphism f defined in a manifold of dimension m
is said to be dissipative if |λ1 · · ·λm| < 1, where λ1, . . . , λm are the eigenvalues of
Df (p).

Definition 1.1. Let {fa}a∈V be a smooth family of diffeomorphisms in some m-
dimensional manifold M, depending on a parameter a ∈ V ⊂ Rk, V being an
open subset. Suppose that for a = a0 there exists a homoclinic orbit O0 of some
dissipative fixed point p0 of fa0 . We say that the family {fa}a∈V has a family of
limit return maps associated to the homoclinic orbit O0, in the Cl topology, if
there exists a point q of the homoclinic orbit and a natural number N , such that
for any positive integer n ≥ N there exist reparametrizations a = Mn (ã) of the
a variable and ã-dependent coordinate transformations x = Ψn,ea (x̃) satisfying the
following properties:

1.- For each compact set K in the (ã, x̃) space the images of K under the maps

(ã, x̃) → (Mn (ã) ,Ψn,ea (x̃))

converge, for n →∞, in the (ã, x̃) space, to (a0, q).
2.- The domains of the maps

(ã, x̃) →
(
ã,

(
Ψ−1

n,ea ◦ fn
Mn(ea) ◦Ψn,ea)

(x̃)
)

converge, for n →∞, to Rm+k, and the maps converge, in the Cl topology, to some
map of the form

(ã, x̃) →
(
ã, f̃ea (x̃)

)
.

In this case, we say that
{

f̃ea}
ea∈Rk

is a family of limit return maps associated to

the homoclinic orbit O0.

The existence of a family
{

f̃ea}
ea∈Rk

of limit return maps means that, up to

a change of coordinates, the dynamics (in a neighbourhood of some homoclinic
point) of a sufficiently large power of fa looks like the dynamics of some f̃ea. The
main advantage to work with a family of limit return maps is that it is valid for
generic situations: The same family of limit return maps “represents” a generic
set of families of diffeomorphisms {fa}a∈V having homoclinic tangencies unfolding
generically.
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For generic one-parameter families of diffeomorphisms on surfaces unfolding a
homoclinic tangency, i.e., when k = 1 and m = 2, it can be shown, see [14] and [16],
that the family of “bidimensional” limit return maps

{
f̃ea}

ea∈R
is given by

f̃ea (x̃1, x̃2) =
(
1− ãx̃2

1, 0
)
. (1)

Therefore, these limit return maps essentially behave as the one-dimensional lo-
gistic family Qa (x) = 1 − ax2. Hence, a new advantage arises when a family
of limit return maps is obtained: While the original family of diffeomorphisms is
defined on a bidimensional space, the family of limit return maps is essentially
defined in a one-dimensional domain. As we will see later, this also will be true
for our higher dimensional setting: The limit return maps associated to our fami-
lies of three-dimensional diffeomorphisms will essentially work as two-dimensional
endomorphisms. The family given at (1) has played a very important role for under-
standing not only the dynamics associated to the unfolding of homoclinic tangencies
in dimension two, see for instance [14] and [23], but also in other very interesting
situations, see [1] and [2].

The same family of limit return maps (1) works for generic one-parameter families
of diffeomorphisms defined on an m-dimensional manifold when dim (Wu (p0)) = 1
and p0 is sectionally dissipative: The eigenvalues λ1, ..., λm of Dfa0 (p0) satisfy
|λ1| ≤ ... ≤ |λm−1| < 1 < |λm| and |λm−1λm| < 1. In the sectionally dissipative
case, these limit return maps were already used to prove the coexistence of infinitely
many sinks, see [17], and the existence of persistent strange attractors, see [25].

The main goal of the present paper is to numerically explore the dynamics of
the family of limit return maps (as expected, they will be noninvertible maps)
which “represents” certain two-parameter families (k = 2) of three-dimensional
diffeomorphisms (m = 3) which are dissipative but not sectionally dissipative. In
fact, we will put special emphasis in the analogies between the family of limit return
maps for the case m = 2 (see (1)) and the family of limit return maps for the case
m = 3 (see (3) below). Furthermore, another aim of the paper is to conjecture
(see Conjectures 1 and 2, and Remark 1) that several important results valid in
dimension two can be extended to the three dimensional case.

1.1. The limit return maps for the three dimensional case. Let us consider
a two-parameter family {fa,b}a,b of three-dimensional diffeomorphisms having a
hyperbolic saddle fixed point p0 for (a, b) = (0, 0) with real eigenvalues λ1, λ2 and
λ3 satisfying the following properties (we refer the reader to [24] for the definition of
generalized homoclinic tangency and the statement of the linearization assumption):

1.- The eigenvalues satisfy 0 < |λ1| < 1 < |λ2| < |λ3|. We remark that from this
assumption the corresponding fixed point is never sectionally dissipative.

2.- The invariant manifolds of p0 have a generalized homoclinic tangency which
unfolds generically (we only remark here that in the set of two-parameter
families of three-dimensional diffeomorphisms unfolding homoclinic tangencies
those ones unfolding a generalized homoclinic tangency are generic).

3.- The family {fa,b}a,b satisfies the linearization assumption (generic condition
for families of diffeomorphisms having saddle fixed points).

In [24] (see Theorem 1) it is proved that the corresponding family of limit return
maps is given by

f̃ea,eb (x̃, ỹ, z̃) =
(
z̃, ã + b̃ỹ + z̃2, ỹ

)
. (2)
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Let us point out that, for each
(
ã, b̃

)
∈ R2, every point in R3 “falls” by one iteration

of the map f̃ea,eb into the surface

Cea,eb =
{

(x̃, ỹ, z̃) : ỹ = ã + b̃z̃ + x̃2
}

.

Hence, Cea,eb is invariant by f̃ea,eb and it is enough to study the dynamics of f̃ea,eb on

Cea,eb. Using the parameterization of Cea,eb given by P (x̃, z̃) =
(
x̃, ã + b̃z̃ + x̃2, z̃

)
, in

order to study the behaviour of f̃ea,eb on Cea,eb it suffices, as we said before, to consider
the family of bidimensional endomorphisms defined on R2 by(

P−1 ◦ f̃ea,eb ◦ P
)

(x̃, z̃) =
(
z̃, ã + b̃z̃ + x̃2

)
.

Let us take the change of coordinates x = z̃ − b̃x̃, y = x̃ in order to write the
above family of transformations in the following way

Ta,b (x, y) =
(
a + y2, x + by

)
, (3)

where we have written, in order to avoid excessive notation, a = ã and b = b̃.
For the sake of completeness, we refer the reader to [7], [21] and [24] where the

families of return maps for different situations in the three-dimensional framework
are given. In any case, we want to stress that the other two families appearing in
those papers are related to the not sectionally dissipative cases for which the dimen-
sion of the unstable manifold of the saddle point involved in the homoclinic tan-
gency is equal to one. Since we are specially interested in finding two-dimensional
strange attractors we will restrict our numerical analyses to (3).

Finally, we want to recall that one of the objectives of this paper is to extend
the numerical study of the family (3) previously furnished in [21], where we had
mainly focussed our attention in the analytical results. In this sense, this paper is
organized as follows: In Section 2 we describe the curve in the space of parameters
where our numerical experiments are done. This curve of parameters is denoted by
G, see (4), and it is contained in the subset of the parameter space for which the
map Ta,b has an invariant region Ra,b. The curve G ends at (a, b) = (−4,−2). This
special value of the parameter corresponds to the case for which T−4,−2(R−4,−2)
coincides with R−4,−2. As in the well-studied bidimensional case (i.e., when m = 2)
the final value of the parameter, i.e. (a, b) = (−4,−2), becomes very relevant and it
is interesting to pay attention to the resemblances of our “final” map T−4,−2 and the
one-dimensional quadratic map Q2(x) = 1 − 2x2, which is the Misiurewicz “final”
map of the family of limit return maps associated to the unfolding of homoclinic
tangencies in the two dimensional framework. Since the dynamical behaviour of
the quadratic family dramatically changes when the parameter crosses this final
value a = 2 (recall, for instance, that all the results in [1], [8] and [14], have to be
posed for sets of values of the parameter smaller than this final value) the same
can be expected for our bidimensional setting. For a more extensive study of the
nice properties of our “bidimensional tent map” T−4,−2 we again refer the reader
to [21]. In Section 3 we introduce our numerical analyses to show the richness of
the one-dimensional and two-dimensional attractors exhibited by the family (3) for
several values of the parameter (a, b) in G. Finally, in Section 4 we give a brief
overview on the behaviour of the whole family Ta,b, and Section 5 is devoted to
summarize the resemblances between the families Ta,b and Qa.
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2. The curve of parameters. As we said in the Introduction, we look for a
region in the set of parameters (a, b) for which our transformation Ta,b, see (3),
has an invariant region and therefore an attractor. This can be easily obtained
by taking the parameters in a suitable subset of the line b = 0. Of course, since
Ta,0 (x, y) =

(
a + y2, x

)
and T 2

a,0 (x, y) =
(
a + x2, a + y2

)
it follows that Ta,0 (Ra) =

Ra for any a ∈ [−2,−1], where Ra =
[
a, a + a2

]
×

[
a, a + a2

]
. With respect to this

special region of the parameters, in [21] it is proved the following result stating the
one-dimensional persistence of two-dimensional strange attractors:

Proposition 1. For any 0 < c < log 2 there exists a0 > −2 and a positive Lebesgue
measure set E of values of the parameter a contained in [−2, a0] such that for any
a ∈ E there exists a dense orbit

⋃
n∈N

{
Tn

a,0 (x0, y0)
}

in Ra and a natural number
n0 such that ∥∥DTn

a,0 (x0, y0)v
∥∥ ≥ exp

(cn

2

)
for any unit vector v and n ≥ n0.

