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Chapter 1

Introduction

The last 25 years have produced an explosion in the capabilities of designing and managing libra-
tion point missions. The starting point was the ground-breaking mission of the third International
Sun-Earth Explorer spacecraft (ISEE–3). The ISEE-3 was launched August 12, 1978 to pursue
studies of the Earth–Sun interactions, in a first step of what now is known as Space Weather.
After a direct transfer of the ISEE-3 to the vicinity of the Sun-Earth L1 Lagrange point, it was
inserted into a nearly-periodic halo orbit, in order to monitor the solar wind about one hour
before it reached the Earth’s magneto-sphere as well as the ISEE–1 and 2 spacecraft (which
where in an elliptical orbit around the Earth). After completing some revolutions around the
halo orbit, the spacecraft visited the vicinity of the L2 libration point to explore the magneto-tail
of the Earth. Finally, and after making use of a double lunar swing-by the spacecraft was re-
named as the International Cometary Explorer (ICE) and had a close encounter with the comet
Giacobini-Zinner.

Interest in the scientific advantages of the Lagrange libration points for space missions has
continued to increase and to inspire even more challenging objectives that are reflected, in part, in
some of the current missions such as SOHO, MAP and Genesis. Also, increasing understanding
of the available mission options has emerged due to the theoretical, analytical, and numerical
advances in many aspects of libration point mission design.

The Lagrange libration points are the equilibrium solutions of the Restricted Three Body
Problem (RTBP) which describes the motion of a particle, of very small mass, under the gravita-
tional attraction of two massive bodies (usually called primaries, or primary and secondary). It
is assumed that the particles are in a circular (Keplerian) motion around their centre of masses.
For space missions, the particle is the spacecraft and the two primaries can be taken, for example,
as the Sun and the Earth-Moon barycentre, or the Earth and the Moon.

Since Euler and Lagrange, some relevant solutions of both the General Three Body Problem
and the RTBP are known. For one of these solutions, the three bodies are in the edges of an
equilateral triangle, with the centre of masses at the origin, that can rotate with an angular
velocity that depends on the masses of the bodies and the size of the side of the triangle. Aside
from these triangular configurations, the bodies can also rotate aligned, if the ratio of the relative
distances of one body to the other two verifies some algebraic quintic equation. For the RTBP,
suitable rotating coordinates can be introduced to keep both primaries fixed. In this reference
system, the solutions found by Euler and Lagrange become equilibrium solutions. They are the
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6 CHAPTER 1. INTRODUCTION

so-called Lagrange libration points.
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Figure 1.1: The Lagrange libration points in the usual RTBP synodic reference system and units.

Three of the five libration points lie on the line joining both primaries: one, that is usually
denoted by L1, is between the primaries, and the other two at both sides of the two primaries,
the one closest to the smaller primary is called L2 and the third one L3. The two remaining
equilibrium points, L4 and L5, are in the plane of motion of the primaries and they form an
equilateral triangle with the two primaries (see Figure 1.1).

The Lagrange points offer many new orbits and applications. Around the triangular equi-
librium points, L4 and L5, there are large regions with good stability properties that could be
used as parking regions at which no station keeping is needed. The collinear points, L1, L2 and
L3, generate and control many trajectories with interesting applications to space missions and
planetary science due to several reasons:

• They are easy and inexpensive to reach from Earth.

• They provide good observation sites of the Sun.

• For missions with heat sensitive instruments, orbits around the L2 point of the Sun–Earth
system provide a constant geometry for observation with half of the entire celestial sphere
available at all times, since the Sun, Earth and Moon are always behind the spacecraft.

• The communications system design is simple and cheap, since the libration orbits around the
L1 and L2 points of the Sun–Earth system always remain close to the Earth, at a distance
of roughly 1.5 million km with a near-constant communications geometry.

• The L2 environment of the Sun–Earth system is highly favourable for non-cryogenic missions
requiring great thermal stability, suitable for highly precise visible light telescopes.

• The libration orbits around the L2 point of the Earth–Moon system, can be used to establish
a permanent communications link between the Earth and the hidden part of the Moon, as
was suggested by A.C. Clark in 1950 and proposed by R. Farquhar in 1966.
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• The libration point orbits can provide ballistic planetary captures, such as for the one used
by the Hiten mission.

• The libration point orbits provide Earth transfer and return trajectories, such as the one
used for the Genesis mission.

• The libration point orbits provide interplanetary transport which can be exploited in the
Jovian and Saturn systems to design a low energy cost mission to tour several of their moons
(Petit Grand Tour mission).

• Recent work has shown that even formation flight with a rigid shape is possible using
libration point orbits.

The fundamental breakthrough that has given the theoretical and numerical framework for
most of the mission concepts of the list above is the use of Dynamical Systems tools. Classical
methods can be used only for ordinary halo orbit missions, but all the new concepts require the
more powerful Dynamical Systems methods, in order to get qualitative and quantitative insight
into the problem.

Dynamical Systems Theory, founded by Poincaré by the end of the XIX century, has used
the RTBP as one of the paradigmatic models for its application. Following Poincaré’s idea, that
it is better to study the full set of orbits rather than individual ones, the Dynamical Systems
approach looks at these models from a global point of view. Its procedures are both qualitative
and quantitative and have as their final goal to get a picture, as accurate as possible, of the
evolution of all the states of the system. This full set of states constitutes the phase space. So,
Dynamical Systems tries to get the dynamic picture of the phase space of a given model.

Although the application of Dynamical Systems Theory to space mission design is very recent,
it has already been used in various missions, starting with SOHO and followed by Genesis, MAP
and Triana. In the case of Genesis this approach not only provided a ∆v saving of almost 100 m/s
but also a systematic and fast way to perform the mission analysis, with which it was possible to
easily redefine the nominal trajectory when the launch date was delayed.

Another relevant example of these advantages are the transfers to libration point orbits, for
which previous efforts in its design relied on a manual trial-and-error search followed by and
optimisation procedure. The process can now be addressed in a more meaningful and insightful
manner by introducing the concept, as well as the explicit calculations, of invariant manifolds as a
means to describe the phase space. The result is not only the efficient determination of the desired
transfers, but also the emergence of other trajectory and mission options. By understanding the
geometry of the phase space and the solution arcs that populate it, the mission designer is free
to creatively explore concepts and ideas that previously may have been considered intractable, or
even better, had not yet been envisioned. This has been evidenced recently as studies, ranging
from flying formations of spacecraft near libration points to sending humans further into space,
have been initiated and in fact show great promise.

Beyond baseline trajectory design, of course, other analyses required for any mission can
also benefit from studies of motion in this regime, for example, station-keeping strategies for
various mission scenarios. The techniques, developed using a variety of approaches, have helped
establishing many options that provide robust control scenarios for many or all of the current
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mission scenarios. Some station-keeping methods have also been shown to be applicable for a
more general class of trajectories, i.e., not just libration point trajectories. The availability of
these methods has played an important part in establishing more confidence in mission designers
and managers alike regarding potential real world problems that may arise and the ability to
effectively handle them.

The final goal of this report is to present a study on the implementation of the tools derived
from the Dynamical Systems Theory, taking into account the performance of nowadays computers.
It has been framed in the context of present and future missions, as well as in the current state
of supporting mathematical tools.

The report is structured as follows. In the second chapter we present a gallery of missions
related to libration point orbits including their main paticularities. In the third chapter we
summarise the state of the art in the basic but most important topics related with these type of
missions. Finally, in chapter four we present the ideas we think might be useful and necessary in
the future. These ideas focus on systematising the computation of any type of mission involving
libration points and low energy transfers. The report ends with an exhaustive summary of papers
and other works involving libration point orbits.



Chapter 2

Missions Using the Dynamics of
Lagrange Points

Several spacecraft have previously reached the vicinity of L1 and L2 and, thus, design and analysis
capabilities are clearly available for such missions. In fact, the design strategies used for some
spacecraft launched in the last few years have been very successful, but much more challenging
trajectory goals are already being suggested for the next few decades. Within the last ten years,
new analytical tools have been developed that provide approximations for many different solutions
around the libration points, in a number of dynamical models, and that include various types
of periodic and quasi-periodic motions in their vicinity. The structure of the phase space in the
vicinity of the collinear points has been examined and the fundamental motions (both planar
and three-dimensional) are under investigation. Families of periodic and quasi-periodic orbits
have been determined. These include the periodic halo orbits, as well as Lissajous trajectories
and quasi-halos. The capability to numerically produce these types of motion is an ongoing
development. The local behaviour near these orbits is also of critical importance in any effort
to develop general methodologies for mission analysis and has been the focus of the efforts of a
number of researchers. These studies have been directly responsible for the application of invariant
manifolds to ultimately produce viable transfer trajectories for several missions currently being
planned.

Only a few missions have already used the Sun-Earth libration points. But as we see in Ta-
ble 2.1, in the near future several missions are planned to both the L1 and L2 collinear libration
points. While similar in their orbital dynamical properties, the diversity of the orbits is char-
acterised by their transfers and final orientations and size (amplitudes in each coordinate) in a
Sun-Earth rotating coordinate frame cantered at the libration point. For the International Sun-
Earth Explorer (ISEE-3), the first libration point mission, the complexity of mission design was
handled through a combination of analytical methods that predetermined the required libration
orbit, along with proven operational numerical techniques for targeting and optimisation and
orbit evolution prediction. While the SOHO transfer and mission orbit was similar to ISEE-3,
the station-keeping control method did not follow the same scheme of following a predetermined
analytical path, but the scheme of meeting operational constraints and flying with respect to
a quasi-periodic orbit. ACE, the most recently launched libration orbiter, was again different
because the transfer orbit was optimised for a capture into a small L1 Lissajous orbit which is

9



10 CHAPTER 2. MISSIONS USING THE DYNAMICS OF LAGRANGE POINTS

ISEE–3 (NASA) L1 Earth-Sun 1978 Solar wind, cosmic rays
WIND (NASA) L1 Earth-Sun 1994 Solar wind, Earth magneto-sphere
SOHO (ESA–NASA) L1 Earth-Sun 1996 Solar observatory
ACE (NASA) L1 Earth-Sun 1997 Solar wind, particles
MAP (NASA) L2 Earth-Sun 2001 Background cosmic radiation
GENESIS (NASA) L1, L2 Earth-Sun 2001 Solar wind composition
WSO L2 Earth-Sun 2006 Ultraviolet astronomy
FIRST/HERSCHEL (ESA) L2 Earth-Sun 2007 Infrared astronomy
PLANK (ESA) L2 Earth-Sun 2007 Cosmic microwave background
TRIANA (NASA) L1 Earth-Sun 2008 Earth observation
GAIA (ESA) L2 Earth-Sun 2010-2012 Astrometry
NGST/JWST (NASA) L2 Earth-Sun 2011 Space telescope
Constellation X (NASA) L2 Earth-Sun 2013 X–ray astronomy
DARWIN (ESA) L2 Earth-Sun 2014 Planetary systems
TPF (NASA) L2 Earth-Sun 2015 Planetary systems
SAFIR (NASA) L2 Earth-Sun 2015 Infrared telescope

Table 2.1: Missions to the libration points.

fuel intensive. The WIND mission used multiple lunar gravity assists to minimise fuel cost to
meet scientific requirements.

Unique to upcoming missions are the designs of constrained transfer trajectories and mission
orbits. They are designed to meet both linear and non-linear orbit goals for smaller Lissajous
orbits, to minimise fuel and operational requirements, and to provide formation or constellation
options. Traditionally, libration orbit design has been analysed with a baseline trajectory concept
set in place by project requirements or analytical boundary methods. That is, a trajectory had
been base-lined so that science requirements are met. Future mission design requires a more
generalised approach as operational considerations require the launch window, gravity assist,
transfer trajectories, final orbits, and the number of spacecraft to be as flexible as possible to
optimise science return while minimising operational and launch requirements.
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2.1 Gallery of Missions to the Libration Points

2.1.1 ISEE-3: The International Sun-Earth Explorer 3

Mission overview

• Orbit Halo orbit around the Earth-Sun libration point L1.

Ax = 175000 km, Ay = 666670 km, Az = 1200 km.

• Transfer Direct Transfer, 100 days.

• Launch September 12, 1978

• Launcher Delta rocket #144.

• Mission Investigate Solar-Terrestrial relationships, solar wind, magneto-sphere, and cosmic
rays.

• Operational Lifetime Planned for 4 years, extended in 1981 and renamed ICE. It will
return to the vicinity of the Earth-Moon system in August 2014.

• Manoeuvres

1. 3 trajectory manoeuvres at the transfer (57 m/s).

2. 15 station keeping manoeuvres (30 m/s).

3. Attitude and spin control and an anomalous jet firing (32 m/s).

• Agency NASA

• Web page http://stardust.jpl.nasa.gov/comets/ice.html

Spacecraft

• Mass 479 kg (includes 89 kg fuel at launch.)

• Dimensions cylinder-shaped spacecraft measuring 1.77 m diameter and 1.58 m height.
Twelve thrusters made up of four radial, four spin-change, two upper-axial and two lower
axial jets.

• Structure

• Propulsion Hidrazyne fuel for orbit and attitude control

• Power 173 W

• Attitude Subsystem Spinning spacecraft (20 rpm). Spin axis perpendicular to the ecliptic
plane (allowed deviation ± 1 deg). Redundant pair of high resolution Sun-sensors (accuracy
∼ 0.1 deg).
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Figure 2.1: The ISEE–3: spacecraft and extended mission trajectory. (http://heasarc.gsfc.nasa.
gov)

• Communication Subsystem The tower structure supports the medium-gain S-band an-
tenna. This antenna has a flat, disk-like (”pancake”) pattern that is perpendicular to the
spin axis and has an effective beam-width of 12 deg. Its gain is roughly 7 dB over an
isotropic antenna.

• Instrumentation X-ray spectrometer (University of California) to study both solar flares
and cosmic gamma-ray bursts. Goddard Gamma-Ray Burst Spectrometer (high purity
germanium detector).

Notable remarks

1. First spacecraft stationed in a libration point orbit.

2. First continuous monitor of solar-wind conditions upstream the Earth.

3. First real-time warning system for geomagnetic storms.

4. First use of multiple lunar swingbys for orbital control in the Earth-Moon System.

5. First exploration of Earth’s magneto-tail between 80 and 240 Earth radii.

6. First use of lunar gravity-assist manoeuvre to ”launch” spacecraft towards a body outside
the Earth-Moon System.

7. First encounter with a comet

More about the mission

The International Sun Earth Explorer 3 (ISEE-3) spacecraft was part of a three spacecraft
mission (ISEE 1,2 & 3) whose purpose was to study the solar wind and the solar terrestrial
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relationship at the boundaries of the Earth’s magneto-sphere. After a series manoeuvre and
lunar flybys, ISEE-3 (renamed to ICE) encountered Comet Giacobini-Zinner in 1985 and provided
distance observations of Comet Halley in 1986.

Launched on August 12, 1978, ISEE-3 was placed into a large amplitude class-I halo orbit
around the Sun-Earth L1 libration point. This orbit was selected by two reasons:

1. The orbit passes slightly above and below the ecliptic plane, and easily clears the zone of
solar interference.

2. For a large amplitude halo orbit the ∆v requirements for orbit insertion is significantly lower
(the ∆v cost decreases linearly as the amplitude increases).

ISEE-3 used a tight-control technique to maintain its trajectory close to the nominal halo orbit.
All of the station-keeping manoeuvres were performed with ISEE-3’s radial jets, which could be
controlled more accurately and were better calibrated from the transfer trajectory correction
manoeuvres than were the axial jets. Since ISEE-3’s spin axis was maintained perpendicular to
the ecliptic, all of the station-keeping manoeuvres were in, or parallel to, the ecliptic plane.

In 1981, it was proposed that ISEE-3 be manoeuvred into Earth’s magneto-tail, and then later
towards a comet. On June 10, 1982 the first of these manoeuvre was started which moved the
spacecraft out of its halo orbit were it has orbited for nearly 4 years. Fifteen manoeuvres were
required through the magneto-tail, along with the five lunar flybys to get the spacecraft out of
the Earth-Moon system and on it way towards comet Giacobini-Zinner. The fifth an final lunar
flyby on December 22, 1983, passed only 119,4 km above the Moon’s surface near the Apollo 11
landing site. At this point, the spacecraft was renamed International Cometary Explorer (ICE).

On June 5, 1985, the spacecraft was manoeuvred 26,550 km behind comet Giacobini-Zinner
so that its fields and particles instruments could sample the comet’s tail. ICE approached the
comet at a distance of 7,862 km at its closest approach on September 11, 1985, with a flyby
velocity of 20.7 km/s. Because the spacecraft did not carry any dust protection equipment, it was
expected to suffer some damage during the encounter. However, the spacecraft survived relatively
unscathed.

In 1986, ICE made distant observations of comet Halley on the sun-ward side of the comet. It
flew by a distance of 31 millions km from the comet on March 28, 1986, and provided upstream
solar wind data.

In 2014, ICE will return to the vicinity of Earth were it could possibly be captured for analysis
of its exterior dust impacts.
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2.1.2 WIND

Mission overview

• Orbit Lissajous orbit around Sun-Earth libration point L1.

Ax = 10000 km, Ay = 350000 km, