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Abstract

The science orbit for a future mission to Europa requires
low eccentricity, low altitude, and high inclination. How-
ever, high inclination orbits around planetary satellites
are unstable due to third-body perturbations. With-
out control, the orbiter impacts Europa after few weeks.
To minimize control, a tour over the stable-unstable,
averaged manifolds of unstable frozen orbits has been
suggested. We proceed with the unaveraged equations
and study the manifolds of unstable orbits that are pe-
riodic in a rotating frame attached to Europa. Massive
numerical computation helps in understanding the un-
stable dynamics close to Europa, and, thus, in select-
ing long lifetime high inclination orbits. A final test
of a selected set of initial conditions on a high fidelity,
ephemeris model, validate the results.

1. Introduction
The requisites of a science orbit around Europa con-
strain its design to high inclination, low altitude, near
circular, polar orbits. Unfortunately, perturbations due
to Jupiter destabilize the candidates for the science or-
bit about Europa. After a relatively short time, in the
order of one to very few months, the orbiter will escape
or impact Europa [1, 2, 3].

The underlying dynamics close to planetary satellites
is well fitted to a Hill perturbed problem [4, 5]. A double
averaging over the mean anomaly and the argument of
the node results in an integrable system in the eccentric-
ity and the argument of periapsis. The equilibria of the
reduced system, also called frozen orbits, correspond to
quasi periodic motion in the three degrees of freedom (3-
DOF) problem. As both the eccentricity and the argu-
ment of periapsis remain frozen on average, orbit main-
tenance maneuvers reduce to a minimum. These frozen

orbits are highly desirable as nominal solutions for ob-
servation missions. However, even in the case of frozen
orbits, the unstable dynamics quickly leads the orbiter
to the unstable manifold of the frozen orbit. Therefore,
a tour along the stable-unstable manifolds of the doubly
averaged problem appears as a natural choice to enlarge
the lifetime of the science orbit [6].

Among the quasi periodic orbits, periodic orbits of
the 3-DOF problem indeed exist in a rotating frame at-
tached to Europa [7, 8, 9, 10]. In theory, periodic orbits
live forever. However, even the almost negligible trunca-
tion errors of the floating point arithmetic can play the
role of small perturbations that reveal the natural dy-
namics of unstable periodic motion. After a long term
propagation the orbiter eventually enters the unstable
manifold of the periodic orbit, where the exponential
increase in the eccentricity produces an impact of the
orbiter with Europa.

As it is known from dynamical systems theory, the
lifetime of the orbiter can be enlarged by taking initial
conditions in the stable manifold of the periodic orbit.
Note, however, that the unstable dynamics of the science
mission is complex. All the branches of the manifolds
must remain inside the Hill sphere, and tours using dif-
ferent branches of the manifolds can enjoy notably dif-
ferent lifetimes. To compute the longest lifetime associ-
ated to a given periodic orbit, in this work we perform
a detailed study of the different branches of the stable
and unstable manifolds. This atlas of trajectories can
help control engineers in designing orbit maintenance
routines [11].

2. Dynamical model
Since massive numerical computations are involved, we
are compelled to choose a simplified model for our sim-

1



ulations. Recent research takes advantage of the small
Europa to Jupiter mass ratio, and the low eccentricity
and inclination of the Europa orbit, showing the accu-
racy of the Hill model [2, 7, 6]. Besides, as the science
mission requires low altitude orbits, a second order grav-
ity field of the central body will be considered, as already
proposed by Kozai in the dawn of the Space era [4].

In a rotating frame with the origin at Europa and
Jupiter to the left, the Hamiltonian of a perturbed two
body problem is

H = (1/2) (X ·X)− ω · (x×X)− µ/r + R(x), (1)

where x = (x, y, z) is the position vector, X = (X, Y, Z)
is the vector of conjugate momenta —velocity in the
inertial frame, r = ||x||, the rotation rate of the system is
ω = ||ω||, and µ is the gravitational parameter. System
(1) is conservative and has the Jacobi constant C

H(X,x) = −C/2. (2)

We consider a perturbing function R(x) that includes
the third-body perturbation in Hill’s approximation and
the non-sphericity of Europa given by the gravitational
harmonics expansion up to the second order. Thus, with
Jupiter on the negative x axis, and taking into account
the synchronous rotation of Europa with its orbital mo-
tion, the perturbing function is

R = (ω2/2) (r2 − 3x2) (3)
−(µ/r) (α/r)2 (J2/5) (7x2 − 2y2 − 5z2)/r2

where α is the equatorial radius of Europa. The second
order gravitational field has been simplified by assuming
the hydrostatic equilibrium condition C2,2 = (3/10) J2

—closely accomplished by Europa as determined from
the four NASA’s Galileo close encounters [12].