Let us observe that there exist invariant lines for T 2
a,0. Hence, we have found a

fruitful method to get more values of the parameter (a, b) for which the respective
map Ta,b has an invariant domain: Just to look inside the set of parameters for
which T 2

a,b has invariant lines. Besides the case b = 0, it can be shown that this fact
happens when one takes a parameter in the curve G given by

G =
{

(a (t) , b (t)) =
(
−1

4
t3

(
t3 − 2t2 + 2t− 2

)
,−t2 + t

)
: t ∈ R

}
(4)

being the respective invariant line for T 2
a,b the one giving by

L1 = L1 (t) =
{

(x, y) ∈ R2 : x = A + By;A =
1
2

(
t− t2

)
t2, B = t2

}
. (5)

Invariant lines also arise when b = −2. In this case, the line x = −1 + y
is invariant for T 2

a,−2, for all real a. There are no more cases of values of the
parameters with invariant lines for T 2

a,b. It is not difficult to prove that for b = −2
and −2 < a < −7/4 there exists a heteroclinic connection between two saddle two-
periodic points, formed by a segment in the line x = −1 + y and an arc in the
parabola x = a + (1 + y)2. For a ≤ −2 the map Ta,−2, restricted to the segment in
the line and the arc in the parabola forming the border of an open and bounded
region, is not invertible. This means that the heteroclinic connection disappears.

Of course, by searching those parameters for which the map T 2
a,b has an invariant

line, we are not finding all the parameters for which the map Ta,b has some invari-
ant region (observe that this last set of parameters must have nonempty interior).
Nevertheless, for our numerical purposes, we will restrict our study to those param-
eters laying in (4). In any case, we think that the dynamical richness exhibited for
those parameters belonging to (4) will be enough to realize the great complexity
arising in families of dissipative three-dimensional diffeomorphisms unfolding a ho-
moclinic tangency associated to a saddle point whose unstable invariant manifold
has dimension two.

Before going on, we introduce Figure 2, where we numerically compute a region
B ⊂ R2 of the parameter space for which the map Ta,b has an invariant domain.
Moreover, we also distinguish between four subdomains according to the following
criterion: Parameters for which the attractor reduces to a periodic point (the region
in pale grey or blue in the electronic version of the paper); parameters for which one
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attractor presents a zero Lyapunov exponent and therefore we expect the attractor
becomes a finite union of closed curves (the region in intermediate grey or green in
the electronic version). Let us observe that these two regions are clearly separated
by a segment which matches with a Hopf bifurcation line (see Figure 2). It is easy to
check that this bifurcation line is given by the equation 2b−4a = 3, for −2 < b < 2.
Indeed, if (x, y) is a fixed point for which there is a Hopf bifurcation, we have that

a + y2 = x, x + by = y, det DTa,b(x, y) = −2y = 1.

Moreover, if we impose the condition that DTa,b(x, y) has non-real eigenvalues,
then [trDTa,b(x, y)]2 − 4 detDTa,b(x, y) < 0. All these conditions give the desired
result. Morever, the two endpoints of this Hopf bifurcation line correspond to
codimension-two bifurcations. For b = 2, the bifurcation line ends at a Bogdanov-
Takens bifurcation parameter (1:1 resonance), i.e., (a, b) =

(
1
4 , 2

)
, and for b = −2 it

ends at a bifurcation for which the two eigenvalues of the respective fixed point are
equal to −1 (1:2 resonance). We can also compute the value t∗ of the parameter t
for which the curve G cuts the Hopf bifurcation line as a real zero of the polynomial

P (t) = t6 − 2t5 + 2t4 − 2t3 − 2t2 + 2t− 3.

We have that t∗ = 1.810535713766 . . .. The region in dark grey (or red in the
electronic version of the paper) corresponds to values of the parameter for which
the sum and the product of the two Lyapunov exponents of an attractor is negative
(one-dimensional strange attractors) and finally, the region in black represents those
parameters for which the sum of the Lyapunov exponents of an attractor is positive
(two-dimensional strange attractors). Here we follow the usual definition of the
Lyapunov dimension, see for instance [9]. Furthermore, the white curve drawn in
Figure 2 corresponds to the curve G given in (4) for values of t in [0, 2]. Outside
this range of t there is no interesting phenomenon for Ta(t),b(t): Either there is no
invariant region, or the attractor reduces to a fixed point. This curve G ends at the
point (−4,−2), i.e. t = 2. Later, we will describe a few properties for the respective
map T−4,−2, but for a more extensive study of this map we refer the reader to [21].
Another interesting parameter in the boundary of the domain given in Figure 2 is
(−2, 0), which is a Misiurewicz parameter for the one-parameter family introduced
in Proposition 1.

Let us give a brief explanation of how Figure 2 has been obtained. For each value
of (a, b) in the set

P = {(−4+i∆a,−2.2+j∆b), 1 ≤ i, j ≤ 1000}, ∆a = 4.4×10−3, ∆b = 4.2×10−3

we compute the orbit of two hundred equidistant initial points in the segment

V =
{
(x, y) ∈ R2 : x ∈ (−10, 10) , y = 0

}
.

Let us observe that the above segment V is contained in the critical set y = 0 of
our transformation Ta,b. If the sum of the absolute values of the two components of
the first n = 106 iterates of one of these initial points are less than a large number
(we have taken 1010), we select the parameter as one for which there exists an
invariant domain and compute the Lyapunov exponents along this piece of orbit.
We must say that we are not taking into account the possible coexistence of several
attractors for the same value of the parameter and, of course, this could imply slight
changes in the distribution of the four subdomains depicted in Figure 2, depending
on the orbits that one calculates. Overall, in order to find the maximum amount
of parameters for which there are invariant domains, once we have decided that
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Figure 1. Region of parameters a, b for which there are attractors.

a parameter (a0, b0) ∈ P belongs to the region B for which there are invariant
domains, we take the initial point whose orbit remains in the invariant domain, and
check if its orbit is bounded for the next tested value of (a, b), i.e. (a0, b0 + ∆b) or
(a0 +∆a,−2.2) . Moreover, we also do the same with the orbit of the nearest value
of (a, b) in the border of the part of B previously computed. It remains as an open
question if it is enough to pursue the orbits of critical points in order to ensure the
existence of invariant domains, see also Remark 1.

Now we restrict ourselves again to the curve of parameters G. The two fixed
points of Ta,b are

Pa,b = ((1− b)y+, y+), P̃a,b = ((1− b)y−, y−), (6)

where

y± =
1− b±

√
(b− 1)2 − 4a

2
.

The invariant line L1, see (5), contains the fixed point Pa,b.
For every t, let us denote by C1 = C1 (t) the segment of L1 joining Pa,b with the

point L = (A, 0), see (5) for the definition of A = A(t). One can show that, taking
the parabola

L2 = L2 (t) =

{
(x, y) ∈ R2 : x =

(
y −A

b + B

)2

+ a

}
,
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Figure 2. The shape of Rt, for t = 1.8.

then L2 contains Pa,b and Ta,b (C1) ⊂ L2. On the other hand, if Qa,b = Qa,b (t) is
the unique point different from Pa,b satisfying Ta,b (Qa,b) = Pa,b, then Qa,b belongs
to L2 and, denoting by C2 = C2 (t) the arcs on L2 joining Qa,b with Pa,b then
Ta,b (C2) ⊂ L1.

Finally, denoting by C3 = C3 (t) the segment on

L3 = L3 (t) =
{
(x, y) ∈ R2 : x = A− (2b + B) y

}
joining L with Qa,b, then Ta,b (C3) ⊂ L2.

For every (a (t) , b (t)) ∈ G, let us denote by Rt the bounded set limited by the
arcs C1, C2 and C3. Then, one may check that Ta,b (Rt) ⊂ Rt, for every t ∈ (0, 2].
In fact, for t = 2, or (a, b) = (−4,−2), one has T−4,−2 (R2) = R2. After this limit
situation there always exist critical points inside Rt whose orbits leave the domain
Rt, which is no longer invariant. This is also the behaviour of the critical point of
the quadratic one-dimensional family Qa (x) = 1− ax2 for values of the parameter
greater than 2. In [21] a deeper study of the “bidimensional” tent map T−4,−2 can
be found. In Figure 2, we show the region Rt for t = 1.8 and we also remark that,
at least for t ∈ (0, 2], the fixed point, P̃a,b, given in (6) belongs to the interior of Rt,
while the other fixed point, Pa,b, stays at the boundary of Rt.

