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Abstract

Given a complex analytical Hamiltonian system, we prove that a necessary con-
dition for meromorphic complete integrability is that the identity component of the
Galois group of each variational equation of arbitrary order along each integral curve
must be commutative. This was conjectured by the first author based on a suggestion
made by the third author due to numerical and analytical evidences concerning higher
order variational equations. This non-integrability criterion extends to higher orders a
non-integrability criterion (Morales-Ramis criterion), using only the first order varia-
tional equation, obtained by the first and the second author. Using our result (at order
two, three or higher) it is possible to solve important open problems of integrability
which escaped to Morales-Ramis criterion.

1 Introduction

The problem of integrability by quadratures, or in closed form, of dynamical systems is a
very old, important and difficult problem. We know that, given an algebraic or analytic
dynamical system, defined by ordinary differential equations, a solution always exists
locally and sometimes we can prolong it for every time towards the past and the future.
Then, as the mathematicians of XVIII-th century, we would like to find the general solution
analytically in an “explicit” way. When this is possible we can say that the system is
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“integrable”. Unfortunately (although a general definition of integrability for an arbitrary
dynamical system is today missing) it is well-known that, “in general”, dynamical systems
are not integrable. In other words, the “majority” of dynamical systems are non-integrable
(even one can suspect that integrability is a codimension infinity property in any reasonable
sense) and it is impossible to find their general solution in closed form. (For some remarks
about the meaning of integrability see [58].) The situation is similar to the problem of
solvability by radicals of algebraic equations, and it is not surprising that our approach in
this paper follows a Galoisian path.

In this paper we will only consider analytical dynamical systems over the complex
field. (In the applications it is necessary to go back to the real field. Sometimes it is
easy, sometimes it is delicate). Then there are at least two families of finite-dimensional
complex-analytical dynamical systems for which the notion of integrability is well-defined:
the Hamiltonian systems and the linear differential equations. For Hamiltonian systems
the integrability is well-defined in the Liouville sense: the existence of a complete set of
independent first integrals in involution. When this happens it is said that the Hamiltonian
system is completely integrable; for simplicity we call it integrable. For linear ordinary
differential equations, integrability is defined in the context of the differential Galois theory,
also called the Picard-Vessiot theory.

We recall the precise definition of the complete integrability. A Hamiltonian system
with Hamiltonian H defined over a symplectic analytical complex manifoldM of (complex)
dimension 2n,

ẋ = XH(x), (1)

is integrable if there exist n first integrals H = f1, f2, . . . , fn independent and in involution,
{fi, fj} = 0, i, j = 1, 2, . . . , n, being { , } the Poisson bracket defined by the symplectic
form.

In general, we will assume that the functions f1, f2, . . . , fn are meromorphic, but some
times we will have to impose that they are more regular, for instance also meromorphic
at ∞, i.e., rational functions, if M is an open set (in the algebraic sense) of a complex
projective space. For some specific facts about the integrability of complex Hamiltonian
systems see [57], Chapter 3.

We assume that the reader is familiarised with the Picard-Vessiot theory from two
approaches: the field algebraic approach and the geometric connection approach. For
the necessary definitions and results the reader can look at [57], Chapter 2; for a more
complete study, including detailed proofs and other references, a standard monograph is
the recent book [77].

Given a system of linear ordinary differential equations

ξ̇ = Aξ, (2)

with coefficients in a differential field K, A ∈Mat(m,K), we say that it is integrable if its
general solution is obtained by a combination of quadratures, exponential of quadratures
and algebraic functions. In other words, if L := K(uij) is the Picard-Vessiot extension
of K, uij being a fundamental matrix of solutions of (2), then there exists a chain of
differential extensions K1 := K ⊂ K2 ⊂ · · · ⊂ Kr := L, where each extension is given by
the adjunction of one element a, Ki ⊂ Ki+1 = Ki(a, a

′, a′′, . . .), such that a satisfies one
of the following conditions:

(i) a′ ∈ Ki,

(ii) a′ = ba, b ∈ Ki,
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(iii) a is algebraic over Ki

(the usual terminology is that the Picard-Vessiot extension L/K is Liouvillian). Then, it
can be proved that a linear differential equation is integrable if, and only if, the identity
component G0 of the Galois group G (which is algebraic over the constant field) of (2) is a
solvable group. In particular, if the identity component is commutative, then the equation
is integrable. Along this paper we only consider the case of a differential coefficient field
K which is the field of meromorphic functions over some suitable Riemann surface.

Given a complex analytical Hamiltonian system (1) defined over a symplectic manifold
M of complex dimension 2n, we can consider a particular solution, φ(x0, t), being φ(x, t)
the general solution, i.e., the flow of equation (1). If we assume that the particular solution
φ(x0, t) is not an equilibrium point, then it defines a Riemann surface Γ immersed in M .
The first order variational equation VE 1 of (1) along Γ is given by

d

dt

∂φ

∂x
(x0, t) =

∂XH

∂x
(φ(x0, t))

∂φ

∂x
(x0, t). (3)

If we denote φ(1) = φ(1)(t) the derivative of φ with respect to x at the point (x0, t), then
(3) can be written as

φ̇(1) =
∂XH

∂x
(φ(x0, t))φ

(1). (4)

The solution of this equation gives us the linear part of the flow, φ(x, t) along Γ. Now
we assume that we can complete the Riemann surface Γ to a Riemann surface Γ by adding
some points: equilibrium points, singularities of the Hamiltonian field XH and points at
∞, being the coefficient of (4) meromorphic at these points. Then the differential field of
coefficients of the linear differential equation (4) is by definition the field of meromorphic
functions over Γ, see [60] (or [57]) for the details. Then we have [60]

Theorem 1 (Morales-Ramis) If the Hamiltonian system (1) is completely integrable with
meromorphic first integrals in a neighbourhood of Γ, not necessarily independent on Γ itself,
then the identity component G0 of the Galois group of the equation (4) is commutative.

This result is a typical variant of several possible theorems in [60] when, instead of the
Riemann surface Γ, we consider a Riemann surface Γ obtained from Γ by adding some
points.

It is possible to give equivalent versions of Theorem 1:

... then the Lie algebra of the Galois group of the equation (4) is abelian,

or

... then the Galois group G of the equation (4) is virtually commutative (i.e., it
admits a commutative invariant subgroup H such that G/H is finite).

In this last statement we can replace the differential Galois group G by the monodromy
group (which is clearly a subgroup of G).

Corollary 1 If the Hamiltonian system (1) is completely integrable with meromorphic
first integrals in a neighbourhood of Γ, not necessarily independent on Γ itself, then the
monodromy group of (4) is virtually commutative.
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Theorem 1 follows a tradition that goes back to Poincaré, who introduced the vari-
ational equations and found a relation between integrability and the monodromy matrix
along real periodic orbits [69]. More recently Ziglin considered the monodromy group of
the variational equations of (1) in the complex analytical setting in order to study necessary
conditions for the existence of a complete set of independent first integrals but without
any involution assumption [83]. For more information and precise statements about the
history of the method of the variational equations in connection with the integrability
problem of Hamiltonian systems, see [57]. Theorem 1 can be considered as a generalisa-
tion of the aforementioned result of Ziglin. In fact, it can be easily proved that Ziglin’s
theorem can be obtained from the results of [60] as a corollary (it follows easily from 1). It
is clear that Theorem 1 (or the other versions of it in [60]) is a non-integrability criterion
and since the end of the 90’s it has been applied by several authors to the study of the
non-integrability of a wide range of systems:

a) N-body problems, problems with homogeneous potentials and cosmological models
[5, 6, 12, 13, 14, 16, 15, 36, 37, 44, 45, 47, 48, 51, 52, 53, 61, 62, 64, 67, 66, 75, 78,
81, 82].

b) Some physical problems [3, 4, 11, 25, 26, 27, 70].

c) Other mechanical problems (rigid body, spring–pendulum,...) [43, 46, 49, 50, 80].

d) Systems with some chaotic behaviour (splitting of asymptotic surfaces) [59, 79].

Moreover some surveys and general expository works have been also published [8, 9,
10, 19, 20].

So, using Morales-Ramis theorem and its variants, it is possible to solve a lot of long-
time open problems of integrability, or to give simpler solutions of classical problems (as
the heavy top problem [49]). However for some important systems, it is impossible, us-
ing only this theorem, to say if they are integrable or not, even if there is evidence of
non-integrability from numerical experiments. One encounters such cases for some third
order polynomial potentials (and more generally for some very degenerated situations in
parametrised families of potentials). Considering this situation, the third author proposed
to use higher order variational equations to solve such integrability problems.

2 Our main results

Beyond the first order variational equation (4), it is possible to consider the higher order
variational equations VE k along Γ, with k > 1. The “fundamental” solution of VE k is
given by (φ(1)(t), φ(2)(t), . . . , φ(k)(t)), being

φ(x, t) = φ(x0, t) + φ(1)(t)(x− x0) + . . .+ φ(k)(t)(x− x0)
k + . . .

the Taylor series up to order k of the flow φ(x, t) with respect to the variable x at the

point (x0, t). That is, φ(k)(t) =
1

k!

∂k

∂xk0
φ(x0, t). It is clear that the initial conditions are

φ(1)(0) = id and φ(j)(0) = 0 for all j > 1. We stress that, in contrast to some definitions,
we do not consider as variational equation of order k the differential equations for φ(k), but
for (φ(1), φ(2), . . . , φ(k)). For some examples on the use of higher order variational equations
see, e.g., [72].

Although the variational equation VE k is not a linear differential equation, it is in
fact equivalent to a linear differential equation: there exits a linear differential equation
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LVE k with coefficients in the field of meromorphic functions over Γ (resp. Γ) such that
the differential extensions generated by the solutions of VE k coincide with the Picard-
Vessiot extensions of LVE k. Then we can consider the Galois group Gk of VE k, i.e., of
the LVE k, and it is natural to try to generalise Theorem 1 to the higher order variational
equations. So in [57], Chapter 8, the first author conjectured that a necessary condition
for complete integrability of the Hamiltonian system (1) by means of meromorphic first
integrals is that the identity component (Gk)

0 must be commutative for any k ≥ 1. This
paper is devoted to prove this conjecture. This result was announced in [58] and our proof
follows along essentially the same lines than for the first order variational equation in [60].
There is, however, a completely new argument: Artin’s theorem is a central argument.
It replaces Ziglin’s lemma and in fact our proof gives a new proof of the first order case
(Morales-Ramis theorem) without use of Ziglin’s lemma.

We will now state our main results. The precise definitions and complete proofs will
follow later.

As before we consider a non stationary particular solution Γ of (1) (for simplicity we
“identify” the abstract Riemann surface Γ with its immersion ιΓ in M). For each point
m ∈ Γ ⊂ M , there is a natural faithful representation of the Galois group Gk of the k-
th variational equation VE k in the group of k-jets at m of symplectic diffeomorphisms
Diff k

Sp(M,m) fixing m. We will identify the groups Gk and their images.
There are natural group homomorphisms Gk+1 → Gk. These morphisms are surjective

(this follows from differential Galois correspondence). We introduce the inverse limit
Ĝ = lim

←

k

Gk (it is a pro-algebraic group endowed with the Zariski topology). We can

identify it with a subgroup of the group of formal jets at m of symplectic diffeomorphisms
D̂iff Sp(M,m) fixing m. We have surjective morphisms Ĝ→ Gk, for k ∈ N∗.

Proposition 1 Let k ∈ N∗:

(i) we have natural isomorphisms of finite groups

Gk/(Gk)
0 → G1/(G1)

0,

Ĝ/Ĝ0 → G1/(G1)
0.

(ii) Gk (resp. Ĝ) is Zariski connected if and only if G1 is Zariski connected;

(iii) (Gk)
0 (resp. Ĝ0) is solvable if and only if (G1)

0 is solvable. In particular if (G1)
0

is commutative, then (Gk)
0 and Ĝ0 are solvable.

Theorem 2 If the Hamiltonian system (1) is completely integrable with meromorphic first
integrals in a neighbourhood of Γ, not necessarily independent on Γ itself, then:

(i) for each k ∈ N∗ the identity component (Gk)
0 of the Galois group Gk of the k-th

variational equation VE k is commutative;

(ii) for each k ∈ N∗ the Galois group of the equation VE k is virtually commutative;

(iii) for each k ∈ N∗ the Lie algebra Gk of the Galois group Gk of the k-th variational
equation VE k is abelian;

(iv) the identity component Ĝ0 of the group Ĝ is commutative;

(v) the group Ĝ0 is virtually commutative;

(vi) the Lie algebra Ĝ of the group Ĝ0 is abelian.
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We remark that if there is no obstruction to integrability at the first level (the Morales-
Ramis theorem fails), that is, if (G1)

0 is commutative, then we can try to find a group
Gk

0 (k > 1) which is non commutative. However this group will automatically be solvable.
Therefore in such a case, non-integrability in the Hamiltonian sense will correspond to
integrability in Picard-Vessiot sense.

As it happens for Theorem 1, we have variants of our main theorem when we add to
Γ some equilibrium points or points at infinity. In such situations we have the following
result.

Proposition 2 Let k ∈ N∗. Then the k-th variational equation is regular singular if and
only if the first variational equation is regular singular.

If we do not add points to Γ then all the VE k are regular singular (they correspond
to holomorphic connections).

From the preceding facts, we can derive purely topological results on the dynamics of
integrable Hamiltonian systems, extending Ziglin’s results (cf. also [35]).

Let γ be a continuous closed loop of Γ at m ∈ Γ. The flow of the Hamiltonian system
(1) near γ will give a germ ψγ ∈ Diff Sp(M,m) of the group of germs of analytic symplectic
diffeomorphisms. We call it the holonomy of γ. Using the time parametrisation, we can
interpret the time “along γ” as a time translation.

If we deform continuously the closed loop γ at m, then the germ ψγ will not change
and we get an homomorphism of groups (the holonomy representation)

ρ : π1(Γ,m) → Diff Sp(M,m).

(We must take the opposite group law on the fundamental group π1(Γ,m).)
We have natural maps

Diff Sp(M,m) → D̂iff Sp(M,m).

Identifying Diff Sp(M,m) with a subgroup of D̂iff Sp(M,m), we get Im ρ ⊂ Ĝ and the
k-jets of the holonomies, ρk, satisfy Im ρk ⊂ Gk.

The variants when we add to Γ equilibrium points and points at infinity do not change
the holonomy groups, but the Galois groups can change.

Corollary 2 If the Hamiltonian system (1) is completely integrable with meromorphic first
integrals in a neighbourhood of Γ, not necessarily independent on Γ itself, then, denoting
by Im ρ the holonomy group associated to a solution Γ:

(i) Im ρ ⊂ Ĝ is virtually commutative;

(ii) for k ∈ N∗, the groups of k-jets Im ρk ⊂ Gk are virtually commutative;

(iii) Im ρ is Zariski dense in Ĝ, and for k∈N∗, the group Im γk is Zariski dense in Gk.

The statement (iii) remains true when we add to Γ some points if we suppose moreover
that the meromorphic extension of the first variational equation to the extended curve is
regular singular.

As for the case of the first variational equations, we can, in the case of the higher vari-
ational equations, “eliminate” the “trivial solutions”. We can moreover restrict ourselves
to the energy hypersurface M0 containing our solution Γ. Then we get normal variational
equations of higher order. Choosing a small transversal fibration to the flow M1 in M0,
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the corresponding Galois groups are subgroups of k-jets on M1 at m. For these groups we
have an evident version of our main theorem 2.

There is also a topological version: in Corollary 2, we can replace the holonomy group
of the flow by the holonomy group of the corresponding one dimensional foliation, or, in
order to keep the symplectic property, the holonomy of the one-dimensional foliation of
the Hamiltonian system restricted to the energy hypersurface.

3 Jets and variational equations

3.1 Jets and jets groups

We will do an essential use of the jets formalism of C. Ehresmann. We recall here the
basic definitions and results. Our references are [17] (Chapter 1, paragraph 3), [39], [38],
[56] or the paper [74] where the reader can find more details. In general the jets formalism
is described for C∞ real functions. Here we will only use complex holomorphic functions.

As usual, given a manifold M and a point p ∈M , we denote as (M,p) the germ of the
manifold M at p.

Let f, g : (C, 0) → C be two germs of holomorphic functions at the origin and k ∈ N.
We suppose that f(0) = g(0). We will say that f and g have the same k-jet at 0 if
f (j)(0) = g(j)(0) for j ≤ k.

Now let M , N be complex analytic manifolds, and let p ∈M , q ∈ N . Let f : M → N
and g : M → N be holomorphic maps of M into N . We will say that f and g have the
same k-jet at p whenever

– f(p) = g(p) = q,

– for all p-based parametrised analytic curves: v : (C, 0) → (M,p) and all q-based
complex valued holomorphic functions u : N → C, the holomorphic maps u ◦ f ◦ v
and u ◦ g ◦ v have the same k-jet. It is an equivalence relation and the corresponding
equivalence class will be denoted by jkp (f). The point p is the source of jkp (f) and
the point q is its target.

We need the signification of the preceding definition in local coordinates.
Let U be an open neighbourhood of 0 in Cm. Let f, g be two differentiable maps

f, g : U → Cn, with f(0) = g(0) = 0. In coordinates x = (x1, . . . , xm), f(x) =
(f1(x), . . . , fn(x)), g(x) = (g1(x), . . . , gn(x)). We will use the classical notations for partial
derivatives: for a multi-index µ = (µ1, . . . , µm), Dµ

x = Dµ = ∂µ1

∂x
µ1
1

. . . ∂
µm

∂xµm
m

. Then f and g

have the same k-jet at the origin if and only if

Dµ
xfi(0) = Dµ

xgi(0), 1 ≤ i ≤ n, | µ |=
m∑

i=1

µi ≤ k.

Let Jkp,q(M,N) denote the set of all k-jets of maps from M to N of source p and target
q. We define the set

Jk(M,N) =
⋃

p∈M,q∈N

Jkp,q(M,N).

We have the classical source and target projections

α : Jk(M,N) →M, β : Jk(M,N) → N,

defined by α(jkp (f)) = p and β(jkp (f)) = f(p) = q.
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Let now {Ui}i∈I and {Vj}j∈J be, respectively, open coordinates coverings of M and
N . We get an open covering {Wij}i∈I,j∈J of Jk(M,N):

Wij = {jkp (f) | α(jkp (f)) ∈ Ui, β(jkp (f)) ∈ Vj}.

If {x1, . . . xm} and {y1, . . . yn} are respectively the coordinate functions on Ui and Vj,
we may define coordinates functions (called natural coordinates) on Wij by

(xi(p), yj(q), D
µ
x(yj ◦ f)(p)), 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤| µ |≤ k.

Holomorphic changes of local coordinates in Ui and Vj will induce an holomorphic
change of coordinates in Wij. Hence we have a complex analytic structure on J k(M,N).
If dim M = m and dim N = n, then

dim Jk(M,N) = m+ n

(
m+ k
k

)
.

We have dim Jk(M,C) := νm,k = m +

(
m+ k
k

)
. If m is already fixed, we set

νm,k = νk.
Examples: The cotangent bundle T ∗(M) is identified with J 1(M,C) and the tangent
bundle T (M) is identified with J 1(C,M).

For r ≤ k there is a natural map πk,r : Jkp,q(M,N) → J rp,q(M,N).
Let M1,M2,M3 be three complex analytic manifolds. Let pi ∈ Mi (i = 1, 2, 3). The

composition of applications induces an algebraic map

Jkp2,p3(M2,M3) × Jkp1,p2(M1,M2) → Jkp1,p3(M1,M3).

This follows from chain’s rule, which expresses the partial derivatives of a composition
map g ◦ f as polynomials in the partial derivatives of g and those of f .

In the special case M1 = M2 = M3 = M , p1 = p2 = p3 = p, this composition map
induces a product in Jkp,p(M,M). We will denote by Diff k(M,p) the subset of Jkp,p(M,M)

of invertible elements. There is a natural isomorphism Diff 1(M,p) ' GL(Tp(M)). In
particular, Diff 1(Cm, 0) ' GL(m;C).

We set Jkp,0(M,C) = Jk(M,p). The group Diff k(M,p) acts linearly on Jk(M,p) by
composition on the right. The corresponding representation is faithful. In particular we get
a linear action of Diff k(Cm, 0) on Jk(Cm, 0) and a faithful representation of Diff k(Cm, 0)
(or more precisely of the opposite group) into GL(J k(Cm, 0).

Using local coordinates we obtain the obvious identifications J k(M,p) ' Jk(Cm, 0),
Jkp,p(M,M) ' Jk0,0(C

m,Cm), Diff k(M,p) ' Diff k(Cm, 0).

The C-algebra structure of C gives a C-algebra structure on J k(Cm, 0) and the maps
πk,r are surjective homomorphisms of C-algebras. The linear action of Diff k(Cm, 0) on
Jk(Cm, 0) gives an automorphism of C-algebras of J k(Cm, 0). More precisely, we have
the following result.

Proposition 3 Let Φ be a linear endomorphism of J k(Cm, 0). The following conditions
are equivalent:

(i) Φ is an homomorphism of C-algebras.

(ii) There exists φ ∈ Jk0,0(C
m,Cm) such that Φ(Y ) = Y ◦ φ for all Y ∈ J k(Cm, 0).
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Moreover if these conditions are satisfied, then Φ is an automorphism of C-algebras if and
only if φ ∈ Diff k(Cm, 0)

Proof. The implication (ii) ⇒ (i) is trivial. It remains to prove (i) ⇒ (ii). Let x1, . . . , xm
be the coordinate functions in Cm. We denote by the same letters the corresponding jets
in Jk(Cm, 0). Then we set φi = Φ(xi).

Let Y ∈ Jk(Cm, 0). We can write Y as an element of C[x1, . . . , xm]: Y =P (x1, . . . , xm).
Then Φ(Y ) = Φ(P (x1, . . . , xm)) = P (Φ(x1), . . . ,Φ(xm)) = P (φ1, . . . , φm) = P ◦φ = Y ◦φ.
2

The group Diff k(Cm, 0) is a linear complex algebraic group. We have an exact sequence
of algebraic groups:

{id} → Ik(Cm, 0) → Diff k(Cm, 0)
πk,1
−→ GL(m;C) → {id},

where Ik(Cm, 0) is the subgroup of Diff k(Cm, 0) of germs tangent to identity. Using
coordinates it is easy to build a section of the homomorphism πk,1. Therefore Diff k(Cm, 0)
is a semi-direct product of GL(m;C) by the unipotent group I k(Cm, 0). More precisely we
have exact sequences of algebraic groups

{id} → Ik+1,k(Cm, 0) → Ik+1(Cm, 0) → Ik(Cm, 0) → {id},

being Ik+1,k(Cm, 0) the vector group in Ik+1(Cm, 0) of elements with only non-trivial
contributions of order k + 1, i.e., Ik+1(Cm, 0) is the semi-direct product of Ik(Cm, 0) by
the additive group of a finite dimensional vector space. Therefore we get Diff k(Cm, 0) from
GL(m;C) by a sequence of semi-direct products with additive groups of finite dimensional
vector spaces [38, 74].

We need some symplectic variations. We denote (q, p) = (q1, . . . , qn, p1, . . . , pn) ∈ C2n,

and we set Ω = dq ∧ dp =
n∑

i=1

dqi ∧ dpi. We will denote by Diff k
Sp(C

2n, 0) the subgroup

of jets of diffeomorphisms φ such that φ ∗ Ω = Ω (in the evident sense). This subgroup is
clearly an algebraic subgroup. It is easy to check that, for k ≥ r, the homomorphisms of
group πk,r induces a surjective homomorphism of groups

πk,r : Diff k
Sp(C

2n, 0) → Diff r
Sp(C

2n, 0).

We easily see that Diff k
Sp(C

2n, 0) is the semi-direct product of Sp(2n;C) by a unipotent

group. More precisely we get Diff k
Sp(C

2n, 0) from Sp(2n;C) by a sequence of semi-direct
products with additive groups of finite dimensional vector spaces.

We set σn,k = σk = dim Diff k
Sp(C

2n, 0).
It is easy to extend the preceding definitions when we replace (C2n, 0) by a germ

(M,m) = ((M,Ω),m) of complex symplectic manifold. We shall denote by Diff k
Sp(M,m)

the subgroup of germs of symplectic diffeomorphisms in Diff (M,m), etc.

3.2 Some properties of Poisson algebras

In this section we will expose some properties of the Poisson algebras of germs of meromor-
phic functions and of formal meromorphic functions at the origin of a complex symplectic
vector space.
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Let E be a complex symplectic vector space of complex dimension 2n. The symplectic
product is denoted by ω : (v, w) 7→ ω(v, w). Using the unique 2-form Ω invariant by
translation such that “Ω(0) = ω” over E, we will consider E as a symplectic manifold.
We can choose symplectic coordinates (q, p) over E and then Ω =

∑
i=1,...n dpi ∧ dqi.

We will consider the C-algebras of polynomials, convergent series, formal series over
E: C[E], C{E},C[[E]], and the corresponding fraction fields C(E), C({E}),C((E)). On
all these algebras we have a Poisson product

{f, g} = Ω(df ], dg]). (5)

We consider the spaces of germs at the origin of holomorphic (resp. meromorphic, for-
mal, formal-meromorphic) vector fields X =

∑
i ai

∂
∂qi

+
∑
i bi

∂
∂pi
, ai, bi ∈ C{E} (resp.

C({E}),C[[E]],C((E))).
The corresponding complex vector spaces are endowed with the Lie algebra structures

defined by the usual bracket of vector fields. A germ of a holomorphic (resp. ...) vector
field X is said to be Hamiltonian if there exists a germ of a holomorphic (resp. ...) function
f such that

X = df ], (6)

Then we will denote X = Xf .
The following results are well known [1] (3.36 proposition, page 189).

Proposition 4 For a germ of holomorphic (resp. ...) vector field X the following condi-
tions are equivalent:

(i) X is Hamiltonian;

(ii) d(X[) = 0;

(iii) LXΩ = 0;

(iv) (exp X)∗Ω = Ω.

Proposition 5 The germs of holomorphic (resp. ...) Hamiltonian vector fields are a Lie
subalgebra by defining

[Xf , Xg] = X{f,g}.

Let ((M,Ω),m) be a germ of complex analytic symplectic manifold (dimCM = 2n).
We recall that the natural maps

Diff k+1(M,m) → Diff k(M,m),

Diff k+1
Sp (M,m) → Diff k

Sp(M,m)

are surjective morphisms of algebraic groups.
By inverse limits we get the pro-algebraic group D̂iff (M,m) = lim

←

k

Diff k(M,m) and the

pro-algebraic subgroup D̂iff Sp(M,m) = lim
←

k

Diff k
Sp(M,m). These pro-algebraic groups are

endowed with the Zariski topology. This topology is by definition the direct limit topology.
We have surjective morphisms

D̂iff (M,m) → Diff k(M,m),

10



D̂iff Sp(M,m) → Diff k
Sp(M,m).

A k-jet atm ∈M of a vector fieldX vanishing at m acts linearly on the space J k(M,m)
of k-jets of functions by truncation of the Lie derivative LX . Then exp X = exp LX can
be interpreted as an element of Diff k(M,m). It is easy to check that, using this remark,
we can identify the space Lk(M,m) of k-jets of vector fields vanishing at m with the Lie
algebra of the algebraic group Diff k(M,m). Then L̂(M,m) = lim

←

k

Lk(M,m) is identified

with the Lie algebra of the pro-algebraic group D̂iff (M,m). Be careful, the diffeomorphism
exp X̂ can be analytic, that is exp X̂ ∈ Diff (M,m), even when X̂ is divergent.

Similarly we can identify the space Lksp(M,m) of k-jets of Hamiltonian vector fields van-

ishing at m with the Lie algebra of the algebraic group Diff k
Sp(M,m). Then L̂sp(M,m) =

lim
←

k

Lksp(M,m) is identified with the Lie algebra of the pro-algebraic group D̂iff Sp(M,m).

(There is a k-truncated version of Proposition 4. We leave the details to the reader.)
It is possible to define Poisson products on spaces of germs of k-jets J k(M,m):

Jk(M,m) × Jk(M,m) → Jk−1(M,m), k > 0,

Jk,2(M,m) × Jk,2(M,m) → Jk,2(M,m), k > 1,

where Jk,2(M,m) is the space of jets vanishing at order one. We will say that an endomor-
phism of Jk(M,m) conserves the Poisson product if it conserves these Poisson products.

There is a symplectic version of Proposition 3.

Proposition 6 Let Φ be a linear endomorphism of J k(E, 0). The following conditions
are equivalent:

(i) Φ is an homomorphism of C-algebras and preserves the Poisson product;

(ii) There exists φ ∈ JkSp(E,E) such that Φ(Y ) = Y ◦ φ for all Y ∈ J k(E, 0).

Moreover if these conditions are satisfied, then Φ is an automorphism of C-algebras if and
only if φ ∈ Diff k

Sp(E, 0).

We will state and prove now the main result of this section. It is the central tool in
our obstruction theorem. As the result is local we can choose Darboux coordinates in a
neighbourhood of m in M , and it is sufficient to study the case (M,m) = (E, 0). We will
denote Diff k(E, 0), . . . , the corresponding objects.

Let f1, . . . , f` be ` germs of meromorphic functions (resp. formal meromorphic func-
tions) at m ∈M . We will say that they are functionally independent near m if the germ
at m of df1∧. . .∧df` is not identically zero. In the meromorphic case we allow a singularity
at m for some fi’s and we allow also that, even if the fi’s are holomorphic at m, then
df1 ∧ . . . ∧ df` can vanish at m.

It is easy to prove the following result.

Lemma 1 Let f1, . . . , f` be ` germs of meromorphic functions (resp. formal meromorphic
functions) at m ∈ M which are functionally independent near m. Let α be a germ of a
meromorphic one form (resp. a formal meromorphic one form) at m such that α∧df1∧. . .∧
df` ≡ 0. Then there exists germs of meromorphic functions (resp. formal meromorphic
functions) θ1, . . . , θ` such that α =

∑
i=1,...,` θidfi.

11



The central result of this section is the following theorem. It will be the key of our
main result. It is also the key of the analogue result for the case of the non-linear Galois
theory, due to the second author (cf. Section 5 below).

Theorem 3 Let E be a complex symplectic vector space of complex dimension 2n. Let
f1, . . . , fn be n germs at the origin of E of meromorphic functions, functionally indepen-
dent near the origin (not necessarily at the origin itself). We suppose that these germs
f1, . . . , fn are in involution. Let L̂ be a Lie algebra of Hamiltonian formal vector fields at
the origin of E. We suppose that f1, . . . , fn are invariant by L̂. Then the Lie algebra L̂ is
abelian.

This theorem is a corollary of the following. (A particular case of Theorem 3 was
suggested some years ago to the second author by L. Gavrilov in relation with Morales-
Ramis theorem.)

Theorem 4 Let E be a complex symplectic vector space of complex dimension 2n. Let
f1, . . . , fn be n germs at the origin of E of meromorphic functions, functionally indepen-
dent near the origin (not necessarily at the origin itself). We suppose that these germs
f1, . . . , fn are in involution. Let A be the C-subalgebra of the field C((E)) generated by
f1, . . . , fn. Then

(i) A is involutive,

(ii) the orthogonal A⊥ of A in C((E)) is an involutive C-subalgebra of C((E)).

Proof. We start with a preliminary result.

Lemma 2 In the conditions of Theorem 4, let ϕ̂ ∈ A⊥ ⊂ C((E)). Then ϕ̂, f1, . . . , fn are
functionally dependent near the origin, that is

dϕ̂ ∧ df1 ∧ . . . ∧ dfn ≡ 0.

We will prove a slightly more general version.

Lemma 3 In the conditions of Theorem 4, let α̂ be a meromorphic (resp. formal mero-
morphic) one form. We set X = α̂[. We suppose that dfi(X) = ιXfi

α̂ = α̂(Xfi
) =

ω(Xfi
, X) = 0 for i = 1, . . . , n. Then

α̂ ∧ df1 ∧ . . . ∧ dfn ≡ 0.

Proof.
First case. We suppose that α̂ = α is meromorphic. Then, in each open neighbourhood of 0
in E, there exists a point x0 such that f1, . . . , fn and α are holomorphic at x0 and such that
df1∧. . .∧dfn does not vanish at x0. These properties remain true in an open neighbourhood
U of x0. Then, for x1 ∈ U , the set V = Vx1

= {x ∈ U | f1(x) = f1(x1), . . . , fn(x) = fn(x1)}
is an analytic submanifold of complex dimension n of U . We have dfi(X) = 0, i = 1, . . . , n.
Therefore the analytic vector field X is tangent to V . We have also dfi(Xfj

) = 0, i, j =
1, . . . , n, and the analytic vector fields Xfi

, i = 1, . . . , n, are also tangent to V . As the

12



vectors Xf1(x), . . . , Xf1(x) are independent at each point of x ∈ U , they generate the
tangent space to V at each point of V . We get a relation X = θ1Xf1 + . . . + θnXfn

over U , where the θi’s are holomorphic. The relation α = θ1df1 + . . . + θndfn follows and
α ∧ df1 ∧ . . . ∧ dfn ≡ 0 over U . Then the similar relation holds for the germs at the origin
by analytic continuation.

Remark. If we suppose that the one form α is closed, then {dfj, α}
] := [Xfj

, X] = 0.
Now we consider the previous relation X = θ1Xf1 + . . .+ θnXfn

over U . We have

[Xfj
, X] =

∑

i=1,...,n

(LXfj
θi)Xfi

= 0, j = 1, . . . , n.

Therefore LXfj
θi = 0, i, j = 1, . . . , n and the analytic functions θi, i = 1, . . . , n are

constant on each manifold Vx1
, (x1 ∈ U).

Second case. We suppose that α̂ is a formal one form (without singularity at the origin).
We set α̂ =

∑
i yidpi +

∑
i zidqi. Then we can interpret the system of equations

α̂(Xfi
) = 0, i = 1, . . . n, (7)

as a linear analytic (in the variable x = (q1, . . . , qn, p1, . . . , pn)) system of equations in the
2n unknowns (y, z).

Let M̂ ⊂ C[[E]] be the maximal ideal, that is, the formal series in E without zero-
order term. Then [7], for every µ ∈ N∗, there exists a germ βµ =

∑
i ȳidpi +

∑
i z̄idqi of

analytic 1-forms such that (ȳ, z̄) satisfies the same analytic system, i.e., βµ satisfies (7):

βµ(Xfi
) = 0, i = 1, . . . n, (8)

and such that
α̂ = βµ (mod M̂µ).

Using the result for the first case, we get

βµ ∧ df1 ∧ . . . ∧ dfn ≡ 0

for every µ ∈ N∗. The formal relation

α̂ ∧ df1 ∧ . . . ∧ dfn ≡ 0

follows easily.

General case. We suppose that α̂ is a formal meromorphic one form. Then there exists
a formal one form ζ̂ and a non zero formal power series ĝ ∈ C[[E]] such that ĝα̂ = ζ̂.
Then ζ̂ satisfies a system similar to (7). We can apply the result of the second case to ζ̂:
ζ̂ ∧df1∧ . . .∧dfn = ĝα̂∧df1∧ . . .∧dfn ≡ 0. The result for α̂ follows: α̂∧df1∧ . . .∧dfn ≡ 0.

This ends the proof of the lemmas and we can go back to the proof of Theorem 4. Let
ϕ̂, ψ̂ ∈ A⊥. From Lemmas 1 and 2 we get

dϕ̂ =
∑

i=1,...,n

θ̂idfi,

with θ̂i ∈ C((E)). Therefore

{ϕ̂, ψ̂} = dϕ̂(Xψ̂) =
∑

i=1,...,n

θ̂idfi(Xψ̂) =
∑

i=1,...,n

θ̂i{fi, ψ̂} = 0.

13



This ends the proof of Theorem 4.

It remains to prove Theorem 3. Let X ∈ L̂. By definition we have LX(fi) = 0
(i = 1, . . . , n). There exists a formal power series expansion ĝ ∈ C[[E]] such that X [ = dĝ
(the formal field X is Hamiltonian). Then, with the notations of Theorem 3, we have
ĝ ∈ A⊥. The result follows easily. 2

3.3 Variational equations. Linearised variational equations

We will briefly recall the definition of the higher-order variational equations VE k, k > 1.
First we shall use local coordinates, giving the equations in a compact form. It is clear that
these equations are non-linear. However if we start from the solutions of the equations
of order ≤ k, then it is possible to solve the equation of order k + 1 by a quadrature.
But it is not a priori evident that the theory of Picard-Vessiot extensions is applicable
to the higher-order variational equations. Therefore it is necessary, for our purpose, to
introduce an equivalent linearised version of these equations LVE k; roughly speaking this
is related to the fact that the jet groups are linear groups. The first author described
in [57] how to linearise the second and third variational equations ([57], Section 8.3).
Here this will be done in a systematic way. First a local version of this linearisation
using coordinates is introduced. Later on we will use a geometric interpretation of the
corresponding computations (based upon a duality trick) to derive a global version.

The global geometric version is indispensable for the proof. The coordinate version
is not needed, strictly speaking, but it can be useful for explicit computations in the
applications (in particular in order to use computer algebra or to do numerical checks using
the variational equations) [48]. See also Appendix B. What follows will ensure users of our
main theorem that it is in fact possible to perform these computations (without explicit
need of the linearised variational equations) remaining automatically into a convenient
Picard-Vessiot extension (depending on the order k) of a “field of rationality”. Therefore,
even if our main result seems abstract, one can admit and use it very easily for some
practical application (forgetting about the proofs).

Let
ẋ = X(x) (9)

be an analytic differential equation defined by an analytic vector field X over a complex
connected manifold M of complex dimension m (m = 2n in the symplectic case).

To a non stationary solution φt(x0) := φ(x0, t), we associate an immersion ι : Γ →M ,
Γ being a connected Riemann surface. Consider, first, the local situation. Then, we can
identify M with an open subset of Cm, Γ with an open subset of C and suppose that ι
is an embedding. The initial data are t0 = 0 ∈ Γ and x0 = (x0,1, . . . , x0,m) ∈ Cm. The
components of the solution will be denoted as φ = (φ1, . . . , φm). We can assume that this
solution is maximal with the initial data, and it is defined for initial y0 close enough to
x0.

We consider the germ of the flow φ along the graph ∆ = {(t, ι(t) | t ∈ Γ} in Γ ×M .
We can interpret it as a family of germs of diffeomorphisms φt : (Cm, x0) → (Cm, φt(x0)).
Then we have the convergent power series

φt(y0) =
∑

k≥0

φ
(k)
t (x0)(y0 − x0)

k, (10)

where we introduce φ
(0)
t (x0) := φt(x0) and φ

(k)
t (x0) := Dk

x0
φt/k! .
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Our immediate goal is to obtain the equations for the derivatives of φt with respect to

x0 and, therefore, for φ
(k)
t (x0). Working first in coordinates, let Xi be the components of

X and let us introduce the notation

Ds
i1,...,isφj =

∂sφj
∂x0,i1 . . . ∂x0,is

, Dr
k1,...,kr

Xi =
∂rXi

∂xk1 . . . ∂xkr

.

It will be also useful to introduce the power series expansion for X

X(y) =
∑

k≥0

X(k)(x)(y − x)k,

with X(0)(x) := X(x), analogous to what was done before. It is clear that φ
(k)
t (x0) and

X(k)(x) are k-linear symmetric maps.
Then, by successive derivation of (9) with respect to the components of x0 and exchange

of the order of the derivations, we obtain the desired equations

d
dtDkφj = DiXjDkφi,

d
dtD

2
k1,k2

φj = DiXjD
2
k1,k2

φi +D2
i1,i2XjDk1φi1Dk2φi2 ,

d
dtD

3
k1,k2,k3

φj = DiXjD
3
k1,k2,k3

φi +D2
i1,i2

XjD
2
k1,k2

φi1Dk3φi2+

D2
i1,i2XjD

2
k1,k3

φi1Dk2φi2 +D2
i1,i2XjDk1φi1D

2
k2,k3

φi2+

D3
i1,i2,i3XjDk1φi1Dk2φi2Dk3φi3 ,

. . . = . . . ,

(11)

where, as usual, summation is done with respect to repeated indices. The first line in (11)
gives the first variational equations VE 1, first two (resp. three) lines give the second (resp.
third) variational equations VE 2 (resp. VE 3), etc. It is possible to write these equations

in a general, more compact form, by making use of φ
(k)
t and X(k):

φ̇
(1)
t = X(1)φ

(1)
t ,

φ̇
(2)
t = X(1)φ

(2)
t +X(2)(φ

(1)
t )2,

φ̇
(3)
t = X(1)φ

(3)
t + 2X(2)(φ

(2)
t , φ

(1)
t ) +X(3)(φ

(1)
t )3,

. . . = . . . ,

(12)

or, in general,

φ̇
(k)
t =

∑ j!

m1! . . . ms!
X(j)

(
(φ

(i1)
t )m1 , (φ

(i2)
t )m2 , . . . , (φ

(is)
t )ms

)
, k ≥ 1, (13)

where the X(k) are evaluated at φt(x0), the symmetry of the multilinear maps has been
used and the composition of multilinear maps has the obvious meaning: a term in the
right hand side of (13) acts on a string of k vectors (u1, . . . , uk) as

X(j)
(
φ

(i1)
t (u1, . . . , ui1), . . . , φ

(is)
t (uk−is+1, . . . , uk)

)
.

In (13) the summations are carried out for

1 ≤ j ≤ k, i1 > i2 > . . . > is,
s∑

r=1

mr = j,
s∑

r=1

mrir = k.
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The obvious initial conditions for φ
(k)
t (x0) are φ

(1)
t (x0) = id and φ

(k)
t (x0) = 0 for k > 1.

The equations for VE 1 are linear homogeneous, while for the remaining VE k they are non-

homogeneous, the non-linear part depending on the previous φ
(j)
t , j < k, as it is evident

looking at (11) or (12). The linear part has the same form for all the equations. Hence,
as said before, the solutions can be obtained in a recurrent way by quadrature using, for
instance, the method of variation of the constants. More concretely: if we suppose that

we know a solution (φ
(1)
t , . . . , φ

(k)
t ) of VE k, then we can write the equation for the new

terms which appear in VE k+1:

φ̇
(k+1)
t (x0) = X(1)(φt(x0))φ

(k+1)
t (x0) + P (φ

(1)
t , . . . , φ

(k)
t ). (14)

In equation (14) P denotes polynomial terms in the components of its arguments. The
coefficients depend on t through X (j)(φt(x0)).

The problem is now to find a system of linear equations for (φ
(1)
t (x0), . . . , φ

(k)
t (x0))

equivalent to the system of higher variational equations. It is enough to write the equations
satisfied by the monomials appearing in P . This is the content of next lemma. It is similar
to typical procedures in automatic differentiation and Taylor integration routines.

Lemma 4 Let z ∈ Cq. Assume the components (z1, . . . , zq) of z satisfy linear homoge-
neous differential equations żi =

∑q
j=1 aij(t)zj . Then the monomials zk of order |k| satisfy

also a system of linear homogeneous differential equations.

Proof. Let k = (k1, . . . , kq) a multiindex of non-negative integers. Then

d

dt
zk =

q∑

j=1


kjz

kj−1
j

q∑

r=1

ajrzr

q∏

i=1,i6=j

zki

i


 , (15)

the right hand side being also homogeneous of degree |k| in z. 2

We observe that the above lemma is nothing else than the pull back to the symmetric
fibre bundle, Sk(Cq), of the connection associated to the linear differential equations.

In our application to linearise the VE k it is clear that the ajr = ajr(t) depend on
t through the components of the X (i)(φt(x0)) for 1 ≤ i ≤ k. We realize that after the
last equation corresponding to VE k we can supplement the system of linear differential

equations with the equations for the components of
(
(φ

(i1)
t )m1 , (φ

(i2)
t )m2 , . . . , (φ

(is)
t )ms

)
.

More concretely, after the first, second, . . . , equations in (12) we must add equations of
the form

d
dt (φ

(1)
t )2 = L2(φ

(1)
t )2,

d
dt (φ

(2)
t , φ

(1)
t ) = L3,1(φ

(2)
t , φ

(1)
t ), d

dt (φ
(1)
t )3 = L3,2(φ

(1)
t )3,

. . . ,

(16)

where the coefficients in the L’s are obtained using (15). In this way we obtain recurrently
the desired linearised version LVE k.

It is easy to reformulate the construction of this linearisation in matrix form using a
composition by an arbitrary scalar function (or jet) at the target.

At this point we need to consider the action of the flow on jets of functions.
We set z = φt(y0) − φt(x0). Let f : (M,φt(x0)) → (C, 0) be a germ of holomorphic

function. We write its power series expansion:

f(z) = f (1)z + f (2)(z)2 + . . . . (17)
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We will suppose that, for each k ∈ N∗, the multilinear symmetric map f (k) is independent
of t. (Be careful, the source of the infinite jet of f depends on t : among the natural
coordinates of this jet, only the source coordinates φt(x0) depend on t.)

Then f 7→f◦φt is a linear map. We set f◦φt=ϕt(f
(1), f (2), . . .). Again (f (1), f (2), . . .) 7→

ϕt(f
(1), f (2), . . .) is a linear map.

For each fixed value of (f (1), f (2), . . .) (independent of t), we can write a differential
system (of infinite order) satisfied by ϕt(f

(1), f (2), . . .). Then ϕt will appear as a fun-
damental solution of this linear system. Using infinite “matrix” form, we will obtain a
linearisation LVE ω of the higher variational equations all together. Finally we will get,
for each k, the linearisation LVE k of VE k by truncation, i.e., replacing (f (1), f (2), . . .) by
the k-jet (f (1), f (2), . . . , f (k)).

Then (f (1), f (2), . . .) 7→ ϕt(f
(1), f (2), . . .) gives in matrix form:

F 7→ FΦt

where F is the infinite vector which contains all the components of the f (k) (supplemented
at every order by the required products of lower order terms).

We see that ϕt → Φt is a faithful representation of Diff (Cm, 0) in a group of invertible
infinite dimensional matrices.

We have d
dt(f ◦ φt) = df(X) ◦ φt. In matrix form, the infinite matrix Φt satisfies a

linear differential system
Φ̇t = AtΦt, (18)

where the infinite matrix At collects all the coefficients appearing in (11) and (16).
The LVE k are obtained by truncation of triangular matrices:

˙jkΦ = jkA jkΦ.

The map jkϕ→ jkΦ is a faithful representation of Diff k(Cm, 0)in a group of invertible
upper triangular matrices. It follows hat jkA takes its value in a corresponding Lie algebra,
which is a faithful representation of J k(Cm, 0).

Proposition 7 The VEk and the LVEk are equivalent. More precisely, we can associate
bijectively the solution t 7→ φt of the VEk such that φ0 = id and the fundamental solution
of the LVEk which is equal to the identity for t = 0.

Proof. It follows immediately from the preceding considerations. 2

We have now the following problem: preceding computations rely on a coordinate
choice, but in order to apply differential Galois theory we need a global geometric for-
mulation in connections terms. Therefore we will give now such a geometric intrinsic
formulation. The fundamental idea is to use duality. The starting point is to replace the
family of diffeomorphisms φt : (Cm, x0) → (Cm, φt(x0)) by the family of inverse diffeo-
morphisms ψt = φ−1

t : (Cm, φt(x0)) → (Cm, x0). The key point is that now the targets
are independent of t. We have φ0 = id, ψ0 = id.

We denote by f a germ of holomorphic function at x0 on M , vanishing at x0. The
map f 7→ f ◦ ψt is linear. We write it in matrix form

F 7→ FΨt.

We have clearly Ψ0 = Φ0 = I and ΦtΨt = I. By derivation, we get

Ψ̇t = −Φ−1
t Φ̇tΦ

−1
t
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and, using (18):
Ψ̇t = −ΨtAt

and by transposition
˙tΨt = (−tAt)

tΨt. (19)

Therefore tΨt is the “fundamental solution” of the “dual” differential system of (18).
By truncation we get a true duality: jk(tΨt) is the fundamental solution of the dual

system of ˙jkΦt = jkAt j
kΦt. We denote this dual system by LVE ∗

k.
Now we will see that these dual systems are associated to natural connections on fibre

bundles admitting the groups Diff k(Cm, 0) as structure groups.
A connection on a fibre bundle is the “same thing” that a parallel transport on the

fibres and we will see that in our situation we have a natural parallel transport.
Let M be a connected complex manifold of dimension m. Let X be a holomorphic

vector field on M . We choose a non stationary solution ι : Γ → M , Γ being a connected
Riemann surface and ι an embedding. Let ∆ ∈ Γ ×M be the graph of ι.

Using ∆, we can interpret the collection of germs of analytic manifold {(M, ξ) | ξ =
ι(τ), τ ∈ Γ} along ι(Γ) as a non-linear locally trivial fibre bundle on Γ, the fibres being
isomorphic to (Cm, 0) and the structure group being Diff (Cm, 0). Then we can see the
flow of (9) along ι(Γ) as a parallel transport along this fibre bundle. Now if we replace
the collection of germs of the analytic manifold {(M, ξ) | ξ = ι(τ), τ ∈ Γ} by the “dual”
collection of germs of holomorphic functions {Oξ | ξ = ι(τ), τ ∈ Γ}, we get a locally trivial
infinite dimensional holomorphic linear fibre bundle JωΓM = ι∗JωM on Γ, the fibres being
isomorphic to the complex vector spaces (C{x1, . . . , xm}, 0) and the structure group being
Diff (Cm, 0). The flow acting “dually” on the functions gives a linear parallel transport
on this bundle corresponding to a “connection” ∇ω. Replacing the spaces Oξ of germs
of holomorphic functions by the quotient spaces of k-jets J k(M, ξ), we get locally trivial
finite dimensional holomorphic linear fibre bundles on Γ: ι∗JkM = JkΓM . By quotients of
our parallel transport we get holomorphic parallel transports on the bundles J kΓM . These
parallel transports define holomorphic connections ∇k which are quotients of ∇ω. We will
see that (JkΓM,∇k) corresponds to LVE ∗

k if we introduce local coordinates.
It is possible to justify the preceding considerations using Grothendieck’s definition of

infinitesimal calculus [31] (infinitesimal neighbourhoods of the diagonal). Here we shall
do the work explicitly and by elementary ways.

We will built each connection locally and after that check that our constructions glue
together to give global connections. Hence we can suppose that Γ is a simply connected
open subset of C. Then for each non vanishing holomorphic vector field δ, we will define
the covariant derivative ∇δ associated to ∇. It is sufficient to do that for the vector field
δ = d

dt , t being a local coordinate.

We introduce the vector field X̃ = d
dt +X on Γ ×M . The graph ∆ is invariant by X̃.

By definition the horizontal sections of ∇ω are the first integrals of X̃. More precisely

Definition 1 Let t0, t1 ∈ Γ and be f0, f1 two germs of holomorphic functions on M ,
respectively at the points ξ0 = ι(t0) and ξ1 = ι(t1). We will say that we get f1 from f0

by parallel transport (from t0 to t1), if there exists a first integral f : (Γ ×M,∆) → C of
X̃ holomorphic on an open neighbourhood of ∆ in Γ ×M such that f(t0, ξ) = f0(ξ) and
f(t1, ξ) = f1(ξ). In this definition we allow to restrict Γ, this open set remaining simply
connected and t0, t1 remaining fixed.
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The function f is a first integral of X̃ if and only if

L
X̃
f(t, ξ) = Ld/dtf(t, ξ) + LXf(t, ξ) = 0. (20)

This is equivalent to the following condition:

ḟ(t, ξ) :=
∂

∂t
f(t, ξ) = −

∂

∂ξ
f(t, ξ)X(ξ). (21)

Lemma 5 Let f : (Γ ×M,∆) → C be an holomorphic function on a neighbourhood of ∆
in Γ ×M . Let t0 ∈ Γ be a fixed point. The following conditions are equivalent:

(i) ft (where ft(ξ)) = f(t, ξ)) comes by parallel transport from ft0 for every t ∈ Γ.

(ii) There exists a unique family of germs of holomorphic diffeomorphisms φt : (M, ι(t0))
→ (M, ι(t)) such that ft ◦ φt = ft0 , for t ∈ Γ.

Moreover, if these conditions are satisfied, then:

(a) φt0(ξ) = φ(t0, ξ) = ξ (i.e., φt0 = id);

(b) φ̇t(ξ) = ∂
∂tφ(t, ξ) = X(φ(t, ξ)), that is φ is the flow of the field X, with initial

conditions (t0, ξ0).

Proof. The proof is clear: conditions (i) and (ii) are obviously equivalent to say that
f(t, x) is constant along the flow curves. Later on we will need a similar lemma for k-jets.
So we give another proof that we will use later in the jets case.

We suppose that (ii) is satisfied: ft ◦ φt = ft0 . Then, by t–derivation we get:

ḟ(t, φ(t, ξ)) +Dxf(t, φ(t, ξ))φ̇(t, ξ) = ḟ(t, φ(t, ξ)) +Dxf(t, φ(ξ))X(φ(ξ)) = 0. (22)

We conclude using equivalence of (i) and (21). 2

Let now jkft(ξ) = jkf(t, ξ) be an holomorphic family of k-jets along ∆ in Γ ×M (an
holomorphic function on the k-infinitesimal neighbourhood ∆(k) of ∆ in Γ ×M). For a
fixed t consider jkft ∈ Jk(M, ι(t)). We will say that it is a first integral of X̃ if and only if

(jkf )̇ (t, ξ) =
∂

∂t
jkf(t, ξ) = −

∂

∂ξ
jkf(t, ξ)X(ξ), (23)

in the evident jet sense.
If we interpret jkf as an holomorphic section of J kΓM , (23) is a holomorphic differential

system
Ẏ = jkAtY. (24)

The matrix function t 7→ At takes its value in Lk(Cm, 0). Therefore (24) corresponds to
a connection with structure group Diff k(Cm, 0). Moreover, if we are in a symplectic situ-
ation (M symplectic, m = 2n, X Hamiltonian), then At ∈ Lksp(C

2n, 0) and the structure

group is Diff k
Sp(C

2n, 0).

Now we can give an analog of Lemma 5 for k-jets.

Lemma 6 Let jkft(ξ) = jkf(t, ξ) be an holomorphic family of k-jets along ∆ in Γ ×M .
Let t0 ∈ Γ be a fixed point. The following conditions are equivalent:

(i) jkf(t, ξ) is a first integral of X̃ (in the k-jet sense).

(ii) There exists a unique family of germs of k-jets of holomorphic diffeomorphisms j kφt :
(M, ι(t0)) → (M, ι(t)) such that jkft ◦ φt = jkft0, for t ∈ Γ.
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Moreover, if these conditions are satisfied, then:

(a) jkφt0 = jkid.

(b) (jkφ)̇ (t, ξ) = ∂
∂tj

kφ(t, ξ) = jk(X(φ(t, ξ))).

Proof. We prove the implication (ii) ⇒ (i) by t–derivations in the functional case above.
We will prove the implication (i) ⇒ (ii).

Assume that we have (23):

(jkf )̇ (t, ξ) =
∂

∂t
jkf(t, ξ) = −

∂

∂ξ
f(t, ξ)X(ξ).

We interpret this equation as a differential system (24)

Ẏ = jkAtY,

where jkAt ∈ Lk(Cm, 0) (resp. jkAt ∈ Lksp(C
m, 0) in the symplectic case). Let jkΦt be

the unique holomorphic fundamental solution of this system such that jkΦ0 = id. Then
we have the following result.

Lemma 7 We have jkΦt ∈ Diff k(Cm, 0) (resp. jkΦt ∈ Diff k
Sp(C

2n, 0) in the symplectic
case).

This follows from the following Lemma [22] (6.25 Lemme, p. 238).

Lemma 8 Let G be a linear complex algebraic group and G its Lie algebra. Let Ẏ = AtY
be a holomorphic linear system in a neighbourhood of t = 0. We suppose that At ∈ G.
Then the unique holomorphic fundamental solution of this system takes its value in G
(more precisely in the identity component G0 of G).

Now it is easy to end the proof of Lemma 6.

4 The differential Galois groups of the variational equations.
The main theorem.

In this part we devote our attention to the Hamiltonian case.
Let

ẋ = XH(x) (25)

be the analytic differential equation defined by a Hamiltonian vector field XH over a
complex connected symplectic manifold M of complex dimension 2n.

To a non stationary solution we associate an immersion ι : Γ →M , Γ being a connected
Riemann surface.

We choose a non trivial derivation ∂ over the field kΓ of meromorphic functions on Γ.
Let m ∈ Γ. We denote by Om (resp. Mm) the algebra of germs of holomorphic

functions over Γ at m (resp. the field of germs of meromorphic functions over Γ at m).
Here we will use the linear variational equations LVE k of order k, which we defined in
the preceding section. They are holomorphic connections ∇k over the “restrictions” (more
precisely pull backs by ι) (J k)∗ΓM of the dual bundles (Jk)∗M of the fibre bundles JkM
of k-jets of scalar holomorphic functions on Γ. The structure groups of these connections
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are the groups of symplectic k-jets of diffeomorphisms Diff k
Sp(C

2n, 0). We will also use

the LVE ∗
k which are holomorphic connections ∇∗

k on the bundles JkΓM . The structure
groups of these connections are also the groups of symplectic k-jets of diffeomorphisms
Diff k

Sp(C
2n, 0). For k = 1 we get (J 1)∗ΓM = TΓM and J1

ΓM = T ∗
ΓM and the structure

group is Sp(C2n, 0).
We recall that, for r ≤ k, (J r)∗ΓM (resp. J rΓM) is a sub-bundle (resp. a quotient

bundle) of (Jk)∗ΓM and that ∇r (resp. ∇∗
r) is a subconnection (resp. a quotient) of ∇k

(resp. ∇∗
k).

We recall (cf. Appendix A) that each holomorphic bundle J kΓM or (Jk)∗ΓM is mero-
morphically trivialisable over Γ (as a bundle with structure group Diff k

Sp(C
2n, 0)) and we

will suppose in this section that we have fixed a trivialisation for each k. Then we can
write LVE k or LVE ∗

k as a differential system of order one:

Ẏ = AkY, (26)

where Ak is a meromorphic function taking its values in the Lie algebra Lksp(C
2n, 0).

This differential system can have singularities (depending on the choice of trivialisa-
tion); however these singularities are clearly apparent singularities. In the following we
will work in general at a regular point, but the results extend immediately to an apparent
singularity.

Let m ∈ Γ. Applying Cauchy theorem, we get a fundamental systems of solutions Fk
whose entries belong to Mm (and the same happens for F ∗

k ) for the trivialisations of the
LVE k (and LVE ∗

k). They are holomorphic, that is ∈ Om if m is regular, meromorphic if
m is an apparent singularity. We denote by Lk the sub-differential field of Mm generated
by the entries of Fk over kΓ. It is also the sub-differential field of Mm generated by the
entries of F ∗

k over kΓ and it is independent of the choice of the trivialisation. Then Lk is a
Picard-Vessiot extension of kΓ associated to LVE k and also to LVE ∗

k. We have inclusions
of differential fields kΓ ⊂ L1 ⊂ . . . ⊂ Lk ⊂ Lk+1 ⊂ . . .. All the corresponding extensions
of differential fields are normal.

By definition “the” differential Galois group Gal ∇k of LVE k (or LVE ∗
k) is Gal ∇k =

Aut∂kΓLk. (It depends up to a non natural isomorphism on the choice of a Picard-Vessiot
extension, therefore here on the choice of m.)

Using the differential Galois correspondence, we get short exact sequences

{e} → Aut∂Lk
Lk+1 → Gal ∇k+1 → Gal ∇k → {e}. (27)

We denote by Solk (resp. Sol∗k) the linear complex space generated by the entries of
Fk (resp. F ∗

k ). From each of these spaces we get easily the solutions of the (non-linear)
classical k-variational equation VE k.

The differential Galois group Gal ∇k = Aut∂kΓLk acts naturally on the linear spaces
Solk and Sol∗k and we get natural faithful representations of Gal ∇k in GL(Solk) and
GL(Sol∗k). We will use these representations to built a natural homomorphism of algebraic
groups

Gal ∇K → Diff k
Sp(M,m).

(We denote Diff k
Sp(M,m) the pull back of Diff k

Sp(M, ι(m)) by the map ι.)
We will see that this homomorphism is injective. By definition its image will be “the”

differential Galois group of the higher variational equation VE k.
Our construction will be local. We will use coordinates. (It is easy to check that the

results are independent of the choice of coordinates.) Near ι(m) we can choose Darboux
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coordinates on the symplectic manifold M centred at ι(m). Then we can use these co-
ordinates to trivialise locally our scalar jets bundles (J k)∗ΓM and JkΓM : we write them
as products of the basis by Jk(C2n, 0) and (Jk)∗(C2n, 0), using the standard coordinates
on the jets. (We identify (M, ι(m)) with (C2n, 0) with its standard symplectic structure
of linear space.) Then we can interpret an element P of the fibre at ι(m) of J kM as an
element of Jk(C2n, 0) and this last element as a polynomial in y with values in C. On Γ
we can use the temporal parametrisation t (t = 0 at m = x0).

We will do an essential use of the following result [60] (Theorem 14, Appendix C, page
92).

Proposition 8 Let G be a complex linear algebraic group. Let ∇ be a G-meromorphic
connection on a trivial G-bundle over a connected Riemann surface Γ. Then its differential
Galois group “is” a Zariski closed subgroup of G.

As before, we denote by φt the flow map (φ0 = id) and we set ψt = φ−1
t ; ψkt is the

k-jet of ψt. Its source is φ(x0) and is target is x0 = m.
Let f ∈ Jk(C2n, 0). We consider it as an initial condition for LVE ∗

k. The corresponding
solution is (locally) f(t) = f ◦ ψkt (f(0) = f). We have f(t) ∈ Sol∗k and σ ∈ Gal ∇k

transforms f(t) into another solution g(t) ∈ Sol∗k. We set g(0) = g. Then g(t) = g ◦ ψkt .
We get a faithful representation of Gal ∇k = Aut∂kΓLk in the linear space Jk(C2n, 0) (the
differential Galois group acts on the initial conditions):

ρk : Gal ∇k → GL(Jk(C2n, 0))

σ → (f 7→ g).

This action is clearly compatible with the ordinary product of scalar jets, therefore if σ ∈
Gal ∇k, then ρk(σ) is an automorphism of the C-algebra J k(C2n, 0). Using Proposition
3, we can interpret ρk(σ) as an element of Jk0,0(C

2n) = Diff k(C2n, 0). We get a faithful
representation (we do not change the name):

ρk : Gal ∇k → Diff k(C2n, 0).

It remains to prove that ρk(σ) ∈ Diff k(C2n, 0) is a symplectic jet. This is the delicate
point.

We recall that we choose our trivialisation of LVE ∗
k without changing the structure

group Diff k
Sp(C

2n, 0): the matrix A of the corresponding differential system takes its

values in the Lie algebra Lksp(C
2n, 0). Now we can apply Proposition 8: the image of ρk in

Diff k(C2n, 0) is contained in the algebraic subgroup Diff k
Sp(C

2n, 0) (the structure group
of our system). We get a faithful representation (we do not change the name):

ρk : Gal ∇k → Diff k
Sp(C

2n, 0).

It is easy to check that this representation is independent of the choices of trivialisation
and local coordinates (it depends only on the point m) and we get a faithful natural
representation (we do not change the name):

ρk : Gal ∇k → Diff k
Sp(M,m).

By definition the image of the homomorphism ρk in Diff k
Sp(M,m) is “the” differential

Galois group of the higher variational equation VE k. We will denote it Gk, or Gm,k if
necessary. If γ is a continuous path from m1 to m2 on Γ, then the flow from m1 to m2

along γ (more precisely its k-jet) induces an isomorphism between Gm1,k and Gm2,k

22



Proposition 9 The natural homomorphism of algebraic groups Gal ∇k → Diff k
Sp(M,m)

is a morphism of algebraic groups and an injection. Therefore Gal ∇k → Gk is an
isomorphism of algebraic groups. (The differential Galois groups of the LVEk and of
the VEk are isomorphic.)

We have commutative diagrams (G∇k = Gal ∇k))

G∇k+1
ρk+1
−→ Gk+1

↓ ↓
G∇k

ρk−→ Gk

As we saw above (see (27)), the natural maps G∇k+1 → G∇k are surjective mor-
phisms of algebraic groups. Therefore the natural maps Gk+1 → Gk are also surjective
homomorphisms of algebraic groups. This is an essential result in our approach.

Proposition 10 The natural maps Gk+1 → Gk are surjective homomorphisms of alge-
braic groups.

We denote by Gk the Lie algebra of Gk. It is identified with a Lie subalgebra of
Lksp(M,m).

By definition the formal differential group of the Hamiltonian system (1) along ι(Γ) is
the pro-algebraic group Ĝ = lim

←

k

Gk ⊂ Diff∞(M,m).

The Lie algebra Ĝ of Ĝ is Ĝ = lim
←

k

Gk. It is identified with a Lie subalgebra of the Lie

algebra of formal Hamiltonian vector fields L̂ksp(M,m). Then we get

Proposition 11

(i) The natural maps Gk+1 → Gk are surjective homomorphisms of Lie algebras.

(ii) The natural maps Ĝ → Gk are surjective homomorphisms of Lie algebras.

(iii) The natural maps Ĝ→ Gk are surjective homomorphisms of algebraic groups.

Remark. Ĝ (resp Gk, k ≥ 1) is Zariski connected if and only if G1 (that is the differential
Galois group of the VE 1) is Zariski connected: the successive extensions Gk+1 → Gk
(k ≥ 1) are extensions by unipotent algebraic groups. This follows from the recursive
integration of the VE k (k ≥ 2) by the method of variations of constants, of if one prefers
from the structure of the groups Diff k.

The main result of this paper is the following.

Theorem 5 (Main theorem) If the Hamiltonian system (1) is completely integrable with
meromorphic first integrals along ι(Γ), then

(i) the identity component Ĝ0 of the formal differential Galois group along ι(Γ) is com-
mutative,

(ii) the identity components (Gk)
0 of the differential Galois groups of the variational

equations along ι(Γ) are commutative (k ∈ N∗).

We have a preliminary result.

Proposition 12 If f is a meromorphic first integral, then
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(i) its germ fm at m is invariant by the formal differential Galois group Ĝ,

(ii) the germ fm is orthogonal to the Lie algebra Ĝ.

Here orthogonality means, by definition, that if a formal vector field X̂ belongs to Ĝ,
then LX̂fm = dfm(X̂) = 0.

Proof. Claim (ii) follows easily from (i), similarly to the proof given in [60] for the first
order variational equations. We will prove (i).
First case. We will suppose firstly that the first integral f is holomorphic.

Let m ∈ Γ. We pull back at m the germ of manifold (M, ι(m)) and denote it by
(M,m). We choose Darboux coordinates ξ = (ξ1, . . . , ξ2n) on M at m, and the time
parametrisation t on Γ, with t0 = 0.

To a germ of holomorphic function f = fm = f(ξ), we associate the holomorphic
family (in t) of germs of holomorphic function ft = f ◦ ψt, where ψt = φ−1

t as before. We
set ft(ξ) = f(t, ξ). We have f0 = f .

The function f is a first integral of X = XH if and only if f(t, ξ) = f(ξ), that is if
ft = f0 = f .

Let k ∈ N. We consider the family (in t) of scalar jets jkf(t, ξ). We can write
them using standard coordinates, that is as a polynomial in ξ whose coefficients ap are
holomorphic functions of t (p is a multi-index). These coefficients belong to the Picard-
Vessiot extension Lk. Therefore an element σ ∈ Gal ∇k = Aut∂kΓLk acts on the coefficients

ap and we get a “new” family of jets jkgt = σjkft. If f is a first integral, then the
coefficients ap are scalars (that is complex numbers); therefore they are invariant by σ and
jkgt = jkft, j

kg = jkg0 = jkf . The k-jets of first integrals are invariant by σ ∈ Gal ∇k,
or equivalently by Gk. Claim (i) follows (increasing k).

Second case. We will suppose now that the first integral f = f(ξ) is meromorphic. We
write f(ξ) = F (ξ)/G(ξ), where F,G are analytic and where the quotient is irreducible up
to invertible elements.

As above, we write f(t, ξ) = F (t, ξ)/G(t, ξ). If f is a first integral, then f(ξ) = f(t, ξ) =
F (t, ξ)/G(t, ξ). Let σ ∈ Gal ∇k = Aut∂kΓLk. We have F (t, ξ)G(0, ξ) − F (0, ξ)G(t, ξ) = 0
and this element is invariant by σ. Therefore F (t, ξ)/G(t, ξ) = F (0, ξ)/G(0, ξ) is invariant
by σ and we can concluse as in the first case.

If X̂ ∈ Ĝ, then LX̂f(ξ)= 0 formally. If moreover X̂ =X is convergent, then LXf =0
meromorphically. 2

Now we can go back to the proof of our main theorem. The Lie algebra Ĝ is symplectic
and orthogonal to the germs f1 . . . , fm. Therefore it is abelian (see Theorem 3). 2

In the main theorem, as in the case of the first variational equation we can add to Γ
some equilibrium points and some points at infinity. We replace Γ by Γ̄, the differential field
kΓ by the a priori smaller field kΓ̄ and Aut∂kΓLk by the a priori bigger differential Galois

group Aut∂kΓ̄
Lk. If we add only some equilibrium points, we have a similar statement,

mutatis mutandis. If we add some points at infinity, we need to be careful: if the extended
connection is not regular singular at the corresponding points (a property that we can
check on the first variational equation), it is necessary to suppose (as in the first variation
case) that the first integral used in the definition of integrability are meromorphic at
infinity.

We can also get a similar result by considering the local Galois group around a singular
point m ∈ Γ̄∪ {points at the infinity}, i.e., we take as coefficient field the differential field
Mm and the non-commutativity of the identity component of the local Galois gives us an
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obstruction to the meromorphic integrability of the Hamiltonian system in a neighbour-
hood of the point ι(m). Of course, the interesting case appears when m is an irregular
singular point.

5 Obstructions to integrability and non-linear Galois the-

ory.

When one wants to prove the non-integrability of some Hamiltonian system, it sounds a
priori quite strange to have to choose a “nice” solution of the system (a solution that we
can parametrise using some “special functions”). It seems on the contrary reasonable to
think that a solution of a non-integrable system is “very transcendental”. In fact in all
the applications done up to now of our theory, this is not the case: the “generic solution”
of the system is presumably highly transcendental (there are few precise results in this
direction), but there are invariant integrable subsystems giving interesting “nice” solutions.
Perhaps this is due to the fact that applications are done to simple enough systems.

However, from a theoretical point of view, it remains interesting to try to avoid the
choice of a particular solution Γ. In order to do this, a natural tool is the non-linear
differential Galois theory. This theory was introduced by J. Drach [23, 24], and developped
later by J. Drach and E. Vessiot. J. Drach studied some applications of his theory to
various questions of geometry and mechanics (as the spinning top). P. Painlevé gave a
“proof” of the fact that Painlevé transcendants are “new transcendants” using Drach’s
theory. Unfortunately there are important gaps in the foundations of Drach’s theory,
and in its applications. Therefore, when we began to work on the present paper some
years ago, no satisfying non-linear Galois theory was available. Today the siuation is
completely different: we have two such theories due respectively to H. Umemura [76] and
B. Malgrange [54, 55]. We will explain the analogue of our main theorem using Malgrange’s
approach (the similar result must be true with Umemura’s approach, but it is conjectural).
This analogue is due to the second author (unpublished). We will be very sketchy. The
interested reader will find some details about this result, and the necessary definitions and
theorems in [54, 55, 18] (cf. in particular [18] 5.4).

The main tool of B. Malgrange is the notion of Lie D-groupöıd on a complex analytic
manifold M . Roughly speaking it is a sub-groupöıd of the groupöıd M of germs of analytic
diffeomorphisms of M defined by analytic PDE. We recall that a groupöıd is a (small)
category whose all the morphisms are isomorphisms. Here we start with the groupöıd M
whose objects are the points (a, b, . . .) of M and the morphisms are the invertible germs g
of analytic maps g : (M,a) → (M, b) (f(a) = b). A D-groupöıd has a D-Lie algebra defined
by PDE. B. Malgrange defines the Galois D-groupöıd or D-hull of an analytic dynamical
system (differential equation, foliation, etc) as the smallest D-groupöıd such that “its Lie
algebra contains the infinitesimal transformations of the dynamics” (more precisely these
transformations must be solutions of the D-Lie algebra). The (very) difficult point is
that such a smallest groupöıd exists. This definition is (a posteriori) very natural: as B.
Malgrange says it is “what algebra sees from the dynamics”. It is related to the idea that
there is no “Lie third theorem” for Lie D-groupöıds.

For an autonomous system we get the smallest D-groupöıd such that its “Lie algebra
contains the corresponding vector field”.

The computation of the Galois D-groupöıd seems extremely difficult (even for appar-
ently “simple” cases as Painlevé equations). There are only partial theoretical results
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(cf. in particular [18]) and nothing is effective (there are no algorithms). Therefore the
following result is, for the moment, nice but theoretical.

Like for the computation of differential Galois groups in the linear case, a natural
idea is to try to reduce the problem using “majorants” of the Galois D-groupöıd, i.e.
D-groupöıds containing the Galois D-groupöıd.

Theorem 6 Let (M,ω) be a connected symplectic analytic manifold of dimension 2n. Let
H : M → C be an analytic function, the Hamiltonian. We suppose that the corresponding
Hamiltonian system is completely meromorphically integrable. Then the D-Lie algebra of
the Galois D-groupöıd of the system (i.e., the D-hull of the vector field XH) is abelian.

An evident majorant of our Galois D-groupöıd is the D-groupöıd defined by the ana-
lytic system of PDE:

g∗fi = fi, i = 1, . . . , n, g∗ω = ω. (28)

Its linearisation is
LXfi = 0, i = 1, . . . , n, LXω = 0. (29)

This D-Lie algebra is clearly abelian. This follows from Theorem 3. (We need only the
simple meromorphic version, not the formal version). Then Theorem 6 follows immedi-
ately.

One works with D-groupöıds systematically on the “complementary of an hypersur-
face” (in some “algebraic” delicate sense). On the contrary our theory (more precisely
its applications) is (are) centred on the choice of non-generic solutions Γ, which in gen-
eral will live into the exceptional hypersurfaces. Therefore a comparison between the two
approaches seems difficult. We will only suggest an analogy: in terms of topology of folia-
tions, Galois D-groupöıds will correspond to holonomy groupöıds, our Γ (the “interesting”
one) will correspond to holonomy carriers (exceptional leaves).

6 On the applications

From now on we identify the linearised variational equation with the variational equation
VE k (abuse of notation).

We will give some indications and references about some interesting applications of
our main result (Theorem 5).

A typical situation [57] is the following:

– the Riemann surface Γ is a punctured elliptic curve, the corresponding elliptic curve
being denoted as Γ = Γ ∪ {∞};

– the extension to Γ of the first variational equation is regular singular.

In the classical applications there appear parametrised families of Hamiltonian systems.
With the above hypotheses we get parametrised families of regular singular equations on Γ
(the corresponding VE = VE 1), and in many cases we get obstructions to integrability for
all the values of the parameter except for a finite or discrete subset using Morales-Ramis
theory (that is the first VE ). The exceptional values of the parameter correspond typically
to direct sum of Lamé-Hermite equations. In such a situation the identity component of
the differential Galois group G1 of VE 1 is commutative (isomorphic to an additive group
Cp) and there is no obstruction.
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We denote by ℘ the Weierstrass function corresponding to a double pole at the origin
of C (℘(0) = ∞ ∈ Γ). Then a Lamé équation is a linear ODE

d2ξ

d t2
= (A℘(t) +B)ξ, (30)

The unique singular point is the origin modulo periods of the Weierstrass ℘ function, that
is ∞ ∈ Γ. The equation is regular singular. The classical notation is A = n(n+ 1).

The differential Galois group of (30) is commutative if and only if n ∈ Z. It is the
Lamé-Hermite case. In that case there exists a meromorphic solution (an elliptic solution)
and the differential Galois group is triangular. Its elements are represented by unipotent
triangular 2 × 2 matrices of the form

(
1 0
α 1

)
. (31)

It is trivial or isomorphic to the additive group C. Therefore it is commutative and
connected.

We suppose now that the VE is a direct sum of Lamé-Hermite equations. For the sake
of simplicity we can consider the case of two such equations:




1 0 0 0
α 1 0 0
0 0 1 0
0 0 β 1

. . .



. (32)

The 2 × 2 unipotent matrices in the elements of G1 give us the Galois group of each
of the Lamé equations (30). It is either trivial or the additive group C. As a consequence
G1 is a commutative connected group.

The variational equation VE 1 is regular singular. Therefore all the higher order vari-
ational equations VE k (more precisely their linear counterparts LVE k) are also regular
singular (for k ≥ 1) and their Galois groups Gk are given by the Zariski closure of their
monodromy groups. Furthermore, Gk is connected because G1 is connected. We have the
following lemma.

Lemma 9 Assume that the first order variational equation VE 1 decomposes in a direct
sum of Lamé-Hermite type equations. Then Gk is commutative if and only if the solutions
of VE k are meromorphic functions on the covering C of Γ̄.

The proof is easy. The monodromy group of each of the variational equations VE k is a
linear representation of the fundamental group of Γ = Γ\{∞} (the point ∞ is represented
in the Weierstrass parametrisation by the origin modulo periods) and this fundamental
group is a free non-commutative group generated by two generators (the translation along
the periods). The commutator of these two generators is represented by a simple loop
around the singular point ∞. Hence, a monodromy group is commutative if and only if
the monodromy associated to this simple loop is trivial. By Zariski closure, a differential
Galois group Gk is commutative if and only if the corresponding monodromy subgroup is
commutative. Therefore we can check the commutativity of Gk locally at ∞: recursively,
by local power series expansions of the solutions (at 0 in Weierstrass parametrisation) of
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VE k−1 and quadratures it is easy to know if the variational equation VE k have ramified
solutions with ramification around 0: we only need to check the existence of a residue
different from zero, which will give rise by integration to a local logarithm in the expansion
of the solution.

In [48] the authors solved completely the problem of meromorphic integrability of two-
degrees of freedom Hamiltonian systems with homogeneous potentials of degree three.
After some reductions the problem is restricted to the study of the 2-parameter family of
potentials

V (x1, x2) =
1

3
ax3

1 +
1

2
x2

1x2 +
1

3
cx3

2, a, b ∈ C. (33)

The authors made a large use of Morales-Ramis theorem (see their Introduction) about
the commutativity of (G1)

0 (in fact, they used a corollary of it stated in [62]). Moreover,
several of the subfamilies for which no obstruction to integrability is obtained from the first
order analysis are well-known integrable systems, except the 1-parametric subfamily with
potential c = 1 and arbitrary a in (33). In order to study the meromorphic integrability
of this subfamily, the authors applied the main theorem of the present paper, Theorem
5, and checked the commutativity of the identity component of the Galois groups of the
higher order variational equations: if one of them is non commutative, the system is not
integrable with meromorphic first integrals. It is interesting to point out that the problem
of the integrability of a member of this subfamily (i.e., for a = 0) was considered as an
open problem in the recent monograph [2] (p. 180).

They used Lamé-Hermite approach. Coming back to the Hamiltonian system with
potential (33), the first order variational equations decompose in two Lamé equations with
Galois group G1 given by 4 × 4 matrices like (32). In [48] a residue different from zero
is obtained for the integrand of a solution of the second order order variational equation
if a 6= 0 (resp. of the third order variational equation if a = 0). Then G2 = (G2)

0 (resp.
G3 = (G3)

0) is non-commutative and this family is non-integrable.
Along the same lines it is possible to prove that the two degrees of freedom Hamiltonian

system defined by the cubic Hamiltonian

H =
1

2
(y2

1 + y2
2) +

1

2
x2

1 +
1

2
x2

2 +
1

3
x3

1 +
1

2
x1x

2
2. (34)

is non-integrable. This system is one of the Hénon-Heiles family of one-parameter Hamil-
tonians considered by Ito [34]. By means of the first order variational equation it was
proved that for all except four of the values of the parameter, the systems in this family
are non-integrable, see [34, 63, 57]. Three of these remaining cases are trivially integrable.
The fourth case is (34) and its non-integrability was conjectured from numerical experi-
ences. But all the attempts to give a rigorous proof of this fact during the last years were
unsuccessful. Now we can prove the non-integrability of this last case, using our main
theorem and the Lamé-Hermite approach. We get an obstruction (a non trivial residue)
for the third variational equation. We give the details in Appendix B.

In this way it is possible to close the problem of integrability for the Hénon-Heiles
family of Ito. This example was in fact the motivation for the Section 8.3.2 in [57] and it
also was the initial motivation for the present paper, following an idea of the third author.
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7 Open problems

The main theorem in this paper is a necessary condition for integrability of Hamiltonian
systems by meromorphic first integrals: the identity components of all the Galois groups
Gm of the higher order variational equations, m ≥ 1, must be commutative. This gives us
an infinite number of conditions to be satisfied. Then it is very natural to ask if this nec-
essary condition for meromorphic integrability is also a sufficient condition. This problem
was already formulated in [57], p. 146, where the following problem was stated. Assume
that the identity components of the Galois groups Gk of all the variational equations VE k

of order k ≥ 1 (or to be more precise their linear counterpart LVE k) are commutative,
then:

Is the Hamiltonian system XH completely integrable with meromorphic first integrals in
some neighbourhood of the completed integral curve represented by the Riemann surface
Γ?

We remark that, without any further additional assumption about XH (or about Γ),
the answer to this problem is negative.

An example of a non-integrable system with an integral curve such that all the groups
Gk are commutative, is the planar three-body problem along the parabolic solutions of
Lagrange, see [13, 75]. When the angular momentum of the bodies is zero, the Galois
groups of all the variational equations VE k are commutative. The fundamental group
of the Riemann surface Γ defined by such a solution is commutative: Γ is the Riemann
sphere with two points deleted. The variational equations VE k are of Fuchs class and their
monodromy groups, which are representations of this fundamental group, are also commu-
tative. As the Galois groups Gk are given by the Zariski adherences of the corresponding
monodromy groups, they are also commutative.

Another candidate to a counter-example is given by a particular case of a generalised
family of spring-pendulum systems studied in [50]. This family depends essentially on
two parameters, a, k. Using the first order variational equation, the authors proved that
this family is non-integrable when a + k 6= 0. For a+ k = 0 they studied the variational
equations up to order seven and they did not obtain any obstruction to integrability, i.e.,
the identity components of all the Galois groups Gk are commutative for k ≤ 7. However,
there are numerical evidences of the non-integrability of the system. So, the problem is
to understand if it is possible to impose some natural generic conditions in order to get a
positive answer to our question:

Problem. Let XH be a complex analytical Hamiltonian system defined over a complex
analytical symplectic manifold and let Γ be the immersed Riemann surface defined by a
particular integral curve of XH which is not reduced to an equilibrium point.

Under which conditions is the Hamiltonian system XH completely integrable with mero-
morphic first integrals in some neighbourhood of the completed integral curve represented
by the Riemann surface Γ, provided the identity components of the Galois groups Gk are
commutative for arbitrary k?

Another problem concerns the dynamical implications of non-integrability. In systems
with two degrees of freedom a typical effect of non-integrability is the existence of transver-
sal homoclinic orbits. It is well known that this kind of orbits prevents from the existence
of analytic first integrals in a vicinity of the orbit. See [65] for a general exposition. For
early applications to the three-body problem see [40, 41, 42]. In [63] the non-integrability
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of some systems is illustrated by the existence of hyperbolic periodic orbits whose invari-
ant manifolds have transversal intersection. In this example there is a strong numerical
evidence that such orbits do not exist in real phase space, For this reason the search for
homoclinic orbits was done in the complex phase space. In systems with a larger number
of degrees of freedom the problem is even more subtle.

It seems natural to ask for the following question:

Problem. Assume a complex analytical Hamiltonian is proved to be non-integrable by
the methods presented in this paper.

Is it true that some transversal homoclinic orbit to an invariant object exists?

Finally there is another kind of related problems, worth to be clarified. In the seminal
work [32] not only numerical evidence of non-integrability was give, but also some quanti-
tative information on the lack of integrability was given. This has a primordial relevance
for physical applications. The method used was the computation of an indicator, anal-
ogous to the maximal Lyapunov exponent, such that it takes the value zero in ordered
orbits and is positive on chaotic orbits. This allows to define a fraction of integrability on
selected levels of the energy. For instance, for the Hénon-Heiles system the system can be
considered as integrable for any practical purpose for energies in the range [0, 0.05].

For small perturbations of an integrable system (e.g., near a totally elliptic fixed point
in a general system, where the integrable approximation is a Birkhoff normal form) it is
well known that the lack of integrability is exponentially small in the small parameter. See
[68] for upper bounds using averaging theory and [28, 29] for upper bounds of the related
splitting. Equivalent to a quantitative measure of the lack of integrability we can look
for the existence of quasi-integrals, which are approximately preserved in the real phase
space. In [33] is was proved that the J2 problem (motion of a satellite around an oblate
planet) is non-integrable. But, as it was proved in [73], this lack of integrability can be
completely neglected in the case of artificial Earth satellites for any practical application
(the width of the largest chaotic zone created by the non-integrability, in the real phase
space, is less that 10−500 using the Earth’s radius as unit).

On the other hand, most of the proofs of non-integrability make use of special orbits
with singularities for some t ∈ C. The measures of splitting use also, typically, the be-
haviour of invariant manifolds in a neighbourhood of these singularities. Then, the next
question, which is certainly related to [79], seems relevant:

Problem. Assume some singularities are used to detect non-integrability by applying the
main Theorem of this paper.

Which kind of information is also needed to produce quantitative estimates of the lack
of integrability? (e.g., giving estimates of a suitable splitting, or of the measure of the
domain with positive maximal Lyapunov exponent, or of the metric entropy, in the real
phase space).

Appendix A: A trivialisation theorem

In order to apply differential Galois theory to the higher variational equations LVE k, we
need to replace these connections by ordinary differential systems, that is to trivialise our
jet bundles. We can avoid this problem if we use the Tannakian approach of the differential
Galois theory [21].
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Let k, n ∈ N. Let E = C2n. We set Diff k
Sp(2n;C) = Diff k

Sp(E). For k = 1, we have

Diff 1
Sp(2n;C) = Sp(2n;C).