Note that in the standard units of the Hill problem,
we can set ω = µ = 1. Therefore, the full Hill problem
depends only on one parameter, namely the dimensional
oblateness coefficient J̃2 = J2 α2. However, we retain
more physical insight choosing units of length and time
such that α = µ = 1, and maintaining ω and J2 as
parameters.

Besides the two equilibria on the x-axis, known as
collinear points, the periodic solutions of the Hamilto-
nian Eq. (1) are of specific interest because their stabil-
ity properties are easily obtained from the eigenvalues λ
of the monodromy matrix. For periodic orbits of Hamil-
tonian systems the eigenvalues appear in reciprocal pairs
(λ, 1/λ), and there is one trivial eigenvalue λ = 1 with
multiplicity 2. Thus, in systems with three degrees of
freedom, two stability indices si = λi + 1/λi, i = 1, 2,
are normally used, where si must be real and |si| < 2
for linear stability.

3. The nominal orbit dynamics

A variety of periodic orbits in the rotating frame are
known to exist around Europa, and have been previously

computed [7, 8, 9]. These periodic orbits repeat the
ground trace over the surface of Europa and, for low
altitudes, repeat ground-track (RGT) orbits have direct
application to mapping missions.

Thus, despite the instability of high inclination orbits
around planetary satellites, periodic RGT orbits have
been suggested as an alternative for a long lifetime Eu-
ropa science mission [13].

Ideally, periodic orbits live forever. However, numeri-
cally computed periodic orbits are periodic only within
certain numerical precision ε. The periodicity error to-
gether with rounding errors in the numerical integration
play the role of small perturbations that shortly manifest
the natural dynamics of the unstable periodic motion.
This is illustrated in Fig. 1 where a polar orbit with a
40 cycle RGT delays impact to Europa to more than 400
days. However, to reach such performances the initial
conditions must be determined with a precision to bet-
ter than 1 mm in position and 10−4 mm/s in velocity
(periodicity error ε ∼ 10−11 in the internal units used).
This is highly unrealistic from a practical point of view.
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Figure 1: Long term propagation of a 40 cycle RGT,
unstable, polar orbit (after [13]). The horizontal axis
marks the surface of Europa.

If we assume an error on the order of 1 km in position
and 1 m/s in velocity (ε ∼ 10−3) the lifetime then re-
duces to about 110 days, as shown in the top plot of Fig.
2. However, as it is known from dynamical systems the-
ory, the lifetime of the orbiter can be enlarged by taking
initial conditions on the stable manifold of the periodic
orbit, as shown in the bottom plot of Fig. 2 where the
lifetime extends now to more than 200 days.

4. Invariant manifolds computations

The computation of the invariant manifolds of a RGT
science orbit presents several differences with respect to
other cases, as for instance the Halo orbits around de
collinear points [11] or the higher-altitude periodic orbits
useful for designing ballistic captures [14]. On one side,
the energy of the science orbit requires that it must be
trapped around Europa, as it must occur to the whole
invariant manifolds. In the units used in this paper (α =
µ = 1, ω = 0.0224016, J2 = 4.355 · 10−4) it corresponds
to the zero velocity surface C = 0.300367
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Figure 2: Top: Long term propagation of a 40 cycle RGT
coarse (ε ∼ 10−3) periodic orbit. Bottom: improved
lifetime using the stable-unstable manifold dynamics.

4.1. The procedure
As has been said in the previous section, periodic orbits
around the small primary are well known for the problem
under consideration. In the rotating reference frame, the
orbits close after completing a certain number of cycles
P around Europa. For our computations, we have used
orbits with values of P = 10, 11, ..., 40.

For these periodic orbits, the values of the energy H
and the non-trivial stability parameter, s1 = λ+1/λ, are
shown in Fig. 3 (the other stability parameter is always
very close to 2). As it can be seen from this figure, for
the values of P under consideration, all the orbits are
unstable, and the instability decreases as the number of
cycles increases.
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Figure 3: Jacobi constant C and stability parameter s1

of the periodic orbits

Related to the stability parameter s1 > 2, there are
the two eigenvalues of the monodromy matrix, λ > 1

and 1/λ < 1, which describe the hyperbolic character
of the periodic orbit. The eigenvector corresponding to
λ, eu(0), gives the most expanding direction of the flow
defined by the differential equations of motion, while
the eigenvector associated to 1/λ, es(0) gives the most
contracting direction. Once these stable and unstable
directions have been computed at some initial condition
of the periodic orbit (t = 0), we can get both directions
at any point of the orbit (t ∈ [0, T ], where T is the
period of the orbit) transporting these two vectors by
means of the differential matrix of the flow given by the
variational equations. This is

es,u(t) = A(t)es,u(0), t ∈ [0, T ],

where A(t) is the variational matrix. These two direc-
tions, together with the direction tangent to the or-
bit, define the linear (local) approximations of the 2-
dimensional stable and unstable manifolds of the peri-
odic orbit. Once these local approximations have been
computed, the next point is to produce the globalisation
of the manifolds.