Before going into the numerical experiments, we want to end this section by
recalling the main conjecture introduced in [21] (see Conjecture 11 there). This
conjecture is the natural extension of the results obtained in [14] to the not section-
ally dissipative framework in dimension three. In fact, this conjecture motivates
some part of the numerical analysis that we are going to show in the next section:

Conjecture 1. Let {fa,b}a,b be a two parameter family of three-dimensional diffeo-
morphisms and suppose that fa0,b0 has a dissipative saddle fixed point p0. Assume
that the family {fa,b}a,b satisfies the linearization assumption and the eigenvalues
λ1, λ2 and λ3 of Dfa0,b0 (p0) satisfy |λ1| < 1 and |λ3| > |λ2| > 1. If the invariant
manifolds of p0 have a generalized homoclinic tangency for (a, b) = (a0, b0) which



ATTRACTORS FOR RETURN MAPS 9

unfolds generically, then there exists a positive measure set E of parameter values
near (a0, b0), such that for (a, b) ∈ E the diffeomorphism fa,b exhibits a strange
attractor with two positive Lyapunov exponents.

We think that the right approach to give a positive answer to the above conjecture
would be to prove the following one:

Conjecture 2. For any 0 < c < log 2 there exists t0 < 2 and a positive Lebesgue
measure set E of values of the parameter t contained in [t0, 2] such that for any t ∈ E

there exists a dense orbit
⋃

n∈N

{
Tn

a,b (x0, y0)
}

in Rt, (a, b) = (a (t) , b (t)) ∈ G, such
that ∥∥DTn

a,b (x0, y0)v
∥∥ ≥ exp (cn) ,

for any unit vector v.

At least, this was the natural route in many other lower-dimensional contexts: To
prove the persistence of strange attractors for families of two-dimensional diffeomor-
phisms (see [2], [14], [19], [20],...) take all the possible information of expansiveness
in some related family of one-dimensional transformations (see [1], [8], Chapter 2 in
[19],...). By the moment, we give a strong evidence in favour of the conjecture by
showing the numerical analysis of the attractors for values of the parameter (a, b)
belonging to the curve G = G (t) given in (4), for several values of t in (1.8, 2). For
t ∈ [0, 1.8] the attractor for Ta(t),b(t) reduces to the fixed point P̃a(t),b(t).

3. Description of numerical results. In this section we carry out the numerical
experiments showing the attractors arising in the invariant domain Rt of Ta,b, with
(a, b) ∈ G (see (4)), for different values of t ∈ (1.8, 2) (recall that, if t = 2 then
(a, b) = (−4,−2)). A few of these experimental results have been already included
in a previous paper, see [21]; nevertheless, we also include them here in order to
expose a more detailed transformation on the shape of the attractors: We are going
to travel from a sink (the global attractor for t = 1.8) to an attractor which coincides
with the whole invariant domain R2 (the global attractor for t = 2) as it was
expected in view of Conjecture 2. Of course, this metamorphosis also arises in the
one-dimensional setting for the quadratic family, but the shape of the attractors is
very simple in dimension one. In general, the attractors consist of a union of finitely
many disjoint intervals (trivial or not). Before going into the details, we want to
stress that many of the intermediate attractors appearing between t = 1.8 and t = 2
would be deserving of a conjecture, similar to Conjecture 2, directed to analytically
prove that they are, in fact, one-dimensional or two-dimensional strange attractors
and to exactly explain which are the bifurcations leading to the appearance of such
attractors. It goes without saying that we believe that the understanding of those
transformations far from t = 2 would be more complicated: The fact that we have
valuable information on the dynamics of T−4,−2 (see [21]) would be a very important
starting point to investigate what happens for values close to t = 2. At least, the
same kind of information was essential in many known lower dimensional results.

We will divide this section into several subsections in order to try to present, in
order of increasing t, all the mechanisms we have detected (which look essentially
different) giving rise to different kinds of attractors.

3.1. Preparing the family Ta,b : Description of the numerical methodol-
ogy. Let us define the following change of coordinates depending on the parameter
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t transforming, for every t ∈ G, the invariant region Rt into R2:

(x, y) → (x, y) =
(

16
t4

x +
16 (2− t)

t3
y + 4− 8

t
,

8
t3

y

)
.

From the numerical analysis point of view, in spite of the more complicated
expression of our family of transformations, this change of coordinates will simplify
the monitoring of the evolution of the attractors. In this new coordinates the map
Ta,b is denoted by T a,b and is given by

T a,b (x, y) =
(

1
4 t2y2 + (2− t) tx + 2 (t− 2) ty + 12− 8t

1
2 tx− ty + 2 (2− t)

)
. (7)

In the future, we will denote by Tt the respective transformation defined in (7),
for which the maximal invariant set is now R2, independently of the value of t. We
also remark that all the numerical experiments showed in this section were designed
by taking ten initial conditions uniformly distributed on the critical set of Tt. It is
straightforward to check that this critical set still corresponds to those points in R2

for which y = 0.
We believe it remains a very interesting new open question related to how the

initial points are selected in order to search our attractors:

Remark 1. (Open question) Is it true or not that it is enough to control the
orbits of the critical points to capture all the possible attractors?

Of course, we always have in mind the beautiful results prevailing in dimension
one, which do not seem to have an easy extension to greater dimensions.

In each one of the pictures displayed along this section, and after dropping an
initial transient (generally 106 initial iterates), we show between 10000 and 40000
consecutive iterates of each one of the ten orbits mentioned above. We are also able
to numerically detect periodic orbits and compute the respective eigenvalues. This
would be fruitful to distinguish between the possible local or global bifurcations
giving rise to the obtained attractors. Furthermore, the Lyapunov exponents for
each one of the obtained attractors can also be numerically approximated up to
an error less or equal than 10−5. Hence, as for the numerical viewpoint, in many
cases we are able to detect one-dimensional strange attractors (those ones for which
the sum and the product of the two Lyapunov exponents are negative) and two-
dimensional strange attractors (the sum of the Lyapunov exponents is positive).

Before going on, we present Figure 3.1 where the graphs of the largest Lyapunov
exponent and the sum of the two Lyapunov exponents are depicted as functions of
the parameter t. The shape of both graphs in different subdomains will be described
along the following subsection. Let us sketch how the Lyapunov exponents are
numerically obtained: Given a parameter (a(t), b(t)) ∈ G we take a point (x0, y0)
which will be assumed to belong to an attractor of Ta(t),b(t) (this is obtained by
taking an initial transient). Then we take an initial vector, for instance v0 = (1, 0),
define z0 = 0, w0 = v0, and d0 = 0, and iteratively compute, for n ≥ 0,

(xn+1, yn+1) = Ta,b(xn, yn), wn+1 = DTa,b(xn, yn)vn, zn+1 = log(‖wn+1‖)+zn,

vn+1 =
wn+1

‖wn+1‖
, dn+1 = log(|det DTa,b(xn, yn)|) + dn,

where we have used the euclidean norm. Observe that, under suitable hypotheses,
the real Lyapunov exponents are Λ1 = limn→∞(zn/n) and Λ2 = limn→∞(dn/n) −
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Figure 3. Lyapunov exponents as functions of t. On the top
picture the graphs of the largest Lyapunov exponent and the sum
of the two Lyapunov exponents are shown. We have separately
drawn the same two graphs in small pictures below. One thousand
equispaced values of t have been taken in all the cases. Moreover,
the t axis is drawn in the three pictures.

Λ1. Then we fix a large number N (in our case we generally have taken N = 10000)
and compute

εi =
∣∣∣∣ziN

iN
−

z(i+1)N

(i + 1)N

∣∣∣∣ +
∣∣∣∣diN

iN
−

d(i+1)N

(i + 1)N

∣∣∣∣ ,

for i = 1, 2, . . . until for certain i, εi is less than a tolerance ε. As we said before,
we have taken ε = 10−5 for all our computations. Then, we take λ1 = ziN

iN and
λ2 = dNi

Ni − λ1 as approximations of the two Lyapunov exponents. If we want to
be more confident that the results are precise enough, we ask εi < ε for several
consecutive values of i. We remark that, in general, we cannot give a rigorous
bound of the error in the computation of the Lyapunov exponents. This is related
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to the fact that it does not seem possible to compute, unless t is in some exceptional
set (for instance t = 2), values of parameters for which there exist strange attractors
(that is, for which the largest Lyapunov exponent is positive), although it seems
that they exist for a large set (in Lebesgue-measure sense) of values of the parameter
t.

In a first glance, we see that for many values of t the corresponding map Tt has
a two-dimensional strange attractor. The rate of parameters for which this fact
happens increases, if we take parameter intervals of the type [2 − ε, 2] for ε > 0
small.

3.2. From sinks to 2D-strange attractors. We start our analysis by pointing
out that, for every t ∈ (1.8, 1.8105), the attractor for Tt in R2 reduces to a fixed
point which corresponds to the fixed point P̃a,b given in (6). This is completely
equivalent to what happens for the quadratic unidimensional family Qa (x) = 1−ax2

for values of the parameter a smaller than 0.75. Nevertheless, for t ∈ (1.8, 1.8105),
our attracting fixed point is a focus and for some value of the parameter t∗ ≈
1.810535713766 a Hopf bifurcation occurs, as we have previously computed (see
Section 2).

3.2.1. One-dimensional attractors: Local bifurcations leading to invariant curves.
For the parameter t∗ our curve G intersects the Hopf bifurcation line 2b− 4a = 3,
see Figure 2. Therefore, an invariant circle springs. We denote this invariant circle
by IC (we follow here the terminology used in [6]). This set IC becomes an attractor
for every t ∈ (t∗, 1.8649). Of course, the fact that the whole invariant curve (a curve
densely filled by the orbits) arises also depends on the rotation number of Tt on IC.
Let us observe that the largest Lyapunov exponent function vanishes, see Figure
3.2.1, when the rotation number is irrational. This IC attractor cuts the critical line
y = 0 for some value of the parameter close to t = 1.84274746 . . ., where the sum
of the two Lyapunov exponents function attains its first minimum value, see Figure
3.2.1. The behaviour of the largest Lyapunov exponent does not contradict the fact
that there exists a dense set, with non-empty interior, of values of the parameter t
with rational rotation number, because this set has very small Lebesgue measure.

Hence, for this parameter the attractor of Tt contains critical points, just in the
same way as the quadratic unidimensional family does for a = 1. The set IC for
t = 1.8428 is the attractor represented in Figure 7a).

As we have introduced in [21], this kind of attractors (invariant circles) were also
observed in [6] (among other papers). Let us briefly describe how these attractors
appear in [6]: The authors consider the two parameter family of bidimensional
noninvertible maps given by

La,τ (x, y) =
(
(1 + aτ) x− τxy, (1− τ) y + τx2

)
. (8)

This bidimensional family originally appears in a paper of Lorenz, see [11], in which
the author studied a sequence of transitions from an attracting fixed point to “com-
putational chaos” (chaotic attractors). These transitions evolved from an attracting
fixed point to an attracting invariant circle (IC), and finally to a chaotic attractor.
In view of the results obtained in [11], or even similar ones previously obtained in
other noninvertible bidimensional cases, see [13], [22] or even [6], it was suggested
that this would be a universal “noninvertible route to chaos”.

We refer the reader to [6] in which the mechanisms of creation and destruction
of invariant circles are described in the invertible and noninvertible frameworks.
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Figure 4. Lyapunov exponents as functions of t. Magnification
of Figure 3.1 for t ∈ [1.8, 1.886].

For the invertible case we also cite [3], in which a complete description of those
mechanisms is included. As for the noninvertible case, we remark that, in [11], the
following scenario for a transition of a smooth IC to a chaotic attractor is proposed
as the simplest possible one: As the parameter increases, the IC successively crosses
farther over the critical curve, causing it to develop successively sharper features.

Nevertheless, in our setting, we do not detect these sharper features for our
attracting IC for values of the parameter t in (t∗, 1.8649). Here, we again point out
that our numerical experiments are restricted to the curve G (t) given at (4) and
we must say that we do not compute the evolution of our attractor IC outside this
line. In any case, if we only select the parameter values in G, our IC is no longer a
minimal attractor when the parameter t crosses certain value t0 ∈ (1.8649, 1.86492).
For this parameter t0 the curve G enters an Arnold’s tongue and an attracting
periodic node of period eight appears due to a saddle-node bifurcation. Therefore
the largest Lyapunov exponent becomes negative, see Figure 3.2.1. This attracting
periodic orbit survives in the range of parameters (t0, 1.88165), but for some value
in the above interval their eigenvalues become complex. In any case, beyond t = t0,
we do not see in G the set IC showed in Figure 7a) anymore. Moreover, the IC
becomes only continuous (see [3]) until the attracting periodic orbit undergoes a
Hopf bifurcation, when a 8-pieces attracting invariant curve appears.

However, the presence of invariant circles developing sharper features, as was
described in [6] and [11], becomes also patent in our situation for greater values of
the parameter t (henceforth, for parameters (a, b) in G): In Figure 7e) it is shown
the shape of one piece of an 8-pieces attractor that emerges from the eight periodic
orbit arising at t = t0. Namely, the periodic orbit undergoes the above mentioned
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Hopf bifurcation for some value of the parameter t in (1.88165, 1.88166) giving rise
to an attractor formed by eight invariant circles, that we denote by IC8. Figure 7b)
shows IC8 for t = 1.88624 (see also Figure 7c), in which an amplification of one of
these eight pieces is shown).

3.2.2. Destruction of invariant curves: Global bifurcations leading to 1D strange
attractors. In order to follow the transition from Figure 7c) (t = 1.88624) to Figure
7e) (t = 1.88762) we refer the reader once again to [6] where the authors definitively
associate the destruction of IC´s for the family given in (8) to the presence of
global bifurcations, i.e., homoclinic or heteroclinic bifurcations (created from the
intersections of invariant manifolds of periodic orbits which stay very close to the IC)
which precede to the reappearance of an attractor, this time chaotic with loops (see
Figure 7e), where the piece of the attractor is no more homeomorphic to a circle). In
fact, as we can read at [5], loops and cusps are usually observed on invariant curves
for noninvertible maps. Of course, the existence of homoclinic bifurcations leads
to the presence of high–periodic attractors and probably (one-dimensional) strange
attractors, see [14]. This would explain the shape of the attractor represented in
Figure 7d) for the value of the parameter t = 1.88758. For this special value of
the parameter we numerically obtain a positive Lyapunov exponent: In fact this
numerical value corresponds to 2.09×10−4 (recall that we numerically approximate
Lyapunov exponents up to an error less than 10−5). Therefore we find our first
value of the parameter for which there exists a strange attractor, which as it was
expected corresponds to a one-dimensional strange attractor. Moreover, the same
can be said about the attractor displayed in Figure 7e) (t = 1.88762) since the
numerically obtained Lyapunov exponents are 8 × 10−4 and −6.94 × 10−3. In
Figure 3.2.2 we show the evolution of the largest Lyapunov exponent and the sum
of the two Lyapunov exponents for t ∈ (1.886, 1.8877).

3.2.3. Two-dimensional strange attractors. Once the IC8 disappears the attractor
becomes chaotic, see Figure 7f) in which the continuation of the piece of the 8-pieces
previous attractor is shown. The sum of the Lyapunov exponents for this value of
the parameter (t = 1.88773) is positive. In fact, the numerically obtained exponents
are 1.49×10−3 and −8.4×10−4. Therefore, for this value of the parameter we obtain
our first two-dimensional strange attractor. See Figure 3.2.3 where the Lyapunov
exponents functions are depicted for t ∈ (1.8877, 1.889).

Therefore, at sight of the six pictures appearing in Figure 7 it seems clear that
the transition from periodic attractors to chaotic attractors is a phenomenon which
must occur not only for the bidimensional families studied in [6] and [11], but also in
simpler situations (observe that the expression of our family (3) is substantially less
complicated than the one given in (8)) and, even more important, in more generic
frameworks: Three-dimensional diffeomorphisms unfolding homoclinic tangencies
associated to fixed points whose unstable manifold has dimension two.

3.3. Coexistence of attractors. Furthermore, by increasing the value of t we also
obtain more interesting situations which we are going to describe. In Figure 8, one
may observe how two different attractors coexist for t = 1.889. One of them (the one
displaying a bidimensional structure) is the continuation of the attractor described
in Figure 7f) and therefore is one of the pieces of an 8-pieces bidimensional attractor.
A numerical analysis gives two positive Lyapunov exponents for this 2D attractor
(this is our first value of t for which this fact happens). From the topological point
of view it is interesting to note that, for t = 1.889, the inner hole exhibited by
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Figure 5. Lyapunov exponents as functions of t. Magnification
of Figure 3.1 for t ∈ [1.886, 1.8877].

Figure 6. Lyapunov exponents as functions of t. Magnification
of Figure 3.1 for t ∈ [1.8877, 1.889].



