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Abstract
The aim of this work is to study the global dynamics of

a planar weakly dissipative map around a perturbation
of an elliptic fixed point. If the dissipative perturbation
is assumed to be radial the map presents different do-
mains depending on the topological behaviour. When
showing these main domains the different ω-limits that
can co-exist are also described. Furthermore, the para-
metric study of the mechanism of destruction of res-
onances and the evolution of invariant objects of the
phase space are displayed. On the other hand, the prob-
ability of capture in different kinds of resonances as a
function of the parameters of the map and the dissipa-
tion parameter is also given. The numerical approach
to these ideas provides a first step to develop a global
theory for this kind of maps. In order to exhibit the
generic properties of weakly dissipative maps a radially
dissipative version of the Hénon map is considered.

Key words
resonances, splitting of separatrices, twist map ap-

proximations, weakly dissipative global behaviour

1 Introduction
The main purpose of this work is to describe the global

dynamics of a planar weakly dissipative map around an
elliptic fixed point, that is, to understand global bifurca-
tions, not only local ones, and ω-limit sets. It is not a re-
striction to assume that the elliptic fixed point is located
at the origin. We focus our attention on describing the
creation and destruction of resonances and the position
of the invariant manifolds associated to them when a
radial dissipation is assumed to be added to the system.
A numerical study is carried out in order to understand
how the chaotic dynamics associated to these phenom-
ena is created as well as to describe the behaviour of
the probability of capture as a function of the dissipa-
tion parameter. Note, however, that the analysis in case
of very small dissipation can only be done by analytic

tools because the number of iterates becomes too large:
the global transport is too slow.
In order to guide a subsequent theoretical research

about this topic an easy version of a weakly dissipation
has been chosen. To be precise, a radial dissipation,
depending linearly on the radial coordinate around the
elliptic fixed point, is applied over the conservative dy-
namical system as a small perturbation. The numerical
approach given in this note provides a good basis of a
priori knowledge about this kind of systems.
The type of maps considered shares properties of the

conservative and the dissipative cases. We show the
existence of regions where the map has homoclinic
points, regions where these points are destroyed, and
how the resonances change their topology. Moreover,
there is a region where the resonances disappear. Ob-
serve that no KAM curves remain when a dissipation
effect is added to the system.
To illustrate the global behaviour of weakly dissipa-

tive maps by numerical experiments a mild dissipation
of the classical Hénon map,

Hα,ε(x, y) = (1 − ε)Hα(x, y), (1)

where

Hα :

(

x
y

)

7−→ R2πα

(

x
y − x2

)

, (2)

has been chosen as a paradigmatic example. Neverthe-
less, the properties that are going to be displayed can be
generalized to a generic weakly dissipative map with
radial dissipation.
The choice of this map as an example is motivated

by the role it plays to describe the dynamics around
a saddle-node bifurcation (see [Broer, Roussarie and
Simó, 1996]). In fact, up to order 2, generically, after
a suitable rescaling of variables, the Hénon map is ob-
tained in a neighbourhood of the saddle-node bifurca-



tion point. As it is going to be emphasized a saddle-
node bifurcation is related to the existence of reso-
nances. It is important also to recall that Hénon map
is the simplest planar map with non trivial dynamics
and that any other quadratic map with an stable fixed
point can be reduced to it by a change of variables.
The Hénon map (2) has two fixed points: the origin

E = (0, 0), which is an elliptic fixed point, and
the point Ph = (2 tanπα, 2 tan2 πα), which is a
hyperbolic one. It is important to take into account
that the Hénon map is reversible with respect to the
axis y = tan(πα)x and also with respect the parabola
y = x2/2 by means of the involutions (x, y) 7→
(cos(2πα)x + sin(2πα)y, cos(2πα)x − sin(2πα)y),
(x, y) 7→

(

x, x2 − y
)

, respectively. The reader is
referred to [Hénon, 1969] to get information about the
properties of the Hénon map.
This note is organised as follows. Next section is a re-

view of the conservative case while the third one deals
with the problem of describing global dynamics of a
weakly dissipative map. Finally, the last one concerns
about resonances without homoclinic points (flow type
resonances) and describes how the position of the in-
variant manifolds of the hyperbolic points of a periodic
orbit in a concrete resonance changes the probability of
capture. We close with a conclusion.

2 Review of the conservative case
The dynamics of a weakly dissipative map, despite of

the dissipation effect, keeps a lot of properties of con-
servative systems. This section is devoted to sum up
some well known facts of a discrete system generated
by an area preserving map (APM) around an elliptic
fixed point.

1) Integrable APM. An area preserving diffeomor-
phism is called integrable if there exists an autonomous
Hamiltonian flow such that the time τ map coincides
with the diffeomorphism.
Resonances, which are characterised by the sequence

of islands that form it, can appear. In particular, an is-
land contains an elliptic periodic orbit. A hyperbolic
periodic one appears at the boundary of the island.
More concretely, the boundaries of the islands are the
separatrices of the hyperbolic points.
It can be observed that the separatrices act as barriers

between two kinds of different motions: librational mo-
tion and rotational motion. Around each island of the
resonance the phase portrait is topologically equivalent
to the one of a classical pendulum.

2) Splitting of separatrices. When the integrability is
lost the properties above mentioned no longer hold. As
it is known the splitting of the separatrices provides a
beautiful structure where homoclinic points appear and
the manifolds form a kind of trellis.
Generically, the intersection between the stable and

unstable invariant manifolds (separatrices) is transver-
sal and the angle formed is a measure of the splitting
produced. The manifolds form then loops which are

mapped one to each other preserving area and orienta-
tion. The homoclinic tangle is also a geometrical way
to understand how chaos is born in the system. The
phase portrait around each island of a resonance is like
the one of a periodically perturbed pendulum. The clas-
sical Hénon map (2) is an easy example of a non inte-
grable APM.

3) Invariant curves and resonances. For a generic
close to integrable APM the domains between reso-
nances contain rotational invariant curves. It is impor-
tant to recall that the rotation number over them is irra-
tional while, on the other hand, rational rotation num-
ber corresponds to a resonance. In particular, the set of
values of rotation number corresponding to resonances
is of zero measure but dense.

4) Last invariant curve. Generically, the structure de-
fined by invariant curves and resonances holds up to
any hyperbolicity destroys it. The Hénon map (2) has
a source of hyperbolicity on the invariant manifolds of
the hyperbolic point Ph. To obtain the distance where
is expected to have the “last” invariant curve, the dy-
namics along the separatrices close to the hyperbolic
point has to be modelled, for instance, by means of the
separatrix map

(

u
v

)

7−→

(

u′

v′

)

=

(

u + α + β log(v′)
v + sin(2πu)

)

(3)

with (u, v) ∈ [0, 1) × R, β = 1/logλ, being λ the
eigenvalue of modulus greater than one of the differen-
tial of the map at Ph, and where α is a constant which
includes the effect of the amplitude of the oscillations
of W u with respect to W s. But, if the distance from the
hyperbolic point is considered to be large (after suit-
able scalings), the separatrix map (3) can be rescaled
(v = v0 + s, v0 relatively large) to obtain, approxi-
mately, the standard map

(

u
s

)

7−→

(

u′

s′

)

=

(

u + α̂ + ks′

s + sin(2πu)

)

, (4)

where α̂ = α + β log(v0) and k = β/v0. It is known
that the last invariant curve for the standard map (4)
is destroyed when k = k∗ ≈ 0.96/2π (see [Greene,
1979], [Olvera and Simó, 1987]). Then, the separa-
trix map has invariant curves if v0 > β/k∗. By using a
first order approximation of the passage of the invariant
curve close to the hyperbolic point, the distance from
the hyperbolic point to the region where we expect to
have an invariant curve is given by d =

√

β/k∗. More-
over, the map (4) has the point (1/2, 0) as an elliptic
point for k < 2/π. Denoting by k̃ this value, the dis-
tance at which we expect to find islands is given by

d =

√

β/k̃. We recall that in the expression of these
distances β has been rescaled by the amplitude of the
splitting.



5) Birkhoff normal form. The local dynamics near the
elliptic fixed point can be studied by means of Birkhoff
normal form. This provides a good approximation up
to certain distance from the elliptic fixed point and the
resonance structure is reflected on it. Generically, two
types of resonances are found in the normal form: un-
avoidable resonances and resonances due to the close-
ness of the rotation number at the fixed point to a ra-
tional number. The second type are responsible of the
islands that can be observed in the phase space. The
other ones produce the twist effect.

6) Twist condition and splitting. Generically, in a
small domain around the elliptic fixed point the rota-
tion number is a monotone function with respect the
radial coordinate. That is, a generic twist condition
holds in a neighbourhood of the fixed point. However,
far from this one the twist condition could be violated.
Figure 1 shows the rotation number of the Hénon map
for α ∈ [0, 0.5], scaled with step 0.01, as a function
of the distance to the origin. The distance between the
hyperbolic and elliptic fixed points of the map is scaled
to be constant equal to one.
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Figure 1. Representation of the rotation number (y-axis) as a func-

tion of the (normalized) distance to the origin (x-axis) for different

values of α (see text). The top one is obtained by taking initial points

on the symmetry axis y = tan(πα)x while in the bottom one they

are taken on the curve y = x2

2
.

In particular, it is observed in figure 1 that the deriva-
tive of the rotation number with respect the radial coor-

dinate is negative for small values of α while changes
its sign for values close to 1/3. In the last case, the
map loses its twist condition in such a form that the
second derivative is positive as can be observed by the
presence of maxima.
Usually, the information that can be obtained about

the torsion of a map is restricted to interpretations of
numerical results as above. Nevertheless, the model
considered is extremely simple and analytical com-
putation of normal form can be carried out. It is
found, in such a way, that the first Birkhoff coef-
ficient of the Hénon map is equal to zero only for
α0 ≈ 0.29021531163. Moreover, b1 is positive for val-
ues α ∈ (0, α0) and negative otherwise. The second
Birkhoff coefficient is zero for α1 ≈ 0.2308206101,
α2 ≈ 0.3137515644 and α3 ≈ 0.3944381765. Refer-
ence [Dullin, Meiss and Sterling, 1999] describes the
behaviour of the first and second Birkhoff coefficients
for the Hénon map.
We are interested in the splitting of the separatrices

associated to the main hyperbolic periodic orbit of a
resonance.
In general, for a generic APM the inner splitting (lo-

cated closer to the elliptic fixed point at the origin) is
different from the outer one. To decide which one is
larger one has to look at the first two derivatives of the
rotation number (of an integrable approximation) with
respect to the radial coordinate, that is, to the torsion of
the map and its first derivative (see [Simó and Vieiro,
in progress]).

7) Meandering curves. Close to the radius where the
twist condition is lost, typically, there is a creation of
meandering curves (see [Simó, 1998]). For instance,
taking α ≈ 0.3 there are two periodic orbits of pe-
riod 10. One of them is located in the region where
the derivative of the rotation number with respect the
radius is positive and the other where it is negative. For
α = 0.299545 it is observed how a meandering curve
is going to be created. Figure 2 shows the meander-
ing curve obtained for α = 0.299544. Moving the pa-
rameter α to be α = 0.299543 the invariant curve is
destroyed.
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Figure 2. Meandering curve found when the twist condition is lost

for α = 0.299544.



As was said before, the splitting depends on properties
of the torsion of the map. In particular, meandering
curves appear in the region of the phase space where
the splitting changes, generically, its behaviour.

3 The global behaviour of a radial weakly dissipa-
tive map

This section is devoted to understand how is the reso-
nance structure of a weakly dissipative map depending
on the dissipation parameter. Along this section a ra-
dial dissipative perturbation is assumed on the system.
For numerical examples we consider the map (1) of the
introduction.
The effect of the dissipation produces a displacement

on the invariant manifolds of the conservative case.
This change can affect a resonance in two different
ways: the homoclinic points of the resonance could dis-
appear or the resonance itself could be destroyed.
Observe that the elliptic fixed point of an area preserv-

ing map T becomes an stable focus due to the dissipa-
tion. Elliptic points inside the resonances change its
topological appearance in the same way. Moreover, in
Birkhoff normal form coordinates the elliptic and hy-
perbolic points of period m of a resonance close to
the fixed point are located on two nearby concentric
circumferences. The evolution of the fixed points of
T m with respect to the dissipation parameter is like ro-
tations in different senses. They collide over a limit
circumference where the points collapse and the reso-
nance is destroyed as a result of a saddle-node bifurca-
tion.

3.1 Existence of resonances: first critical radius
An accurate analysis of the figure 1 provides us with

qualitative information about the shape of resonances
in the phase space. It is observed that taking α close to
zero the system seems to be integrable as it is noticed
by the existence of invariant curves close to the hy-
perbolic point. Furthermore, no resonance is detected
by the numerical method. When crossing a resonance
through an island, as the rotation number ρ is rational,
one should observe the corresponding horizontal line.
Crossing the resonance through a hyperbolic point one
should observe sudden changes of ρ of the typical form
−1/log d where d is the distance to the hyperbolic pe-
riodic point. Of course, close enough to the hyperbolic
point the chaotic behaviour prevents to compute even
an approximation of the rotation number. In particular,
this means that the resonances are very small in this re-
gion (α close to zero) and, consequently, the effect of
the dissipation could destroy them.
The robustness of a resonance under the dissipation

effect depends on the order and the amplitude of the
resonance. It can be proved that the amplitude, in turn,
depends on the order and on the distance to the ellip-
tic fixed point where the resonance is located. More-
over, the distance at which it is located depends on the
properties of the angle of the rotation around the ellip-

tic point (Diophantine conditions) as can be explained
theoretically (see [Simó and Vieiro, in progress]).
In order to clarify the effect of the dissipation on the

resonances table 1 shows, for α = 0.15, how the cor-
responding resonances are destroyed when the dissipa-
tion parameter increases. The disposition of the res-
onances in the phase space is depicted in figure 3. It
is observed, as was stated before, that the destruction
of the resonances depends not only on its position but
on its amplitude. For instance, resonance (2:19) dis-
appears before than resonance (1:7) which is located
closer to the elliptic point.

log10(ε) Resonances destroyed

-6 All inside B0(0.27)

-4.569 (2:19)

-4.625 (1:7)

-3.456 (1:8)

-3.297 (1:9)

Table 1. Considering α = 0.15 fixed, the table contains the val-

ues of the dissipation parameter ε that correspond to a destruction of

a resonance.
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Figure 3. Location of the resonances (1:7), (1:8), (2:17), (1:9),

(2:19) and (1:10) in the phase space (conservative case). The points

correspond to the elliptic points inside each island and the lines join

the points which are in the same resonance.

The example above shows the existence of a radius,
depending on ε, such that inside it no resonance sur-
vives under the dissipation effect. It can be proved for
a generic radial weakly dissipative map the existence
of such a radius. We call it the first critical radius, r∗,
which differentiates qualitative different behaviours of
the map. Inside it all points have as a ω-limit the per-
turbed elliptic point while, outside the ball of radius r∗,
some resonances survive and points could be captured
by the stable foci inside them.
A full theoretical description can be found in [Simó

and Vieiro, in progress]. In particular, the theoretical



approach confirms the general idea explained above.
By computing normal form around the fixed elliptic
point of a conservative generic map, considering an ap-
proximation by a flow and adding the dissipative per-
turbation, it can be obtained the following equation
which defines the first critical radius,

log ε >
m − 2

2
C̃ − τ

(

m − 2

2

)

log m. (5)

Constants C̃ and τ are related with the Diophantine
conditions of α. Constant c depends also on coeffi-
cients of the Birkhoff normal form around the origin.
From the above equation, it can be obtained the min-
imum order of a resonance that is not destroyed, m.
Then, r∗ ≈

√

2c/mτ defines an approximation of the
critical radius.

3.2 The role of the splitting of the conservative
case: second critical radius

Assuming ε fixed, outside the domain where the dissi-
pation destroys the resonances, a finite number of them
survive. Their shape depends on the effect of the dissi-
pation over them. Namely, it is important to distinguish
between the case when no homoclinic points exist and
when some of them survive the dissipation.
Figure 4 illustrates how homoclinic points are de-

stroyed by the dissipation effect. Also it can be ob-
served that different types of trellises are found in this
kind of maps.
Resonances with homoclinic points are found rela-

tively far from the focus fixed point. For a fixed ε there
is a second critical radius, r∗∗, such that in the annulus
of radii r∗ and r∗∗ some resonances survive but they
do not have homoclinic structure. It is clear that if ho-
moclinic points do not exist the dynamics around the
resonance is like the one generated by a flow, that is
a pendulum with torque. This case will be studied in
detail in the next section.
Figure 5 shows the evolution of a resonance with re-

spect the dissipation parameter ε. For ε small the island
is like a periodically perturbed pendulum (1.). Then,
for ε greater the evolution of the island produces an-
other outer splitting (2.). Increasing the parameter the
outer one is broken and the other splitting produces a
change on the shape of the resonance (3.). Finally, the
effect of dissipation destroys the splitting and the reso-
nance is a flow type one, like the one that generates a
pendulum with torque (4.). We remark that this is one
of the possible scenarios of the evolution of the effect
of dissipation. If the inner splitting is larger than the
outer one it would be different.
Let H+ and H− be two consecutive hyperbolic pe-

riodic points of the same resonance strip and let W u
+,

W s
+, W u

−
and W s

−
be the branches of the unstable and

the stable manifolds associated to the points H+ and
H−, respectively. In order to clarify the scenario shown
above table 2 contains the possible situations in the
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Figure 4. From top to bottom, the invariant manifolds close to

a hyperbolic point of the (1:7) resonance for α = 0.17 and

log(ε) = −4,−5.6, and −6, respectively, are represented.
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Figure 5. Scheme of a flow type resonance. The domain of attrac-

tion is clearly determined by the position of the invariant manifolds

of the hyperbolic points of the resonance.

evolution of the resonance. It contains also the tan-
gences that produce different shapes on the resonance
and that correspond to ε = ε1, ε2, and ε3. It is remark-
able the existence of an impossible tangency transition
as it is noted in the table.
For ε fixed, a resonance is of flow type or has homo-



ε 0 > 0 (*) ε1 ε2 ε3 great

W
u

+, W
s

−
i i i i i t - - -

W
u

+, W
s

+ i i i i i i i t -

W
u

−
, W

s

−
i i t or - - - - - - -

W
u

+, W
s

−
i i i t - - - - -

Figure 5 1. 2. 3. 4.

Table 2. Possible situations of the invariant manifolds associated to

two consecutive hyperbolic points H+ and H− of the resonance.

In the table “i” means that we have transversal intersection and “t”

that the two corresponding manifolds have homoclinic tangency. The

symbol “-” denote that no intersection between the manifolds exists.

Observe that the positions (*) are impossible to achieve. Last file is

the correspondence with figure 5.

clinic points depending on both splittings of the con-
servative case, the inner one and the outer one, which,
as was stated before, are generically different. Figure 6
shows the decimal logarithm of both splittings for the
resonance (1:7). It corresponds to the Hénon map (2)
for different values of α for which the resonance ex-
ists and is not very small. The angle of the splitting is
measured on the symmetry axis y = tan(πα)x where
it is located the elliptic point of the resonance. Nu-
merical evidence seems to predict that for most of the
values of α the outer splitting is bigger than the inner
one. Moreover, at least in a first order approximation,
this fact does not depend on the resonance considered
as it is shown in figure 7. Note that this depend on
the properties of the Hénon map, and can change if a
different APM is considered. Nevertheless, we need
to thoroughly examine the splitting of the conservative
case in order to clarify what is observed.
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Figure 6. It is represented, on the vertical axis, the decimal loga-

rithm of the splitting of the resonance (1:7), and on the horizontal

one the value of α. Red line corresponds to the outer splitting while

blue line to the inner one.

Indeed, for a general diffeomorphism it is not neces-
sarily true that the outer splitting is the bigger one. In
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Figure 7. From left to right, it is represented the decimal logarithm

of the splitting of the resonances (1:9), (1:8), (1:7), (2:11), (1:5),

(2:9), (3:10), (2:7), (3:8), (2:5), (3:7) and (4:9), respectively. Each

pair of red and blue lines corresponds to the outer splitting an inner

splitting, respectively, of a different resonance.

fact, this is a property depending on the derivatives of
the rotation number (of a nearby integrable map) with
respect to the radial coordinate as was stated before and
it is illustrated by the following example.
Consider an integrable twist map expressed in

Poincaré coordinates

T :

(

I
θ

)

7−→

(

I
θ + α(I)

)

, (6)

where (I, θ) ∈ (0, 1) × (0, 2π). Assume α(I) = b0 +
b1I+b2I

2, that is, only the first and the second Birkhoff
coefficients are different from zero. Let G denote the
generating function associated to T ,

G(θ̂, I) = θ̂I − S(I), (7)

where S(I) = −b0I − (b1/2)I2 − (b2/3)I3. By per-
turbation of the generating function

G̃(θ̂, I) = θ̂I − S(I) + ε sin θ̂, (8)

we construct a non-integrable map close to T

Tε :

(

I
θ

)

7−→

(

I + ε cos (θ + α(I))
θ + α(I)

)

. (9)

Figure 8 displays the invariant manifolds for the (1:2)
resonance for different values of the parameters of the
model. It is observed that for some values the inner
splitting is greater than the outer one and how chang-
ing torsion coefficients the inner becomes less than the
outer one.
By theoretical approach, following reference [Fontich

and Simó, 1990], generic upper bounds of the splitting
could be obtained. They depend on the derivatives of
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Figure 8. Different splittings observed for the model (9). We have

chosen b0 = 0. For the top picture b1 = 0.2, b2 = 4 and ε =
0.14. The bottom one is obtained choosing b1 = 6, b2 = −2
and ε = 0.14.

the rotation number with respect to the radial coordi-
nate which agrees with what is observed numerically.
For instance, the theory confirms that for the Hénon
map it is easier to observe the outer splitting bigger than
the inner one and, also, that this is due to the fact that
the first and the second Birkhoff coefficients have the
same sign for most of the values of α (see section 2).

4 Behaviour in the flow type domain

This section contains information on the probability
of capture in a flow type resonance. The numerical ap-
proach helps us to understand geometrically how the
capture is produced when the dissipation parameter is
varied.

There is also an interest in studying the map very close
to the conservative case. Observe that, for ε = 0, the
set of points with ω-limit the origin, E, has Lebesgue
measure 0. On the other hand, for ε > 0, if we restrict
the domain around the elliptic fixed point where initial
points are considered to be finite, it has finite positive
measure. The problem of finding which is the limit of
this measure when ε → 0 is also discussed along this
section.

In a more specific way, let C be a rotational invariant
curve of the conservative map and let A be the set of
points located inside the invariant curve. Consider the

set

Γ(F, ε) = {(x, y) ∈ A | ω(x, y) = E} , (10)

for a generic weakly dissipative map F . Then, the limit
behaviour to understand can be expressed as

lim
ε→0

µ(ε) = lim
ε→0

mesL (Γ(F, ε))

mesL (A)
, (11)

where mesL is the usual Lebesgue measure of R
2. The

value of the limit depends on the diffeomorphism con-
sidered and on the invariant curve C.
We conjecture that the probability of capture in a res-

onance when ε tends to zero is the measure of the is-
lands of the resonances of the conservative case plus
the measure of the strips that formed the invariant man-
ifolds. Despite of the amplitude of the strips is close
to zero when ε is very small, the strips accumulate
spiralling around the resonance strip giving rise, on a
small ring around the resonance, to a set which has pos-
itive Lebesgue measure and which has a positive limit
when ε → 0.

4.1 The structure of the separatrices
As it was observed before the probability of capture

by a resonance depends on the position of the invari-
ant manifolds of the hyperbolic points. In fact, they
bound an entrance strip and an exit strip for each island.
Points between the stable manifolds of the same hyper-
bolic periodic point are those that will be captured by
the island, that is, they tend to the periodic focus which
has replaced the elliptic point of the resonance. In par-
ticular, the measure of the set of points with ω-limit
such a focus depends on the amplitude of the entrance
strips (see figure 5 (4.)). Moreover, it can be observed
that the amplitude of the entrance strip is not constant
and increases when approaching, spiralling, to the is-
land where it lands. On the other hand, points between
the stable manifolds of different successive hyperbolic
periodic points will be expelled from the resonance.
It is not easy to understand how these strips travel

away through the phase space as predicts the existence
of points far from the resonance that are captured by
it. This means that the invariant manifolds of a hy-
perbolic point of the resonance must cross other reso-
nances which implies the existence of heteroclinic or-
bits connecting both resonances.
Figure 9 shows how the strips of the eight order res-

onance (red) are folded before crossing the nine order
resonance (blue). We see how the stable manifolds of
a hyperbolic point of the resonance (1:8) must intersect
with one of the unstable manifolds of the hyperbolic
points of the resonance (1:9). In the same way, the un-
stable invariant manifold of the hyperbolic point of the
resonance (1:9) folds when crossing the islands of the
resonance (1:8) embracing each island and intersecting



the stable manifolds that constitute the exit strip. In
particular, a horseshoe is created and, consequently, to
determine the ω-limit of a point of the phase space can
be hard because of the sensitivity to initial conditions.
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Figure 9. Folds of the stable invariant manifolds associated to the

hyperbolic points of the (1:8) resonance (red) when crossing the res-

onance (1:9) (blue) for the Hénon map (α = 0.15, ε = 10−4).

4.2 Measure of the set with ω-limit the fixed point
This subsection is devoted to illustrate the behaviour

of the limit (11) for values of ε going to zero. The limit,
as was observed before, depends on the map and on
the dissipation parameter. On the other hand, we have
shown before how complicated structure provides the
way of pass through a resonance. Nevertheless, a nu-
merical approach let us to understand the probability of
travelling through all the resonances.
In order to get information about the probability of

being captured by the fixed point at the origin and not
for any stable focus of any resonance we iterate a set
of points over the reversibility axis of the Hénon map.
Some points, the closest ones to the hyperbolic fixed
point, escape under iteration far from the neighbour-
hood of the focus fixed point at the origin following the
invariant manifolds of the hyperbolic fixed point. The
other points, the ones which remain inside a ball around
the focus fixed point at the origin, could be captured by
a resonance or could go through them to be captured by
the origin. Figure 10 shows the ratio of the number of
points that are captured by a resonance and the points
that do not leave the neighbourhood of the origin.
The number of points that leave the stable domain

due to the local hyperbolicity provided by the unsta-
ble manifolds of the hyperbolic point depends on the
map considered. That is, it depends on the parameter
α. Figure 11 shows the ratio of the number of points
that are captured in one resonance and the total of iter-
ated points.
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Figure 10. Ratio of the number of points with ω-limit a focus of a

resonance and the number of points inside the stable domain. On the

x-axis is represented the parameter α which defines the Hénon map.

The different curves are obtained for different values of ε: 10−2

(red line), 10−3 (green line), 10−4 (blue line) , 10−5 (violet line),

10−6 (sky blue line) and 10−7 (yellow line).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Figure 11. Ratio of the number of points with ω-limit a focus of

a resonance and the total number of iterated points. On the x-axis

is represented the parameter α which defines the Hénon map. The

values of ε used and the pattern of colours are the same as in figure

10.

A theoretical approach allows us to study the limit
(11) for the flow domain (see [Simó and Vieiro, in
progress], that is, if we restrict the study to the ball
of centre the origin and radius the second critical ra-
dius r∗∗ (see section 3.2). In fact, neglecting the ef-
fect of other resonances different from the main one,
which we assume to be the (q:m) resonance, for a
generic map such that the rotation number at the origin
is α = q/m + δ, we find that the limit of the probabil-
ity of capture in the resonance when ε tends to zero is
of order O

(

δ
m

4
−1

)

. This conclusion seems to back the
conjecture given before because if the resonance in the
conservative case is assumed to be of a flow type the
probability of capture must be equal to 0.



5 Conclusion
Hamiltonian dynamics is usually the first common ap-

proach to real world. However, weakly dissipative dy-
namics provides sometimes a more accurate approach
to describe physical phenomena since effects like fric-
tion or medium resistance could be included in the
model as small dissipative perturbations. In this sense,
the present work examines which structures from the
conservative case remain and how topology changes.
We have displayed the main properties of weakly area

preserving maps by means of a very simple model.
In particular, domains where the map shows topologi-
cally different behaviour have been determined. Inside
each domain a different analytical approach has to be
adopted in order to obtain both qualitative and quanti-
tative information. The Birkhoff normal form around
the elliptic point is the general model to consider.
Flow type resonances can be understood by means of

flow approximation of the normal form as was briefly
explained before. Nevertheless, when the resonances
have homoclinic points flow approximation of the nor-
mal form cannot be considered and one has to deal di-
rectly with the diffeomorphism together with interpre-
tations return maps along the separatrices like the sep-
aratrix map, the standard map, the Arnold map or gen-
eralizations (see, e.g., [Broer, Simó and Tatjer, 1998]),
in order to get qualitative and quantitative information.
The geometrical point of view adopted along this note

becomes a powerful tool to understand birth and death
of chaotic dynamics. On the other hand, the numeri-
cal strategy followed has allowed us to describe global
dynamics and to understand global behaviour and not
only local one. Both approximations together are a
solid basis to develop an analytic theory for weakly dis-
sipative dynamics (see [Simó and Vieiro, in progress]).
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