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Abstract

In this paper, we make a systematic study of the global dynamical structure of the Sun–
Jupiter L4 tadpole region. The results are based on long-time simulations of the Trojans in
the Sun, Jupiter, Saturn system and on the frequency analysis of these orbits. We give some
initial results in the description of the resonant structure that guides the long-term dynamics
of this region. Moreover, we are able to connect this global view of the phase space with the
observed Trojans and identify resonances in which some of the real bodies are located.

Keywords: Frequency analysis, Trojan asteroids, resonances, Arnold web.

Contents

1 Introduction 2

2 Frequency Map and global structure of the phase space 2

3 Analysis of the observed Trojans 9

4 Conclusions 13

References 14
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1 Introduction

The long-term stability of the Jovian Trojan asteroids is a classical problem of dynamical as-
tronomy. In the literature, this question is usually approached using analytical (see [11], [4], [12],
[29], [8]) or numerical methods. Among the numerical studies, two points of view are prominent:

(1) Local approach: Definition and computation of proper elements and proper frequencies. A
synthetic theory for the proper elements was first established by Milani [20, 21]. Later on,
Beaugé and Roig developed a semi-analytical theory for Trojan proper elements [1]. The
question of Trojan proper frequencies was also tackled by [10].

(2) Global approach. Since the work by [17], where the spatial distribution of the escape times
was studied, different attempts to describe the global dynamics of the co-orbital region
have been done: [19], [24] and [30].

In this paper, we try to combine these two different approaches by placing several hundreds
of observed Trojans in the corresponding global dynamical background.

First, we show some initial results of a global and systematic study of the tadpole region
near the Jupiter co-orbital L4 point [26]. We describe some of the families of resonances that are
fundamental to understand the complicated structure underlying the 1:1 mean motion resonance
between Jupiter and a Trojan. The computations are based on the Frequency Map analysis
[15] and the results rely on an estimate of the chaoticity of some relevant slices of the phase
space. These global pictures of the dynamical structure around the L4 co-orbital region and
the knowledge of the specific values of the fundamental frequencies allow us to identify the
resonances that arrange the main structures of the phase space.

Once these global dynamical pictures are obtained, a natural question is what information
they provide concerning the real Trojan asteroids. In this regard, we explain a way of superim-
posing the observed Trojans in these dynamical maps and we are able to identify actual asteroids
inside some of the main resonances of the global pictures.

The simulations are based on a direct numerical integration of the Restricted Four-Body
Problem defined by Sun, Jupiter, Saturn and the asteroid (SJS model). [10] already showed
that for studying the Trojan problem, restricted three-body models are not enough. Moreover,
in [7], some relatively simple semi-analytic four and five body models (3-body models with 2-
dimensional quasi-periodic forcing [9]) were used to study this problem and also proved not
accurate enough for the complete description of the fundamental frequencies of the Trojan
asteroids. Thus, more planetary frequencies have to be taken into account.

In [26], it is shown that the SJS model already captures the main global dynamical structures
of the co-orbital regions. Actually, the addition of Uranus and Neptune to the problem, does not
affect the main features of the phase space, but just shifts slightly the location of the resonances
and makes everything a little bit more unstable [26].

2 Frequency Map and global structure of the phase space

In Figure 1, we show a dynamical map of the tadpole region of the leading Lagrangian point
L4 (similar pictures are obtained in the L5 case). This picture is generated by an integration of
32,000 fictitious Trojans. Their initial semi-major axis and eccentricities are chosen on a grid of
400× 80 points belonging to the domain

(a, e) ∈ A = [5.2035, 5.4030]× [0.05, 0.30], (1)
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Planet freq. (”/yr) Asteroid freq. Min. (”/yr) Max. (”/yr)

n5 109254.63165 ν 7000 9500
n6 43995.34975 g 250 450
g5 4.02760 s −50 10
g6 28.00657
s6 −26.03912

Table 1: Fundamental frequencies. The first two columns show the fixed frequencies used for
the planets; subscript 5 stands for Jupiter and 6 for Saturn. In the last three columns, we show
the minimum and maximum values (for the initial conditions considered) of the frequencies of
the test-particles.

where the points in the mesh are equally separated at a distance of ∆a = 0.0005AU , for the a
axis, and ∆e = 0.003125, for the e axis. The remaining initial elliptic elements are fixed and
equal the following values: σ = λ − λ5 − π/3, σg = $ − $5 − π/3, Ω = Ω5 and I = I5 + 2◦,
where the subscript 5 denotes the elements of Jupiter. The choice of these values is natural if
one realizes that, for the Sun–Jupiter Elliptic Restricted Three Body Problem (ERTBP), the
elliptic elements of the L4 point are: a = a5, e = e5, σ = σg = 0, Ω = Ω5 and I = I5.

The trajectories of these bodies are numerically integrated using a symplectic integrator
of the family SABAn [16] on two consecutive time spans of 5My each. Then, using the Fre-
quency Map Analysis method [14, 15], two determinations of their fundamental frequencies are
associated to every Trojan (one for each time span).

If we assume that the motion of Jupiter and Saturn is quasi-periodic (which is a very natural
assumption on the 10My considered here [14, 27]) the orbit of this planetary system lies on
a 5-dimensional invariant torus, with fundamental frequencies (n5, n6, g5, g6, s6). The two first
frequencies are the proper mean motions (frequencies associated to the orbital motion) of Jupiter
and Saturn, respectively; while the other three are the secular frequencies of the Sun–Jupiter–
Saturn system (see Table 1).

In these conditions, the motion of the asteroid can be seen as a 3-degrees of freedom Hamil-
tonian system with quasi-periodic forcing. This implies that a quasi-periodic trajectory is
parametrized by eight fundamental frequencies. Five correspond to the quasi-periodic forcing
and the remaining three characterize the dynamics of the Trojan [13]. These three fundamental
frequencies (ν, g, s) are respectively the proper libration frequency (connected to the libration
in the 1:1 Mean Motion Resonance (MMR) with Jupiter), the proper precession perihelion
frequency of the asteroid and the one corresponding to its node. They are the image of the
Frequency Map, which can be defined as [15]

Fθ0 : (a, e, I) −→ (ν, g, s), (2)

where θ0 = (λ0, $0,Ω0) is the fixed phase vector given above.
In general, the Frequency Map is a correspondence from an action space to a frequency space

[15]. Even though this is not exactly the case here, our choice of initial phases θ0 makes the
elements (a, e, I) very close to action variables [26]. Thus, we can assume that, at least inside
regular regions of the phase space, the map Fθ0 defines a one–to–one correspondence between the
domain D = A×S (where A is given by (1) and S = I5 + [0◦, 38◦] is the interval of inclinations
considered) and its image F = Fθ0(D). The last three columns of Table 1 give the extremes
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Figure 1: Dynamical map of the tadpole region surrounding L4. It corresponds to a section
of the phase space in the plane (a0, e0) where the other initial elliptic elements are fixed (for
instance, the inclination is I = I5 +2◦). The gray code corresponds to the temporal variation of
ν in logarithmic scale: log δν (units: My−1). The symbols inside the plot indicate main resonant
structures. See text for more details.

of this frequency domain F . For theoretical reasons discussed in [26], the frequency set F is a
representative domain in the sense that the fundamental frequencies of a given Trojan belong to
F , no matter which their initial phases are. This assumption is satisfied for the large majority
of the observed Trojans.

Therefore, the determination of the fundamental frequencies ν, g and s is the key point of
our study. Besides giving an estimation of the diffusion rate used to detect instabilities [14, 28],
it allows us to study the dynamical structures of the frequency space. Indeed, it is in this space
(see Figure 2) that phenomena associated to resonances become clear and are quite easy to
identify [26]. In addition, the fundamental frequencies are considered in Section 3 as proper
elements [20], and are used to locate observed Trojans on our dynamical maps (i.e. Figure 1).

The bodies remaining inside the co-orbital region during the whole integration (10 My)
are colored, in Figure 1, according to the relative variation of the proper libration frequency
δν = (ν1 − ν2)/ν1. Being ν1 (ν2) the determination of the proper libration frequency, ν, on the
1st (2nd) time-interval. The color code goes from dark gray, corresponding to motion close to
quasi-periodic (δν < 10−7), to light gray, for strongly irregular motion (δν > 10−2). The black
points (i.e., the top-right corner of the plot) correspond to initial conditions that escape from
the co-orbital region before the 10 My integration ends.

Given this color code, it is clear from Figure 1 that the instability increases with the distance
from the L4 equilibrium point (placed in the left-bottom corner in this coordinates), ending in
the black region (near the top-right corner). This leads to split this part of the phase space into
three different domains: the escape domain (black), the high diffusion domain, defined arbitrarily
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by δν > 10−3 (light gray to white), and the long-term stability domain, with δν < 10−4,5 (dark
gray).

By comparing this figure (and also Figure 3) with the ones obtained by [30], we note that a
strong correlation exists between the value of δν and the escape time from the co-orbital regions.
More precisely, our high diffusion domain (δν > 10−3) corresponds to an escape time of about
107–108 years, while the escape time inside the long-term stability region is larger than 109

years.
These two domains are strongly interpenetrate. Indeed, Figure 1 shows a kind of Arnold web

made of unstable tongues (light gray) generated by resonances. These structures are practically
isolated at a small distance of L4 and they have a trend to overlap when the distance increases,
until complete overlapping is reached close to the border of the black area. Each one of these
tongues is generated by resonances that can be split in four different families.

Family 1 The first two families belong to a larger class of resonances, which is the one that
gathers the secondary resonances between the proper libration frequency ν and a linear combi-
nation of planetary mean motions. The first family involves the high frequency n5, while the
second family is related to the short period combination n5 − 2n6. Although this distinction in
two different sets is quite arbitrary, it becomes natural if one realizes that the resonances related
to n5 already arise in the ERTBP (or even in the circular one), while, of course, the second
family of resonances only can appear when the perturbation of two planets is considered.

Indeed, in the case of the RTBP (circular and planar cases) the secondary resonances asso-
ciated to n5 take the form:

pν − n5 + g = 0 , with p ∈ {12, 13, 14}. (3)

Since g � ν � n5 (see Table 1), the resonances (3) are isolated and do not generate significant
chaotic behaviors. On the contrary, as soon as a non zero eccentricity is given to Jupiter, the
resonance (3) has to be replaced by the multiplet

pν − n5 + qg = 0 , where q is an integer, (4)

that generates, by overlapping, a large chaotic zone. It is worth to mention that this kind of
secondary resonances can be seen as the overlapping of the 1:1 MMR with the high order reso-
nances (p:p±1). By overlapping, these narrow resonances that accumulate far before reaching
the stable an unstable L3 manifolds (surfaces that separate tadpole orbits from horseshoe orbits,
[25]), generate strong global instability.

The number of harmonics associated to the first family of resonances still increases when
Saturn’s perturbation is taken into account. Indeed, because of the additional secular frequencies
of the planetary system g5, g6 and eventually s6, the resonant relation defining the first family
becomes:

pν − n5 + qg + q5g5 + q6g6 = 0 , with q + q5 + q6 = 1. (5)

Two of the most important contributions of this family are visible in Figure 1. The large gap
above the white region indicated by “B” is generated by (5) with p = 14, while the V-shaped
(large light gray to white) region labeled by “A” is associated to p = 13.

Family 2 The second family in the class of secondary resonances, that we will call secondary
three body resonance, plays an important role in the Trojan swarms. This type of resonance
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appears when the libration frequency ν and the high frequency n5−2n6 are close to commensu-
rability. Among all the possible combinations, the ones that generate large chaotic regions are
given by:

5ν − 2(n5 − 2n6) + pg + p5g5 + p6g6 = 0 , with p + p5 + p6 = −2. (6)

[24] first mentioned the possibility of instabilities generated by this family.
In the same way as in Family 1, because the secular frequency g is more than fifteen times

larger than g5 and g6, a given p defines a multiplet of resonant harmonics. The four widest
regions associated to this family are indicated in Figure 1 by the numbers 0 to −3 corresponding
to the value of the integer p. It is important to mention that these resonances do not come from
the direct action of Saturn, but from the short period perturbations of Jupiter’s orbit due to
Saturn (the same type of effect appears in [6] for a different problem).

Indeed, the frequencies corresponding to n5 − 2n6 and to the Great Inequality 2n5 − 5n6

are associated with terms of large amplitude in the quasi-periodic approximation of Jupiter’s
eccentricity. For small Trojan eccentricity, resonant regions corresponding to different members
of this family are isolated between them. But for larger Trojan eccentricities, these regions
overlap in the neighborhood of the long white half-arch labeled by “α”.

Family 3 This white arch (that cuts the vertical axis at about e = 0.265) corresponds to the
location of the secular resonance s = s6. This resonance, which influence on the Trojans was
already suggested by [31] and studied by [2], [20], [5] and [18] (among others) is known to induce
very strong instabilities in the neighborhood of the long-term stability domain. Indeed, the
majority of the Trojans that enter this secular resonance escape the co-orbital region in a few
tenths of million years. Apart from this first order resonance, a lot of other secular resonances
are present in the Trojan phase space, especially of the form:

qs + q6s6 + p5g5 + p6g6 = 0, (7)

with q + q6 + p5 + p6 = 0 and (q + q6) even.
The significance of the secular resonances increase with the initial inclination of the Trojan,

but even for high inclinations, these resonances are thin and isolated [26]. For instance, the
little quarter of circle in the left bottom of Figure 1, where the diffusion rate is of about 10−5,
corresponds to the location of the sixth order secular resonance 2s− 3g5 + g6 = 0.

Family 4 The two most representative members of the last family are associated to the unsta-
ble structures denoted by “a” and “b” in Figure 1. They penetrate deeply inside the long-term
stability region. These structures, and the other thin curves in the left side of “b”, are generated
by the Great Inequality. From the “frequencies point of view”, this phenomenon leads, inside
the resonance, to the relations:

4g + (2n5 − 5n6) + q5g5 + q6g6 + r6s6 = 0 , with q5 + q6 + r6 = −1. (8)

Contrarily to what happens in Family 1 and Family 2, the relation (8) does not contain the
libration frequency ν and, thus, it is not a secondary resonance of the usual type. Although
these structures seem to be very narrow and isolated, they play an important role in the slow
diffusion process that drives Trojans from the long time stability inner regions to the short time
stability boundary. An example of this transport along resonances is shown in Figure 2 and
discussed below.
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The interest of this family (and to a less extend of Family 2) is enhanced by the fact that
some observed Trojans seem to evolve inside these resonances (see Section 3) and, consequently,
may be subject to long-term transport phenomena.

In order to illustrate that it is in the frequency space where the dynamical phenomena asso-
ciated to resonances can be easily interpreted, we show in Figure 2 the projection on the (g, s)
plane of the image of A× (I5 + 2◦) by the Frequency Map Fθ0 . This plot is the counterpart of
Figure 1 in terms of frequencies.

Figure 2 is made up of a union of curves (more or less smooth) that are the image of the
lines e0 = constant by the Frequency Map. The triangular shape of the picture is explained in
the following way: the upper vertex of the triangle corresponds to the L4 point, and the right
and left edges correspond, respectively, to the line e = 0.05 (eccentricities lower limit) and to
a = 5.2035 AU (semi-major axis lower bound). These curves are smooth in regular regions, but
singularities arise in chaotic zones. Singularities of the Frequency Map are directly correlated
with instabilities of the corresponding trajectories (see [15] for more details).

The resonances of Family 3 and Family 4 are very easy to identify in this plot. The vertical
lines, where frequencies accumulate near g = constant, correspond to Family 4. In particular,
the straight lines marked as “a” and “b” (these resonances are also shown in Figure 1 with
the same labels) belong to Family 4 and clearly are of the form g = constant. Horizontal lines
correspond to Family 3 and are of the type s = constant. In particular, the important resonance
s = s6 (seen in Figure 1 as an arch denoted by α) is easily identified in the central part of the
picture. Note that above this horizontal line the dynamics is more regular than below of it,
where the chaotic and escaping dynamics prevails.

In Figure 2, straight lines with finite (and different from zero) slope also appear. They
correspond to resonances of the type pg + qs + 2n5 − 5n6 + p5g5 + p6g6 + q6s6 = 0 with p + q +
p5 + p6 + q6 = 3 and q + q6 even. These resonances are not discussed in this paper (see [26] for
more information).

Of course, resonances belonging to Family 1 and Family 2 do not appear in Figure 2 as clearly
as the secular ones. Indeed, to identify these resonances, one needs to look at the projection on
the (ν, g) plane. Nevertheless, these secondary resonances appear in Figure 2 as singularities of
the Frequency Map and we have marked them with the same labels as in Figure 1: “A”, “B”,
“0”, “-1”, “-2” and “-3”.

In order to illustrate the influence of Family 4 on the long-term transport from the inner
libration region to the outer unstable zone, we have performed an integration of a fictitious body
with an initial condition satisfying the 4g + (2n5 − 5n6) − g5 = 0 resonance relation (label “a”
in Figures 1 and 2). This particle follows a path along this resonance (downward in Figure 2),
crosses the secular resonance s = s6 and, finally, escapes the co-orbital region. This path in the
frequency space is generated by computing the fundamental frequencies of the body for every
consecutive interval of 5 My and superimposing them (using thick black points) on Figure 2.
This allows to follow its long-term diffusion in the frequency space. During the first 215 My, the
fictitious Trojan stays inside the resonance “a” with the secular frequency s evolving in the range
[−19,−16.72] (”/y) without a well-defined trend. Then, the trajectory leaves the resonance “a”
and wanders around it for the next 100 My (crossing the resonance several times). Meanwhile,
the frequency s decreases from −19 ”/y to −23.5 ”/y. Finally the path crosses downward the
s = s6 horizontal line and the fictitious Trojan enters the large chaotic zone associated to this
resonance, where it remains from the 315 to the 355 My of integration time, before being ejected.
Other examples of diffusion along resonances and connections between them are presented in
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Figure 2: Projection on the (g, s) plane (units: ”/yr) of the image of (a, e, I) ∈ A× (I5 + 2◦) by
the Frequency Map (2). It is in this space where resonances of the third and fourth family are
easy to identify. The labels indicate the same resonant structures shown in Figure 1. The thick
black points correspond to a path of a fictitious body that, starting in the resonance “a” (near
s ≈ −17), is subject to long-term transport along this resonance. This body is ejected from the
co-orbital region after 355 My of integration time. See text for more details.
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[26], showing the implication of the resonant structure in the long-term dynamics of the Trojan
asteroids.

The dynamical role of the four families of resonances presented above depends on the value
of the initial inclination. This is particularly true for Family 3 and Family 4. As we will see in
Figure 3, when the inclination is small, Family 3 resonances seem to be negligible, except for
the important case s− s6 = 0. Then, as the inclination becomes larger, new secular resonances
appear. At I ∼ 12◦, a small unstable region around L4 marks the birth of the resonance
3s − s6 − 2g5 = 0. Similarly, other secular resonances appear for I ∼ 16◦, while the latter
ones move farther from the Lagrangian point. On the contrary, the influence of Family 4
decreases when the inclination, I, is increased. The dynamical implications of this phenomena
are discussed in [26].

3 Analysis of the observed Trojans

Once the global structure is known, it is tempting to locate the observed Trojans in our dynamical
maps (in plots similar to Figure 1). In this regard, we downloaded from [3] their osculating elliptic
elements at the Julian date 2452200.5 (October 10th, 2001) to be used as initial conditions for
the simulations.

Unfortunately, a direct projection of these initial conditions into the dynamical maps would
be meaningless. This is true even if we project in Figure 1 (where recall that I = I5 + 2◦) only
the Trojans with small initial inclination [30].

Indeed, since the initial phases of a given asteroid are, in general, different from θ0 (the
ones that define the Frequency Map (2)), a direct projection would locate the Trojan at the
wrong place (because the global dynamical background would be different from the actual one).
Although this procedure works rather well when the goal is to locate a body on a low resolution
map [30], it fails when we ask for an accurate position of the asteroid, which is precisely what we
need to connect the real Trojans to the narrow dynamical structures like the resonant families
defined in Section 2.

To get rid of this “phase inconvenient”, what we do is to look at the frequency space F . For
every observed Trojan j with initial conditions (aj , ej , Ij) and θj = (λj , $j ,Ωj), we compute
its basic frequencies (νj , gj , sj) = Fθj

(aj , ej , Ij), in the same way as it was done for fictitious
particles in Section 2. As Fθj

(aj , ej , Ij) belongs to F , the quantities that we are looking for are
given by:

(ãj , ẽj , Ĩj) = F−1
θ0

◦ Fθj
(aj , ej , Ij). (9)

This expression is well defined when the Hamiltonian system governing the motion of the Trojans
is integrable. Two trajectories having respectively (ãj , ẽj , Ĩj , θ0) and (aj , ej , Ij , θj) as initial
conditions are generally not the same, but they lie on the same invariant torus and, therefore,
are dynamically equivalent. Thus, our choice (9) is natural in the sense that a frequency vector
is not equivalent to a trajectory but to an invariant torus.

In practice, two main difficulties have to be overcome. The first one comes from the fact
that our Hamiltonian is not integrable on an open subset of the phase space, even though it is
integrable on the Cantor set of invariant tori (this makes Fθ0 well defined on this Cantor set).
In particular, the frequency map Fθ0 has singularities (aseptically in the neighborhood of the
resonances), and, thus, Fθ0 is probably not invertible. The second is that only a finite number
of points of F is known: The domain of initial conditions D is sliced in 20 planes (a, e) for
fixed inclinations I − I5 ∈ S̃ = {0◦, 2◦, 4◦, . . . , 38◦}. For each of these planes, we consider 32,000
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Cat. num. Name p q q5 q6 dist. (”/yr)

1749 Telamon 13 -12 3 10 2.42080e-02
5259 Epeigeus 13 -12 6 7 2.26021e-02

20739 1999XM193 13 -13 4 10 4.05032e-03

Table 2: Family 1. Actual Trojans at a distance smaller than 0.1”/yr of the resonance pν−n5 +
qg + q5g5 + q6g6 = 0.

initial conditions (see Section 2). Thus, D is replaced by the discrete set D̃ containing 640,000
points. The discrete frequency space F̃ = Fθ0(D̃) contains less than 420,000 points, because an
important fraction of initial conditions of D̃ correspond to escaping or very chaotic trajectories,
for which the quasi-periodic approximation is meaningless. Then, for a given actual Trojan, we
can approximate the elements (ãj , ẽj , Ĩj), defined in (9), by the quantities (a∗j , e

∗
j , I

∗) such that
the expression

dj,0 =
∥∥Fθj

(aj , ej , Ij)− Fθ0(a
∗, e∗, I∗)

∥∥
2

(10)

is minimal in the grid D̃ (‖ · ‖2 denotes the euclidean norm in R3).
In Figure 3, we plot these “reference elements” (a∗j , e

∗
j ), corresponding to the observed L4 and

L5 Trojans for which the euclidean norm described above is smaller than 1 ”/yr, on the global
dynamical maps around the L4 point (this is justified by the fact that no significant differences
are found between the dynamical structures of the L4 and L5 tadpole regions). Only the first
10 of the 20 dynamical maps considered are shown.

These pictures show that the majority of the Trojans are inside the long-time stability region
(this was already noticed by many authors: [19], [24] and [30], for instance) and also suggest
that some actual Trojans may stay inside (or very close to) some of the resonances described
in Section 2. This is rather easy to check when one has the basic frequencies of the observed
asteroid.

In Table 2, we show the actual Trojans that, for the SJS system, lie very close (at a distance
smaller than 0.1 ”/yr) to some resonance corresponding to Family 1 (5), up to order 40. The
first and second columns display the catalog number and the name of the particular asteroid. In
the last column of the table, we give the distance to the exact resonance in ”/yr. The remaining
columns are devoted to the multiplet that defines the particular resonance inside the family.

In Table 3, we show the Trojans that, up to order 16, are at a distance smaller than 0.1
”/yr of some resonance corresponding to Family 2 (6). The last column shows the inclination
in which the corresponding asteroid is found in Figure 1 (blank means that the asteroid is at a
distance larger that 1 ”/yr of any of our dynamical maps and, thus, it is not drawn).

In Table 4, we show some of the real Trojans that are at a distance smaller than 0.1 ”/yr of
some representative secular resonance of Family 3 (7). The computations are done up to order
14, and only 10 of the 46 actual cases found are shown. Note that some Trojans (i.e. 7119-Hiera)
may even be very close to a double resonance. Double resonances were already suggested as a
possible explanation for the “stable chaos” of some asteroids found in [20] and mentioned by [5],
for high-order secular resonances.

In Table 5, we show some of the actual Trojans that are at a distance smaller than 0.1 ”/yr
of some secular resonance related to the Great Inequality and belonging to Family 4 (8). The
computations are done up to order 24 and, even though some Trojans are found inside high order
resonances, only the cases close to the largest ones (i.e. (−1, 0, 0), (0,−1, 0) and (−2, 1, 0)) are
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Figure 3: Dynamical maps of the tadpole region surrounding L4 for inclinations going from I5

(left-bottom corner) to I5 + 18◦ (top-right corner). The axis correspond to the semi-major axis
a0 and eccentricity e0 of the particle. The white dots represent the “proper elements” (a∗, e∗)
of the observed Trojans for which the distance dj,0 defined by (10) is smaller than 1 ”/yr. The
white diamonds are associated to the Trojans satisfying the previous condition that moreover
are closer than 0.1 ”/yr of one of the resonances given in Tables 3–5. See text for details.
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Cat. num. Name p p5 p6 dist. (”/yr) I − I5

4035 1986WD 0 6 -8 3.30536e-03
5023 Agapenor -1 2 -3 1.02691e-02
9430 Erichthonios -2 6 -6 1.54293e-02 2◦

9817 Thersander 0 5 -7 2.60215e-02
11554 Asios -1 -3 2 9.33537e-02
13862 1999XT160 -1 7 -8 9.60684e-02
15536 2000AG191 -2 4 -4 3.51934e-02
24426 2000CR12 -1 -3 2 8.88632e-03
24508 2001BL26 -2 6 -6 2.07783e-02 0◦

Table 3: Family 2. Actual Trojans at a distance smaller than 0.1”/yr of the resonance 5ν −
2(n5 − 2n6) + pg + p5g5 + p6g6 = 0.

Cat. num. Name q q6 p5 p6 dist. (”/yr) I − I5

1173 Anchises -5 3 4 -2 9.21333e-02 8◦

3391 Sinon 2 -2 1 -1 6.58920e-02
3451 Mentor -6 4 2 0 9.94339e-02
4138 Kalchas -5 1 6 -2 8.14236e-02 2◦

5023 Agapenor 3 -3 2 -2 3.22054e-02
5126 Achaemenides -2 -2 7 -3 6.49629e-02
5130 Ilioneus -6 4 2 0 6.09600e-02
7119 Hiera 2 -2 1 -1 6.04987e-02
7119 Hiera -7 5 1 1 2.40070e-02
9818 Eurymachos 1 -3 5 -3 3.38956e-02

Table 4: Family 3. Some examples of actual Trojans at a distance smaller than 0.1”/yr of the
resonance qs + q6s6 + p5g5 + p6g6 = 0, up to order 14. In this case, we only show 10 of the 46
Trojans found inside this type of resonances.
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Cat. num. Name q5 p5 p6 dist. (”/yr) I − I5

4057 Demophon -1 0 0 1.91160e-03
4543 Phoinix -2 1 0 6.37993e-02 16◦

5233 1988RL10 -1 0 0 2.73850e-04
5638 Deikoon -2 1 0 2.98601e-02 10◦

5907 1989TU5 -1 0 0 3.46164e-04 0◦

13184 Augeias 0 -1 0 1.31297e-02
13790 1998UF31 -2 1 0 2.45299e-02
14518 1996RZ30 -2 1 0 2.58076e-02
17423 1988SK2 -2 1 0 7.00885e-05 0◦

18228 Hyperenor -1 0 0 1.99257e-03 4◦

Table 5: Family 4. Actual Trojans at a distance smaller than 0.1”/yr of the resonance 4g +
(2n5 − 5n6) + q5g5 + q6g6 + r6s6 = 0, for the cases (−1, 0, 0), (0,−1, 0) and (−2, 1, 0).

shown. Note that some actual asteroids (for instance, 4057–Demophon, 5233–1988RL10, 5907–
1989TU5, 17423–1988SK2 and 18228–Hyperenor) are really very close (distance < 2 × 10−3

”/yr) to one of these resonances. Actually, in some cases, it can be numerically shown that
these particles are captured by these resonances and the period of libration of the critical angle
inside the resonance is about several million years [26].

Finally, let us note that we have found some remarkable examples that are present at the
same time in one of the tables of resonances and in the global dynamical maps of Figure 3
(they are marked with a non-blank last column in Tables 3–5). More concretely, in the 0◦

inclination picture we can identify 24508–2001BL26 (Table 3), and 5907–1989TU5 and 17423–
1988SK2 (Table 5); at 2◦, 9430–Erichthonios (Table 3) and 4138–Kalchas (Table 4); at 4◦,
18228–Hyperenor (Table 5); at 8◦, 1173–Anchises (Table 4); at 10◦, 5638–Deikoon (Table 5) and
at 16◦, 4543–Phoinix (Table 5).

Some of these bodies are inside unstable structures associated to one of the families described
above. These are examples of “stable chaos” [22]. For instance, 4543–Phoinix is in stable chaos
according to [20] and we can locate it in Figure 3 (16◦ case) inside one of the secular resonances.

Moreover, the three asteroids inside the resonance 4g + (2n5 − 5n6) − 2g5 + g6 = 0 that
appear in Figure 3 (17423–1988SK2 (0◦), 5638–Deikoon (10◦) and 4543–Phoinix (16◦)) show
the displacement of this resonance in function of the initial inclination. This resonance exits the
region of stability when the inclination increases. Also, the resonance 4g + (2n5− 5n6)− g5 = 0
follows the same evolution. Two examples of asteroids inside this latter case are: 5907–1989TU5
(0◦) and 18228–Hyperenor (4◦).

A last interesting example that we want to point out is 1173–Anchises (Table 4 and Figure 3
(8◦)). This asteroid lies inside a region of overlapping and it was already in the list of “stable
chaos” in [23]. It is very close to the s = s6 resonance, to a resonance of Family 2 with p = −2
(6) and to a secular resonance.

4 Conclusions

In this paper, we have performed a systematic study of the global dynamical structure of the
Sun-Jupiter triangular regions in the SJS model. Moreover, we have identified and classified in
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four families the main resonances that form the dynamical skeleton and dictate the long-term
dynamics of the Trojan asteroids. In addition, we have shown how to place the actual Trojans
in the global dynamical maps in a consistent way and we have been able to associate some of
them with particular resonances of the four main families.

The method outlined in this paper seems to be very promising in order to study a particular
real asteroid in its dynamical environment. Moreover, once the dynamical maps are computed,
it is easy to add new observed Trojans and, if necessary, easy to increase the number of points
of the domain F̃ (see Section 3) to get a better accuracy of the asteroids locations.

On the other hand, inside regular regions, it is also possible to improve the determination of
(a∗, e∗, I∗) (Section 3) by using interpolation of the n (n > 1) closest points satisfying (10).

Finally, we cannot end the paper without mentioning that to have really accurate results for
the observed Trojans, one should take into account the effect of the four major planets (OSS
model). This is planned as future work.
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