16 A. PUMARIÑO AND J. C. TATJER

a)     Rectangle: [-4,12] x [-4,4],     t= 1.8428 b)     Rect.: [-4,12] x [-4,4],     t= 1.88624

c) R.: [-2.812,-2.632] x [-0.410,-0.336],  t= 1.88624 d) R.: [-2.831,-2.611] x [-0.417,-0.325],  t= 1.88758

e) R.:  [-2.825,-2.616]x[-0.412,-0.328],  t= 1.88762 f) R.:[-2.829,-2.615] x [-0.415,-0.327],  t= 1.88773

Figure 7. Attracting sets for different values of t. In Figures a)
and b) we have also drawn the region R2 and the critical line. In
Figures c), d), e) and f) we have drawn the evolution of the same
component of the eight-pieces attractor.

the attractor in Figure 7f) disappears (this phenomenon is frequently observed for
our family Tt in several subdomains of the range of parameters (1.8, 2), and it will
be described in a more detailed way in subsection 3.4). This also happens in the
quadratic family for values of the parameter slightly bigger than 1, for which the
attractor lives in two disjoint intervals leaving the fixed point (which is a repellor)
between them. Moreover, the boundary of those intervals are positive iterates of
the critical point. As increasing the parameter for the quadratic unidimensional
family Qa (x) = 1 − ax2 these disjoint intervals containing the attractor collapse
when the third iterate of the critical point coincides with the fixed repelling point:
See also Section 5 where more similarities with the quadratic family are exposed.
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Of course, it is not hard to prove the existence of a 8-periodic repellor inside
the hole of the attractor for Figure 7f) which plays the role of the fixed point for
the quadratic family and takes part of the 2D attractor in Figure 8. Therefore, it
is natural to expect that the inner hole of the 2D attractor disappears when some
critical point belongs to the closure of the unstable set of this 8-periodic repellor.

In Figure 8, a new one-dimensional attractor can be seen. One piece (homeo-
morphic to a circle) of a 27-pieces attractor is shown (Figure 8c), compare also with
subsection 3.2.1). This attractor will be destroyed for some slightly bigger value of
the parameter due to a new Hopf bifurcation. After this value of the parameter
three different attractors coexist for t = 1.88949, see Figure 9a). The continuation
of the 2D attractor described above, the 27-periodic attractor coming from the Hopf
bifurcation and a new one-dimensional attractor formed by 54 pieces, coming from
a period doubling cascade of bifurcations. In Figure 9b) two points of the attracting
periodic orbit are represented by crosses, and two pieces of the 54-pieces 1D strange
attractor can be seen. This new 1D attractor rises in a similar way as for the
Hénon map: The map Tt undergoes a dissipative saddle-node bifurcation of period
54 at t ≈ 1.889409. After a period doubling cascade of bifurcations it becomes a
1D strange attractor of Hénon type (one of the Lyapunov exponents along the 1D
attractor of Figure 9c) is 6.06× 10−3). Here, we also refer the reader to Figure 21
where the rate of initial conditions travelling to different attractors is displayed for
values of t in the interval (1.888, 1.899).

On the other hand, the numerically obtained Lyapunov exponents for the 2D
attractor in Figure 9 (t = 1.88949) are both positive and, in order to show the
reliability of our numerical method for computing Lyapunov exponents we remark
that the obtained exponents along the attracting periodic orbit are −1.77495×10−2

and −1.77496×10−2 (we point out that the respective periodic orbit is a focus and,
therefore, the “real” Lyapunov exponents coincide).

Figure 9c) is devoted to show the geometry (overall, it is remarkable the presence
of self-intersections) of one of the pieces of the unidimensional attractor introduced
in Figure 9a), while in Figures 10a), b) and c) we successively enlarge some region of
the 2D attractor (the obtained exponents are 1.142×10−2 and 3.78×10−3) in order
to confirm the presence of a periodic repellor (which is a 40-periodic focus whose
eigenvalues have modulus very close to 1) and also of a 120-periodic saddle. The
shape of part of the unstable set of this periodic saddle corresponds to the more
marked curves (“more visited regions”) in Figure 10c). In Figure 10d) we have
drawn the invariant manifolds of the 120-periodic saddle in the same rectangle of
Figure 10c). We see inside the region determined by the unstable invariant manifold,
the 40-periodic repeller focus. It is interesting to notice that this focus is near a
1:3 resonance. A study of this bifurcation, including the bifurcation diagram of the
approximating flow can be found in [10].

3.4. Joining strange attractors: Heteroclinic bifurcations. As the param-
eter increases, the size of the 8-pieces 2D attractor of the previous figures grows
due to the existence of inner “tongues” (one of them marked with an arrow), which
will connect, for bigger values of the parameter, the eight pieces of the attractor to
give rise to the first 1-piece 2D attractor. In Figure 11a) we can see the tongues of
one piece of the 8-pieces 2D attractor for t = 1.8912 (one of them is marked with
an arrow), jointly with two saddle points p and q with their invariant manifolds.
Both points p and q belong to a 16-periodic orbit. Moreover, in Figure 11b) we
have represented in a larger rectangle, three pieces of the 8-pieces 2D attractor, six
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points of a 16-periodic saddle and the unstable invariant manifold of one of these
points, which we call p in the picture.

In Figure 12 there is a 1-piece 2D attractor with a hole, for t = 1.892. The union
of the 8-pieces 2D strange attractor into 1-piece is due to the birth of a heteroclinic
intersection between the 8-periodic repellor inside the 8-pieces attractor and a 16-
periodic expansive saddle near the 2D attractor, whose unstable invariant manifold
connects the pieces of the attractor, as we can deduce from the previous figures. By
a stronger density of points, one may still detect the shape of the previous 8-pieces
attractor plotted in Figure 11a). We also may distinguish how its inner “tongues”,
which have been described above, are larger than those in Figure 11a).

a)    Rectangle:   [-3.52,0.48] x [-2,0.72],   t= 1.889

A
B

b) Rect. A:   [-2.86,-2.59]x[-0.43,-0.32],  t= 1.889 c) Rect. B: [-2.36,-2.32]x[-0.25,-0.21],  t= 1.889

Figure 8. Attracting sets for t = 1.889. Figures b) and c) are,
respectively, magnifications of one piece of the two-dimensional at-
tractor and the IC.

The attractor given in Figure 12 is a 2D strange attractor whose numerically
obtained Lyapunov exponents are both positive: 3.655×10−2 and 8.341×10−3. Of
course, in the inner hole of the attractor there exists a fixed repellor (in fact, the
respective fixed point P̃a,b given in (6)). Therefore, the evolution of this attractor is
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a)    Rectangle:   [-3.625,0.542]x[-2.1042,0.750], t= 1.88949

A

b) [-2.8586,-2.3197]x[-0.5217,-0.2020], t= 1.88949

B

c) [-2.8009,-2.7653]x[-0.4971,-0.4850], t= 1.88949

Figure 9. Attracting sets for t = 1.88949. Figure b) is a mag-
nification of the rectangle A. The two crosses appearing in this
window represent two iterates of a 27-periodic attractor. Figure c)
is a magnification of the rectangle B.

very similar to the one described from Figure 7f) to Figure 8b): A 2D attractor with
an inner hole, the size of the hole decreasing as long as the parameter increases (see
subsection 3.3). This hole definitively disappears when some critical point belongs
to the closure of the unstable set of P̃a,b. Nevertheless, now the whole process follows
in a large set of parameters; namely, the 1-piece 2D attractor without hole does not
arise until t = 1.9302. Moreover, in the interval of parameters (1.892, 1.9302) there
are other interesting situations which we must describe. See Figure 13 where the
Lyapunov exponent functions (the largest exponent and the sum) are displayed for
this range of parameters.

3.5. Travelling to t = 2. The 2D strange attractor appearing in Figure 12 van-
ishes due to local bifurcations: Some periodic point becomes an attractor for
some parameter in (1.89276, 1.89278) . Furthermore, along the range of parameters
(1.89278, 1.89992) many already described bifurcations take place: There exists an
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a) [-2.837,-2.599]x[-0.416,-0.326], t= 1.88949

A

b) [-2.624,-2.604x[-0.392,-0.365], t= 1.88949

A

c) [-2.6107,-2.60540]x[-0.3796,-0.3725], t= 1.88949 d) [-2.6107,-2.6054]x[-0.3796,-0.3725], t=1.88949

Figure 10. Left up: Magnification of the 2D attracting set of
Figure 9b). Right up: Magnification of the rectangle A of the
previous figure. Down left: Magnification of the rectangle A of the
previous figure. Down right: The same rectangle of the previous
figure, with the invariant manifolds of the 120-periodic saddle.

a) R.: [-2.8589,-2.54]x[-0.4332,-0.3096], t=1.8912

p

q

b) R.: [-2.9366,0.1561]x[-0.5099,0.6058], t=1.8912

p

Figure 11. a) A piece of a 8-pieces 2D attractor with “tongues”
and two iterates of a 16-periodic saddle jointly with their invariant
manifolds. b) Three of the pieces of the 8-pieces attractor, jointly
with 6 iterates of a 16-periodic saddle, represented by crosses.
Moreover, the unstable invariant manifold of the point p is included.

11-periodic attracting orbit which is transformed through a Hopf bifurcation into
a 11-circles attractor (see subsection 3.2.1). This attractor follows the bifurcation
scheme announced in [6]: The one-dimensional attractor formed by circles which are
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Rectangle: [-3.7534,0.7671]x[-2.1369,0.9178], t=1.892

Figure 12. A 1-piece 2D strange attractor.

Figure 13. Lyapunov exponents as functions of t. Magnification
of Figure 3.1 for t ∈ [1.892, 1.9302].
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close enough to periodic saddles whose invariant sets collapse and these homoclinic
or heteroclinic bifurcations involve the appearance of chaotic attractors, see subsec-
tions 3.2.2 and 3.2.3. At the same time, the same holds for a 22-pieces attractor
which, for some open set of parameters coexists with the above one. However, this
new attractor experiments the same sequence of bifurcations described along Sec-
tion 3.2, but in inverted sense: As the parameter increases this 22-pieces attractor
evolves from a chaotic attractor to a periodic one. Let us illustrate these parallel
processes followed by these two attractors with several numerical experiments.

In Figure 14a) we may see the global layout in R2 of these two attractors for
t = 1.898. By making a magnification near the critical line, see Figure 14b), we
distinguish one piece of the 11-pieces attractor, which is homeomorphic to a circle
(IC11), and two pieces of the 1D strange attractor. On this last attractor the
obtained exponents are 1.3443 × 10−3 and −2.8673 × 10−2. A numerical analysis
also allows us to detect, very close to both attractors, a 22-periodic expanding
saddle (the product of its eigenvalues is bigger than one) which is the candidate
to produce chaotic attractors from IC11, see explanations in subsection 3.2.2. In
Figure 14c), two points of this 22-periodic orbit are represented by crosses.

a) R.: [-3.726,1.178]x[-2.205,0.986], t=1.898 b) R.: [-1.8964,-1.5771]x[-0.1196,0.1122], t=1.898

c) [-1.8614,-1.5635]x[-0.1129,0.1121], t=1.89819

A

d) [-1.74716,-1.71817]x[-0.01067,0.00678], t=1.89819

Figure 14. Several attractors inside the region R2. The critical
line and the boundary of R2 are included and the crosses are peri-
odic points of period 22. Figure b) is a magnification of a), and d)
is a magnification of rectangle A in Figure c).

As was expected, for slightly large values of the parameter the IC11 is no longer
homeomorphic to circles, see Figure 14c) in which both attractors are represented for
t = 1.89819. The 11-pieces attractor exhibits loops (cusps have not been observed)
according to the magnification made in Figure 14d). This situation is, once again,
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the prelude to the birth of chaotic 2D attractors instead of 1D attractors, as was
described in subsections 3.2.2 and 3.2.3. For this value of the parameter the 11-
pieces attractor already presents a positive Lyapunov exponent.

After homoclinic or heteroclinic bifurcations, the continuations of these two at-
tractors are shown in Figure 15a) for t = 1.898244. The previous 1D attractor
breaks into several pieces, one of them represented in the next picture, see Figure
15b). In fact, it seems to be a unidimensional set with self-intersections which prob-
ably arises in the vicinity of homoclinic orbits associated to a 198-periodic saddle,
represented in this figure by a cross. For both attractors in Figure 15a), one of the
Lyapunov exponents is positive and the other one is negative.

In order to follow the competition between these two different attractors (see
also subsection 3.8) one may repeat the numerical experiments from Figure 14a) to
Figure 15a), by taking twenty initial conditions uniformly distributed on the critical
line. It is remarkable that, in Figure 14a) the 11-pieces attractor only captures
three of these twenty orbits (the remainder travel to the 22-pieces attractor) while
for the situation given in Figure 15a) thirteen initial conditions go the 22-pieces
attractor and seven do to the other one. See again Figure 21 where the rate of
initial conditions travelling to different attractors for values of t ∈ (1.888, 1.899) is
shown.

In fact, for t = 1.89827 (see Figure 15c)) the 22-pieces attractor decomposes into
12 × 22 unidimensional pieces. After new homoclinic or heteroclinic bifurcations
this 22-pieces attractor turns homeomorphic to circles, according to Figure 15d)
(t = 1.898884) just in the same way as it was described in subsection 3.2. Inside
these circles one can find a 22-periodic repelling focus near a Hopf bifurcation. The
size of the 11-pieces attractor grows and, in fact, the sum of its Lyapunov exponents
becomes positive. We note that a previous 198-periodic saddle (t = 1.89819) inside
this attractor becomes a repellor and a 99-periodic expansive saddle is born by a
saddle-node bifurcation. We have included in the corresponding figure, part of the
continuation of this 99-periodic expanding saddle. It can be seen that all these
saddle points have heteroclinic intersections with the neighbour one. Hence, the
transition of this attractor was given in subsection 3.4.

For t = 1.89919, see Figure 15e), there only exists one attractor, which is the
continuation of the previous 11-pieces 2D strange attractor, but now with 5×11 2D
pieces. The other one disappears once a new Hopf bifurcation and a new saddle-
node bifurcation take place. It is interesting to note that in this case, inside all the
pieces, there is a 55-periodic slightly dissipative saddle. It seems that the closure
of its unstable invariant manifold is a 2D set, because the sum of the Lyapunov
exponents of the attractor are positive but small.

For t = 1.8992, see Figure 15f), there only exists one attractor: The continuation
of the 5× 11-pieces 2D strange attractor described before, which is now again a 11-
pieces attractor due to the appearence of homoclinic and heteroclinic bifurcations
(see subsection 3.4). We again observe the existence of “tongues” inside the 2D
attractor. These “tongues” will be, once again, the cause of the appearance of a
global 1-piece 2D attractor, see Figure 3.5a) for t = 1.9, like the one studied in
subsection 3.4 (see also Figure 12). The shape of the attractors giving rise to the
1-piece 2D one is quite similar in both cases: Bidimensional pieces with “leaving
tongues”. The only difference in the last case is that we have not found a heteroclinic
bifurcation with an expanding saddle when the attractor becomes int a one piece
attractor.
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a) [-1.8709,-1.5367]x[-0.1182,0.1154], t=1.898244

A

b) [-1.7537,-1.7445]x[-0.0140,-0.0072], t=1.898244

c) [-1.8712,-1.5582]x[-0.1160,0.1132], t=1.89827 d) [-1.8559,-1.5006]x[-0.0779,0.1335], t=1.898884

e) [-1.784,-1.4697]x[-0.0330,0.1281], t=1.89919 f) [-1.8630,-1.4648]x[-0.0680,0.1447], t=1.8992

Figure 15. a) Evolution of the attractors of Figure 14. Figure b)
is a magnification of the rectangle A of a). The cross indicates the
existence of a 198-periodic saddle. In Figure c) part of a 99-periodic
expansive saddle is marked with crosses. In Figure d), the crosses
are again part of a 99-periodic expanding saddle. In Figures e) and
f) the crosses are 55-periodic saddles.

The size of the attractor showed in 3.5a) is bigger than the size of the one ob-
tained in Figure 12. This common phenomenon for passing from 2D attractors with
inner holes to 2D attractors without holes can be observed several times along the
numerical analysis for 2D attractors, see subsection 3.4. In any way, before the
2D 1-piece global attractor without holes arises, new local bifurcations of periodic
points for some value of the parameter in (1.90012, 1.900123) bring about the ap-
pearance of a 44-pieces attractor. See Figure 3.5b) to check the global arrangement
of this attractor for t = 1.900123, and also Figure 3.5c) in which one of its pieces
is represented. In this case one of the Lyapunov exponents is positive although the
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a) [-3.656,1.082]x[-2.226,0.988], t=1.9 b) [-3.766,1.101]x[-2.276,0.945], t=1.900123

A

c) R.: [-1.899,-1.823]x[-0.044,-0.015], t=1.900123

Figure 16. a) 1-piece 2D strange attractor. The crosses indicate
points of a repelling focus of period 11. b) Evolution of the previous
attractor. c) Magnification of the piece A of the 44-periodic attrac-
tor of the previous figure. The crosses indicate periodic points. See
the explanation in the text.

sum of both exponents is negative. See also Figure 13 to follow the evolution of our
two Lyapunov functions. Moreover in Figure 3.5c) we have drawn 9 points of each
one of two periodic saddle orbits of period 396 (= 9 × 44) that seem to be inside
the attractor, and one 44-periodic repelling focus in the hole inside the attractor.
One of the saddles is expansive and the other one is dissipative, but the sum of the
Lyapunov exponents of the attractor is slightly negative.

Let us point out that by taking 104 equidistant parameters in the set (1.9, 2),
most of the obtained situations have been already observed for certain windows in
the domain of parameters (1.8, 1.9).

3.6. New kinds of attractors. In this subsection we will introduce not only those
numerical experiments which seem to offer new kinds of attractors, but also those
ones which may clarify some of the previously explained bifurcations.

3.6.1. Triangular attractors. For t = 1.901208194 we have a 36–pieces 2D strange
attractor with a hole inside every piece. In Figure 17a) we have drawn one of the
pieces of this attractor. We note that surrounding the hole in this attractor, there
exists a triangular region where there is more density of points of the attractor.
Near each vertex of this triangle one iterate of a 108 (3 × 36) expanding periodic
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saddle is located, whose unstable invariant manifold is contained in the attractor.
We have also drawn a point inside the hole that belongs to a repelling focus orbit
of period 36. Changing slightly the parameter (t = 1.901208196) we see that the
36-pieces attractor now is a thick triangle, and the rest has disappeared (see Figure
17b)). This is because for some intermediate t the map has undergone a heteroclinic
tangency between the unstable invariant manifold of some saddle in the thick trian-
gle and the stable invariant manifold of the 108-periodic saddle near the vertices of
the triangle. For t = 1.90120842, a 108-pieces 2D strange attractor and a 36-pieces
attracting invariant curve with triangular shape, coexist (see Figure 17c)). The 2D
attractor is destroyed when a heteroclinic intersection between the stable invariant
manifold of the 108-periodic saddle near the vertices of the triangular invariant
curve, and the unstable invariant manifold of some 108-periodic repellor inside the
2D attractor, takes place for a slightly small value of t. In Figure 17d) there is a
magnification of Figure c), where the invariant manifolds of one of the saddle points
are drawn.

a) [-2.001,-1.984]x[-0.176,-0.175], t=1.901208194 b) [-2.001,-1.984]x[-0.1762,-0.1752], t=1.901208196

c) [-2.001,-1.984]x[-0.176,-0.175], t=1.90120842

A

d) [-1.996,-1.995]x[-0.1760,-0.1759], t=1.90120842

Figure 17. a) One piece of a 36-pieces 2D strange attractor. The
cross indicates a point of a repelling focus of period 36. b) One
piece of a 36-pieces 1D strange attractor. The crosses indicate
points of a 108-periodic saddle. c) Three pieces of a 108-pieces
2D strange attractor, one piece of a 36-pieces attracting invariant
curve, and three points of a 108-periodic saddle. d) Magnification
of the rectangle A of the previous figure. The invariant manifolds
of the saddle are drawn.

3.6.2. An expanding saddle unstable set attractor. In Figure 18a) we present a new
class of attractor for t = 1.9379. Since the obtained exponents are 0.12982 and
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−0.078 we are dealing with an expanding map. In spite of several windows of
sinks, this attractor is born from the already mentioned global 1-piece 2D attractor
without holes. The respective bifurcation probably takes place due to heteroclinic
bifurcations between the invariant manifolds of periodic points. In fact, one may
numerically detect a 3-periodic expanding saddle inside the attractor and also a
3-periodic repelling node. The attractor must correspond to the closure of the un-
stable set of the 3-periodic expanding saddle and must be contained in the unstable
invariant set of the repelling node. In Figure 18b) we have drawn a magnification
of one of the pieces of this 2D strange attractor.

a) [-3.891,3.756]x[-2.830,1.800], t=1.9379 b) [-3.627,-0.559]x[-0.413,0.306], t=1.9379

Figure 18. a) A 3-pieces 2D strange attractor. The crosses inside
the attractor represent a period three expanding saddle, and near
this periodic saddle, it is also represented a 3-periodic expanding
node near, but outside the attractor. The cross on the central part
of the picture is a repelling 1-periodic focus. b) Magnification of
one of the pieces of the attractor.

The fact that the attractor in Figure 18 coincides with the closure of the unstable
manifold of an expanding periodic orbit with real eigenvalues probably explains
the fact that its geometry is substantially different from the one exhibited by the
previously obtained several-pieces 2D attractors: These last ones always seem to
correspond to the unstable set of repelling periodic foci. In any case, the future
evolution of the attractor in Figure 18 was already observed (see subsection 3.4):
As the parameter increases the size of its pieces grows until a new global heteroclinic
bifurcation takes place: Interaction with the stable set of the 1-periodic repelling
focus (see the cross in the central part of Figure 18a) outside the attractor) produces
the new appearance of the 1-piece 2D global attractor without holes for a certain
value in the range of parameters (1.944, 1.95).

3.6.3. Joining Hénon-like attractors. The first five pictures in Figure 19 are devoted
to explore a new global bifurcation. The process starts in Figures 19a) and b)
where a 32-pieces 1D strange attractor emerges for t = 1.97981. In Figure 19b)
eight of these pieces are displayed (inside each piece we have represented with a
cross an iterate of a 32-periodic dissipative saddle). Each one of them seems to be
a Hénon-like strange attractor associated to the displayed dissipative saddle, which
probably shows up from a heteroclinic or homoclinic bifurcation. In fact, several
expanding and dissipative saddle periodic points are found in the set of parameters
(1.97981, 1.97987) close to the respective attractor.
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a) [-3.9,3.9]x[-2.81,1.90], t=1.97981 b) [-3.861,-3.855]x[-0.530,-0.506], t=1.97981

c) [-3.858,-3.855]x[-0.527,-0.520], t=1.9798142

A

B

C

D
E

d) [-3.858,-3.855]x[-0.527,-0.520], t=1.9798142

A

B

C

D
E

e) [-3.859,-3.854]x[-0.528,-0.519], t=1.97983 f) [-4,12]x[-4,4], t=1.999990

Figure 19. a) A 16-pieces 1D strange attractor. b) Magnification
of eight pieces of the previous figure. c) One piece of a 16-pieces
1D strange attractor. The points A and B belong to the orbit of a
32-periodic dissipative saddle, C and D to a 32-periodic expanding
saddle orbit and E to a 16-periodic repelling node orbit. d) The
same parameter t and the same rectangle of the previous figure with
the invariant manifolds of the previous periodic points. e) Evolu-
tion of the same piece of the previous attractor for t = 1.97983. f)
The whole attractor for t = 1.99999.

The pieces of the attractor in Figure 19b) collapse two by two to form a 16-
pieces 1D strange attractor for t ≈ 1.979814. In Figure 19c) one piece of this
new attractor can be seen.The Lyapunov exponents for this value of the parameter
are 0.02027 and −0.0261. We have drawn also two points of a 32-periodic weakly
expansive saddle, whose unstable invariant manifold generated the previous 32-
pieces 1D strange attractor (also see subsection 3.6.2), two points of a 32-periodic
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expanding saddle and one point of a 16-periodic repelling node outside the attractor.
Nevertheless, the presence of repelling nodes, expanding saddles and the possible
interactions between their invariant manifolds would be very relevant in order not
only to justify the complicated geometry of these attractors but also to understand
what kinds of bifurcations lead to them. In Figure 19d) we have represented the
invariant manifolds of the 32-periodic points of the previous figure. We notice
that Wu(C) and Wu(D) have intersections respectively with W s(A) and W s(B).
Moreover, Wu(A) and W s(C) have an intersection that is near to be tangent. This
is also the case of Wu(B) and W s(D). All these heteroclinic intersections explain
why the 32-pieces attractor has become a 16-pieces attractor. Finally, we notice
that points C and D have been born by a flip bifurcation of the point E.

In Figure 19e) we may see the continuation of one piece of the above 16-pieces
attractor for t = 1.97983. The sum of the Lyapunov exponents is now positive.
Moreover, the hole inside the attractor has disappeared. This is because one of the
saddles has become a repelling node, and the unstable invariant manifold of this
node has intersections with the stable invariant manifold of the 16-periodic repelling
node. If t = 1.97987 the whole attractor has four pieces (once again, several pieces
of the old attractor collapse probably due to heteroclinic bifurcations) with a hole,
where there is a 4-periodic repelling focus, similar to other previous cases, like the
ones studied in subsection 3.4. Repelling periodic nodes and expanding periodic
saddles for this value of the parameter are also detected, and we note that the
Lyapunov exponents of the attractor are both positive.

3.7. The whole attractor. Finally, in Figure 19f) the obtained attractor is shown
for t = 1.99999. As was conjectured, see Conjecture 2, this situation would be fre-
quently (with positive probability) observed for values of the parameter sufficiently
close to t = 2: Almost all the invariant set R2 is a 2D strange attractor with two po-
sitive Lyapunov exponents. For this particular value of the parameter the obtained
exponents are 0.34491 and 0.34374, which are, as was also expected, very close to
the value 1

2 log 2, the (both) Lyapunov exponents for the bidimensional tent map
studied in [21]. Furthermore, by making 103 equidistant experiments in the range
of parameters (1.99, 2) the shape of the obtained attractor always almost coincides
with the whole domain R2. This is not a proof of Conjecture 2 but gives a good
support to it.

3.8. Competition between coexisting attractors. We end this section intro-
ducing Figure 20, where the distribution of sinks, invariant attracting curves, 1D
and 2D strange attractors is shown. In the horizontal axis we select 1000 equidis-
tant values for t ∈ (1.886, 2). For each value of t, we also select 1000 equidistant
initial conditions (x0, 0), with x0 ∈ [−4, 0]. These values of x0 are represented in
the vertical axis of Figure 20. For each one of these critical points of Tt, the two
Lyapunov exponents are calculated up to an error less than 10−4. After this, each
point (t, x0) is coloured in Figure 20 according to the criterion used to depict Figure
2 (pale grey or blue, in the electronic version of the paper, for negative exponents,
intermediate grey or green, for a zero Lyapunov exponent, dark grey or red, for 1D
strange attractors and black for 2D strange attractors). We have taken in the figure
the region

{(t, x0) | 1.886 < t < 2, −4 ≤ x0 ≤ 0}.
Therefore, different colors in the same vertical line in Figure 20 means the coexis-
tence of different kinds of attractors for the respective value of t. This phenomenon
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does not seem to be very frequent for our family of maps. On the other hand,
we point out that the black region in the figure (2D strange attractors) prevails
overall, as was expected, near the line t = 2. For the sake of completeness we also
introduce Figure 21 where for t ∈ (1.888, 1, 899), the competition between coexist-
ing attractors is depicted. Namely, once a value of t is fixed we take the values
ppo, pic, psa1, psa2 ∈ [0, 1] corresponding to the rate of values of x0 (those taken in
Figure 20) for which the orbit of the point (x0, 0) tends, respectively, to an at-
tracting periodic orbit, an attracting invariant circle, a 1D strange attractor and
a 2D strange attractor. Then, using the same colors than before, we draw a pale
grey segment from (t, 0) to (t, ppo), an intermediate grey segment from (t, ppo) to
(t, ppo + pic) a dark grey segment from (t, ppo + pic) to (t, ppo + pic + psa1) and a
black segment from (t, ppo +pic +psa1) to (t, ppo +pic +psa1 +psa2). We remark that
ppo + pic + psa1 + psa2 is less than one, because for the first and the last values of
x0, the orbit of (x0, 0) does not converge to any attracting set. From this figure we
see that the measure of values of (t, x0) for which there are 2D strange attractors
is very large, but there are significant zones in the depicted region for which there
is coexistence of several kinds of attractors.

Figure 20. Coexistence of attractors for t ∈ (1.886, 2). See expla-
nations in the text.

4. The whole family Ta,b revisited. All the numerical experiments shown along
this paper were done on the curve G given in (4). Of course, at the sight of Figure 2 it
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Figure 21. Proportion of different kinds of attractors for t ∈
(1.888, 1, 899). See explanations in the text.

seems clear that similar behaviours may be found in different parts of the parameter
space. For instance, we deem it wise to note that many Arnold’s tongues appear (in
pale gray) in the left hand side of the Hopf bifurcation line 2b− 4a = 3. Hence, in
order to study what happens in the nearness of such tongues it seems to be enough
to consider just one of these tongues. We want to end this paper by giving some
information about the behaviour of the whole family Ta,b. First we introduce Figure
22, where a magnification of some part of Figure 2 is presented. More concretely,
by means of the same colour criterion used for Figure 2, we explore what kinds
of attractors our map Ta,b exhibits for −1.25 ≤ a ≤ −0.5, 0.25 ≤ b ≤ 0.75. An
Arnold’s tongue can behave, in the proximity of the Hopf bifurcation line, as in the
two-dimensional dissipative invertible maps case (see again [3]) where an attracting
periodic orbit transforms finally into a 1D strange attractor. In our case, if we go
beyond to the left, this attractor becomes a 2D strange attractor by some of the
mechanisms we have described before. Namely, the process involves the existence
of expanding saddles and repelling periodic orbits after some bifurcation (saddle-
node or flip) and the behaviour of their unstable invariant manifolds. This seems to
happen in the largest tongue in the picture. Another possibility for the behaviour of
an Arnold tongue is that before the existence of a 1D strange attractor, a periodic
point undergoes a Hopf bifurcation, what will give in a small scale a picture like
the one obtained in Figure 22. Of course, the global behaviour of the map could be
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very complicated as we saw in our family Tt , because several attractors can coexist.
Finally, as we saw for Tt, it seems that near the line separating the region with
attractors (in several tones of grey and black) and the region with no attractors (in
white) the 2D strange attractors are more abundant than other kinds of attractors.

On the other hand, we can obtain some information about the border of the
region B for which there are attracting sets, by computing some bifurcation curves.
We begin by looking for codimension-two bifurcations of fixed points. As we have
already pointed out, the Bogdanov-Takens bifurcation (where the eigenvalues of
DTa,b at the fixed point are λ1 = λ2 = 1) corresponds to (a, b) = Γ1 = (1/4, 2).
Also, it is easy to see that the bifurcation for which the eigenvalues are λ1 = −λ2 = 1
occurs for (a, b) = Γ2 = (1/4, 0), the bifurcation of resonance 1:2 (λ1 = λ2 = −1)
for (a, b) = Γ3 = (−7/4,−2), and the bifurcation of resonance 1:3 (λ1 = λ̄2 =
exp(2πi/3)), for (a, b) = Γ4 = (−5/4,−1). All these points seem to belong to the
border of B (see Figure 23). Now if we compute codimension-one bifurcation curves
associated to these codimension-two bifurcations, it seems that some of them are also
in the border. The saddle-node bifurcation curve C1 has the equation a = (b−1)2/4
and seems to match with the part of the border of B joining the points Γ1 and
Γ2. The flip bifurcation curve C2 is given by the equation a = − 3

4b2 − 1
2b + 1

4
and apparently forms part of the border of B from the point Γ2 to Γ3. The curve
corresponding to the heteroclinic connection arising at Γ3 has the equation b = −2.
Part of this curve at the left of Γ3 (until the point (−2,−2) where the heteroclinic
connection disappears) seems to be in the border of B. Moreover, part of a curve
of homoclinic tangency emerging at Γ1 seems to lie on the border. Finally, part of
a curve corresponding to a heteroclinic tangency appearing at Γ4 apparently forms
part of the border of B. We think that there are other codimension-two bifurcations
which should help us to give a complete description of the border, including the
homoclinic bifurcations present at (a, b) = (−2, 0) and (a, b) = (−4,−2). Notice,
moreover, that at least part of the border of B has to exhibit a more complex
structure due to the efect of the coexistence of several attractors in some parts
of B, as we see in Figure 22. A more detailed study of these phenomena will be
described elsewhere. In Figure 23 we have drawn part of the border of B jointly
with some of the curves we have described along this section.

5. Conclusions. As was announced in the Introduction, we have put special em-
phasis along the paper in order to state the resemblances between our family of
limit return maps, Ta,b, and the well-known quadratic family Qa (x) = 1 − ax2,
which is the family of limit return maps prevailing for homoclinic phenomena for
two dimensional diffeomorphisms (m = 2).

One must not forget that in [21] those resemblances were established between
T−4,−2 and Q2, i.e., the final “Misiurewicz” limit return maps for the cases m = 3
and m = 2, respectively.

In fact, as we have observed in Section 3, many of these similarities arise when
we restrict the study of Ta,b to the curve G. Not only both families start with a
fixed sink, but also all the known one dimensional classical bifurcations (saddle-
node, period doubling cascade of bifurcations,...) were observed on G. Even Hopf
bifurcations in dimension two have similarities with flip bifurcations in dimension
one. Indeed, if we consider both bifurcations for fixed points, in the Hopf case
we have an invariant set after the bifurcation which coincides with the border of
a topological disk (the closed invariant curve), while in the flip case, the invariant
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Figure 22. A magnification of Figure 2.

set is the border of an interval (formed by a periodic orbit of period two). The
structure of many attractors arising in Section 3 matches with the one exhibited
by the attractor corresponding to certain Qa. For instance, attractors for Ta(t),b(t),
(a (t) , b (t)) ∈ G, with several pieces containing a periodic repellor correspond to
attractors for Qa formed by the union of several disjoint intervals. Furthermore,
the union of several pieces to give rise to a one-piece attractor is also a common
phenomenon for the families Qa and Ta(t),b(t). These equivalences were explained
along subsection 3.3, 3.4 and many others. Also the behaviour of the sum of the
Lyapunov exponents function, see Figure 3.1, seems to be very similar to the one
exhibited by the Lyapunov exponent function for Qa. Hence, as expected, the at-
tractors for both families for values of the parameters close enough to the respective
“Misiurewicz” value, are completely equivalent: The whole invariant domain is a
strange attractor for a positive Lebesgue measure set of parameters (recall that this
is, so far, only a conjecture for our family Ta(t),b(t)). Beyond these “Misiurewicz”
parameters there always exist critical points for both families whose orbit does not
remain in a bounded region. Of course, in spite of the greater richness displayed
by our family Ta(t),b(t), we are convinced that these similarities will be crucial to
develop a deeper study of the behaviour of Ta,b starting by giving a positive answer
to the open question introduced in Remark 1 and also to Conjectures 1 and 2 which,
up to now, are only supported on numerical results.
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Figure 23. Border of the region of parameters for which there
exist attracting sets. Coordinate axes are also drawn.

Finally, we want to insist in the relevance of the study of the map Ta,b for the
understanding of the behaviour of the attractors appearing near a generalized ho-
moclinic tangency for a large class of three-dimensional dissipative diffeomorphisms
because, as we said, Ta,b is a limit return map for this kind of homoclinic bifurcation.
Nevertheless, we cannot describe all the complexity of the geometry of the strange
attractors, because what we see using our map can be considered as a projection in
a subspace of dimension two of very complex objects in dimension three, specially
in the case of 3D strange attractors.
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73-169.
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