We recall that Diff 1
Sp(2n;C) is the semi-direct product of Sp(2n;C) and a unipotent

linear algebraic group U k(2n;C) = Uk(E).
Let X be a connected Riemann surface. Let G be a complex linear algebraic group.

In [60], Appendix A, we defined locally trivial meromorphic bundles over X admitting G
as structure group.

Proposition 13 Let X be a complex connected, non compact Riemann surface and let
(F , p,X) be a locally trivial holomorphic vector bundle over X having Diff k

Sp(2n;C) as
structure group. Then F is holomorphically trivial.

The algebraic group Diff k
Sp(2n;C) is connected for the ordinary topology (Sp(2n;C)

and Uk(2n;C) are connected for this topology). Then the proposition follows from a
theorem of Grauert ([60], Appendix A, Theorem A.1).

Proposition 14 Let X be a complex connected compact Riemann surface. Let (F , p,X)
be a locally trivial holomorphic vector bundle over X with structure group Diff k

Sp(2n;C).
Then F is meromorphically trivial.

We have the following result.

Proposition 15 Let X be a compact connected Riemann surface. Let (F , p,X) be a
locally trivial holomorphic vector bundle over X with structure group G. Then F is mero-
morphically trivial in the following cases:

(i) G = Sp(2n;C),

(ii) G is unipotent.

This result follows from the “GAGA” paper of J.P. Serre [71]. Claim (i) is proved in
[60] Appendix A (Proposition A.2). We can prove (ii) along the same lines: due to a result
of Rosenlicht: denoting by G the sheaf of regular maps from X to the algebraic complex
group G, and by Gan the sheaf of complex analytic maps from X to the analytic complex
group defined by G, the natural map

L : H1(X;G) → H1(X;Gan)

is a bijection when G is a unipotent group.

Then Proposition 15 follows easily from the following result.

Lemma 10 Let X be a compact connected Riemann surface. Let

{e′} → G′ → G→ G′′ → {e′′}

be an exact sequence of complex linear algebraic groups. We denote by Gme the sheaf of
meromorphic maps from X to the algebraic complex group G. Suppose that H 1(X;G′me)
and H1(X;G′′me) are trivial. Then H1(X;Gme) is also trivial.
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Proof. We will use definitions and results of [30]. On the cohomology sets H 1(X;Gan)
we do not have in general a natural structure of group (G is in general non-commutative).
However we have a natural structure of pointed set (there exists a privileged element ε).
We can define exact sequences of pointed sets ([30] 5. Définition 5.1, page 153) and we
have such a sequence ([30], 6. Théorème I.2, page 156):

H1(X;G′me)
i
→ H1(X;Gme)

p
→ H1(X;G′′me).

Then

H1(X;G′me)={ε′}, H1(X;G′′me)={ε′′}, H1(X;G′me)=p−1({ε′′})= i({ε′})={ε}.

Appendix B: Proof of non-integrability of system (34)

This special case of the Hénon-Heiles problem has only two fixed points. One of them,
totally elliptic, located at the origin. The other fixed point, Php, located at x1 = −1, x2 =
y1 = y2 = 0 on the level H = h∗ = 1/6, is of hyperbolic-parabolic type. We note that the
plane x2 = y2 = 0 is invariant. On that plane and on the level H = h∗ the system has a
separatrix, tending to Php for t→ ±∞ on the real phase space. We shall make use of this
special solution. The fact that the point Php has a degeneracy is certainly related to the
difficulties in proving non-integrability for this system.

Working on the real phase space, a Poincaré section through x2 = 0 on the bounded
component of the level H = h for h ∈ (0, h∗), displays only a tiny amount of chaoticity.
However, for energies h > h∗ the chaotic domain is clearly visible. Figure 1 shows an
illustration for h = 1/5. The point marked as Q corresponds to an hyperbolic periodic
orbit. It belongs to a family born at h = h∗.

-0.04

-0.02

 0

 0.02

 0.04

-0.92 -0.91 -0.9 -0.89 -0.88

Q

Figure 1: Part of a Poincaré section of (34) through x2 = 0 in the energy level h = 1/5,
displayed in the (x1, y1) variables. Initial points are taken on y1 = 0. and 20, 000 iterates
are computed for each initial point, keeping only the ones in the window shown.

The special solution Γ is given by

x1(t) =
3/2

cosh2(t/2)
− 1, y1(t) =

−(3/2) sinh(t/2)

cosh3(t/2)
, x2 = y2 = 0, (35)
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where the origin of time has been taken on y1 = 0, to have a symmetric expression. It has
singularities for cosh(t/2) = 0, i.e., for t = (2k+1)π i, with k ∈ Z. Our approach starts by
computing the third order monodromy, that is, the solution of the variational equations up
to order three, starting at the point (x1(0), y1(0)), along a path γ ⊂ Γ which encloses only
the singularity t = π i and having index 1 with respect to it. It is clear that the result is
independent on the path. For concreteness we introduce the following notation (see (11))

(i) x3 = y1, x4 = y2,

(ii) The components Dkxj will be denoted as xj,k. In a similar way, the components
D2
k1,k2

xj, D
3
k1,k2,k3

xj will be denoted as xj,k1k2 , xj,k1k2k3 , respectively.

We recall that one should take xj,k = δjk, xj,k1k2 = 0, xj,k1k2,k3 = 0 as initial conditions for
t = 0. In principle, first, second and third variational equations give rise to 42, 43 and 44

equations, respectively. But, from one side, these equations have the symmetries of the
differential operators D2 and D3. From the other, due to the special solution chosen and
to the simplicity of (34), it is immediate to prove the following lemma.

Lemma 11

1. The xj,k with j and k of different parity are identically zero.

2. For xj,k1k2 and xj,k1k2k3, if the cardinal of the set of indices k which have parity
different from the one of j, has the parity of j, then these elements are identically
zero.

Before starting the analytic computations it is worth to know about the expected
results. To this end we have integrated numerically the required variational equations
along paths γ as described before. The results show that, when returning to the initial
point, the final values of the elements xj,k coincide again with δjk, the ones of xj,k1k2 are
again zero and the ones of xj,k1k2k3 are also zero with the following exceptions:

x2,222, x2,224, x2,244, x2,444, x4,224, x4,244, x4,444.

Taking a different initial point one can also have x4,222 6= 0 after closing the loop. For our
purposes it is enough to show that some of the final elements xj,k1k2k3 is different from 0.
We select the x2,222, whose numerically computed value is ≈ 90.477868423386 i.

Let a31 = −1 − 2x1, a42 = −1 − x1 the only non-zero and non-trivial elements in DX
along Γ. To obtain x2,222 we only need to integrate the following systems

(
ẋ2,2

ẋ4,2

)
=

(
0 1
a42 0

)(
x2,2

x4,2

)
,

(
ẋ1,22

ẋ3,22

)
=

(
0 1
a31 0

)(
x1,22

x3,22

)
+

(
0

−x2
2,2

)
(36)

and (
ẋ2,222

ẋ4,222

)
=

(
0 1
a42 0

)(
x2,222

x4,222

)
+

(
0

−x2,2x1,22

)
. (37)

It is clear that to integrate (36) and (37) we need to solve the first order variational
equations, both tangential (in the (x1, x3) variables) and normal (in (x2, x4)), which are
uncoupled. The solutions can be written explicitly. To shorten the notation we introduce
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c := cosh(t/2) and s := sinh(t/2). Then

x1,1 = −
15ts

16c3
+

15

8c2
−

5

8
−
c2

4
, x1,3 = −

4

3
y1,

x3,1 = −
15t(3 − 2c2)

32c4
−

45s

16c3
−
sc

4
, x3,3 =

4

3
(x1 + x2

1),

x2,2 = 2x1, x2,4 =
tx1

2
+

3s

2c
,

x4,2 = 2y1, x4,4 =
x1

2
+
ty1

2
+

3

4c2
.

(38)

Furthermore

x1,22 = x1,1

(
2

8
−

16

9
x3

1

)
+ x1,3K(t), (39)

where

K(t) = t

(
−

45

16c6
+

45

8c4
−

15

4c2

)
+ s

(
−

45

8c5
+

15

2c3
−

3

c
+ c

)
.

We remark that one of the columns of the fundamental matrix of the normal variational
equations coincides (except by a factor of 2) with (35). This is true for any h because
(x1, y1) are solutions of the first equation in (36).

Having (38) and (39) we are ready to solve (37). As the homogeneous part coincides
with the first order normal variational equation, the solution, after closing the loop is
given by

(
x2,222

x4,222

)
=

(
x2,2 x2,4

x4,2 x4,4

)∫

γ

(
−x2,4R
x2,2R

)
, where R(t) = −3x2,2x1,22. (40)

It is readily checked that the residues inside the integral are 72/5 and 0, respectively.

Hence, the final value of x2,222 after the loop is
72

5
2π i, which coincides with the value

given above in all the digits shown. This computation also explains why the final value of
x4,222 is zero.

Now we are ready to prove the desired non-integrability of (34). We remark that in
all the computations of order less than three no residue appears.

Proposition 16 The system (34) in non-integrable in a vicinity of the solution given by
(35).

Proof. One can take as Γ a solution on the invariant plane x2 = y2 = 0 and an energy level
h < h∗ close to h∗. Then the solution is given by elliptic functions with a parallelogram
of periods and a double pole. When h → h∗ the periods tend to π i and ∞. Take paths
γ1 and γ2 along the generators. To compute the commutator it is enough to carry out the
integration along a path γ of index 1 around the pole.

As all the solutions are obtained by quadratures, we have (Gk)
0 = Gk for all k. Hence,

commutativity of (Gk)
0 implies commutativity at the (k th order) monodromy level.

The integrals along γ are continuous as functions of h. As for h = h∗ there are
integrals different from zero, the same happens for nearby values h < h∗. This implies
(G3)

0 non-commutative. 2

34



Acknowledgements

The work of first author has been supported by grant DGICYT BFM2003-09504-C02-02
(Spain). The second author has been partially supported by the NEST EU Math. Project
GIFT, FP6-005006-2. The work of third author has been supported by grant DGICYT
BFM2003-09504-C02-01. Both the first and third author have been partially supported
also by grant CIRIT 2001SGR-70 (Catalonia).

References

[1] R. Abraham, J.E. Marsden, “Foundations of Mechanics.” Second Ed., Benjamin 1978.

[2] M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic Integrability, Painlevé Geometry
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transcendantes, Ann. Sci. École Normale Supérieure, Sér. 3 15 (1898) 243-384.

[24] J. Drach, Sur le problème logique de l’intégration des équations différentielles, Ann.
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[30] J. Frenkel, Cohomologie non abélienne et espaces fibrés Bull. Soc. Math. France, 85
(1957) 135–220.

36



[31] A. Grothendieck, Techniques de Construction en Géométrie Analytique VII, “Sémi-
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[40] J. Llibre, C. Simó, Homoclinic phenomena in the three-body problem. J. Diff. Eq. 37

(1980) 444–465.
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[42] J. Llibre, R. Mart́ınez, C. Simó, Transversality of the invariant manifolds associated
to the Lyapunov family of periodic orbits near L2 in the Restricted Three Body
Problem. J. Diff. Eq., 58 (1985) 104–156.

[43] A.J. Maciejewski, Non-integrability of certain Hamiltonian systems, Applications of
the Morales-Ramis differential Galois extension of Ziglin Theory, Banach Center Pub-
lications 58 (2002) 139–150.

[44] A.J. Maciejewski, M. Przybylska. Non-integrability of restricted two-body problems
in constant curvature spaces. Regul. Chaotic Dyn., 8 (4) (2003) 413–430.

[45] A.J. Maciejewski, M. Przybylska, Non-integrability of the problem of a rigid satellite
in gravitational and magnetic fields, Celestial Mech. Dynam. Astronom. 87 (2003)
317–351.

[46] A.J. Maciejewski, M. Przybylska, Non-integrability of the Suslov problem, J. Math.
Phys. 45 (2004) 1065–1078.

[47] A.J. Maciejewski, M. Przybylska, Non-integrability of the generalised two fixed cen-
tres problem, Celestial Mechanics and Dynamical Astronomy 89 (2004) 145–164.

37



[48] A.J. Maciejewski, M. Przybylska, All Meromorphically Integrable 2D Hamiltonian
Systems with Homogeneous Potential of Degree 3, Phys. Lett. A 327 (2004) 461–473.

[49] A.J. Maciejewski, M. Przybylska, Differential Galois Approach to the Non-integr-
ability of the Heavy Top Problem, Annales de la Faculté des Sciences de Toulouse,
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