Given a displacement δ from a selected point on the
orbit x(t), initial conditions in the linear approximation
of the manifolds are given by means of

xs,u(t) = x(t) + δ · es,u(t), t ∈ [0, T ].

For the computations, it is convenient to scale the sta-
ble and unstable directions es,u(t) in such a way that
the norm of the vector formed by its first three compo-
nents is equal to one. Then, the magnitude δ cannot be
too small in absolute value, in order to prevent rounding
errors and large integration time intervals when global-
ising the manifolds. However, it cannot be too large
because the linear approximation is useful only near the
point x(t). Values of δ of the order of 10−6 give good
results. See [11, 14] for more detailed discussions about
this point.

The two-dimensional stable and unstable manifolds
(they are surfaces in the 6-dimensional space of posi-
tions and velocities) can be parametrised in the follow-
ing way. As was mentioned, once a displacement δ has
been selected, given a point x(t) on the periodic orbit, we
can get an initial condition on the stable/unstable man-
ifold: xs,u(t). Following the flow backwards/forwards in
time, we get all the points in the manifolds associated to
x(t). In this way x(t), or equivalently t ∈ [0, T ], can be
thought as one of the parameters describing the mani-
folds. We will refer to t as the parameter along the orbit.
The other one is the elapsed time τ for going, following
the flow, from the initial condition xs,u(t) to a certain
point of the manifold φτ (xs,u(t)), where φ denotes the
flow associated to the differential equations of motion.
We will refer to τ as the parameter along the manifold.

We remark that this parametrisation depends on the
choice of δ and the way in which the stable/unstable
directions are scaled. If the scaling is done as described
before, a small change in δ produces an effect equivalent
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to a small change in the parameter along the orbit. That
is, with a small change in δ we can get the same orbits
of the manifold as with a small change of x(t). Only
a small shift in the parameter along the flow will be
observed. This is because the stable/unstable directions
are transversal to the flow.

4.2. Some numerical results
To illustrate the behavior of the invariant manifolds,
here we will only show the results corresponding to an
orbit with a 15 cycle RGT in one Europa’s day. Need-
less to say that our conclusions are not limited to this
particular orbit.
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Figure 4: Periodic orbit around Europa after 15 cycles
in the rotating frame. Distances are km.

We use the values α = 1565 km, µ = 3202.7 km3/s2

and ω = 2.0477·10−5 s−1 for the parameters. In internal
units of length and time such that α = µ = 1, the initial
conditions of the 15 cycle orbit are y = z = ẋ = 0,

x = 2.066698821973660,
ẏ = −0.0699698757983462,
ż = 0.6984198614672048.

(4)

These initial conditions correspond to a Jacobi constant
C ≈ 0.481609 and period T = 280.42701173113. The
values of the two stability indices are s1 = 2.63584,
s2 = 2. In average, the orbit has semi-major axis
a = 3242 km, eccentricity e = 0.006, and inclination
i = 90.5 deg. The orbit is represented in Fig. 4, where
it is clearly seen that after 15 upward crossings of the
equatorial plane (z = 0) the orbit closes.

We have done a Poincaré map representation of the
stable and unstable manifolds, this is, we only display
the intersections of the orbits of the manifolds with a
surface of section. In this case, it has been set to be
the equatorial plane z = 0, since the orbits intersect it
transversally. In Fig. 5, we represent the x, y adimen-
sional coordinates of the intersecting points with z = 0
of the stable manifold. The behavior of the unstable
manifold is very similar and we do not present it. In the
left plot of this figure we display the first 10,000 intersec-
tions with the surface of section of 1,000 different orbits
of each manifold. These orbits have been obtained tak-
ing 1,000 uniformly distributed different values of the

parameter along the orbit, t ∈ [0, 280.42 . . .], associated
to the manifolds. The top plot of Fig. 5 shows that the
manifold intersects the surface of Europa, represented
by the circle of radius one. In the bottom plot of the
Figure we display only the intersections with z = 0, of
the same number of orbits, before the impact with Eu-
ropa. Comparing the two plots, we see that the manifold
reaches the surface of Europa after a few intersections
with the equatorial plane. It occurs after a relatively
short time interval after the departure from the initial
conditions that define their local approximation.
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Figure 5: Top: Equatorial plane (z = 0) crossings of
the stable manifold orbits. Bottom: same plot until the
impact with Europa (the circle of radius 1). The 15 large
dots correspond to the initial periodic orbit.

This behavior of the manifolds explains the numeri-
cal experiments described in section 3: the orbits start-
ing at the initial conditions of the periodic orbit do not
remain on it for ever due to the numerical integration
errors, the errors in the initial conditions, and hyper-
bolic behavior of the unstable periodic orbit. Because
the manifold intersects the surface of Europa, the nu-
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merically integrated orbit will also have an impact with
this surface. The same phenomena appears if, instead of
starting at the periodic orbit, we take initial conditions
on the invariant stable manifold. Now, during a certain
time interval, the orbits of the manifold will approximate
asymptotically to the periodic orbit but, due to the er-
rors in the numerical integration and the errors in the
initial conditions (since we are using a linear approxima-
tion of the manifold) the orbit will finally deviate from
the periodic orbit following the unstable manifold. This
behavior is represented qualitatively in Fig. 6.

Periodic orbit Stable manifold

Unstable manifold

Impact with Europa

of the stable manifold
Approximate orbit II

IIII

Impact with Europa

Figure 6: Qualitative behavior. The four circles on the
four branches of the manifolds represent the points of
the manifolds at which an impact with the surface of
Europa takes place.

In Fig. 7 we give quantitative estimates of the time
required for orbits of the positive branch to reach im-
pact. The figure represents the results obtained when
the initial conditions are taken on the positive branch
of the stable manifold, corresponding to values of the
initial conditions equal to

xs
+(t) = x(t) + δ · es(t), t ∈ [0, T ],

where we fixed δ = +10−6.
The lower curve represents the time required to im-

pact with Europa as a function of the parameter along
the orbit. The initial conditions are taken at the linear
approximation of the stable manifold, represented by the
point labelled as I in Fig. 6. Clearly, there is a maxi-
mum variation of approximately 1000 adimensional time
units in the time required to reach impact depending on
the parameter along the orbit, t, of the manifold. Now,
we can use this impact point, II in Fig. 6, as initial con-
dition and integrate backwards in time, until we reach
again an impact with Europa, point number III in Fig.
6. Taking this last point as initial condition, clearly we
can enlarge by a factor of almost two the time span that
we can be around the periodic orbit without impacting
with Europa.

Orbits of the negative branch of the stable manifold
with initial conditions xs

−(t) = x(t)− δ · es(t), t ∈ [0, T ],
produce almost identical results and are not presented.
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Figure 7: Orbits of the positive branch of the stable
manifold of the 15 cycles periodic orbit: Time required
to reach the surface of Europa starting at the stable
manifold (lower curve) and between two consecutive im-
pacts with the surface (upper curve).

5. The real orbit: Ephemeris runs
Tests on the validity of the solutions are made in an
ephemeris model1 that includes perturbations of the
Sun, the other Galileans, the non-sphericity of Jupiter,
the other gas giants, and the same Europa gravity field
as considered in the simplified model [12]. Figure 8(a)
gives the results of ephemeris propagations of the stable-
unstable manifold tour based on 333 equally spaced loca-
tions along the 15-cycle reference orbit. The initial con-
ditions are taken from the associated simplified model
trajectory corresponding to points II and III from Fig.
6 for the backward and forward propagations respec-
tively. Note, the backward and forward propagations
are identical in the invariant model, but yield different
trajectories in the epoch dependent ephemeris model.
Each trajectory begins and ends with a Europa impact
as indicated by Figure 9(b) where the radius evolution
of the longest lasting orbit from Fig. 8(a), orbit A, is
illustrated.

As expected, the average ephemeris lifetime is signifi-
cantly less than those reported from the invariant model
in Fig. 7. To further examine solution robustness and
seek longer ephemeris lifetimes, in Fig. 8(c) we employ a
one dimensional optimization factor that has proven use-
ful (and explained in detail) in previous studies [8, 14].
Here, we show that the lifetime of orbit B can be sig-
nificantly improved to approximate the longer lifetime
enjoyed by orbit A. The narrow peak of the orbit A
curve is centered at k = 1, indicating there is little room
for improvement on the isolated 82 day lifetime as seen
in Fig. 8(a). For comparison, initial conditions taken
directly from the reference periodic orbit are optimized
in a similar manner, yielding a similar lifetime profile as
found for the stable-unstable tours.

1See http://naif.jpl.nasa.gov/naif/spiceconcept.html
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Figure 8: Selected ephemeris propagations related to the
15-cycle example periodic orbit.

6. Conclusions and future work
Massive numerical computations show that the real
(ephemeris model) unstable dynamics around Europa
is qualitatively similar to that of a simplified invari-
ant model. This enables a methodology for computing
long lifetime science orbits around planetary satellites
based on stable-unstable manifold tours on selected re-
peat ground track orbits. Further, using the geometry of
the invariant manifolds, it is possible to design a control
strategy for the station-keeping of a spacecraft in the
vicinity of the repeat ground track orbits. The results
of this control procedure will appear elsewhere.
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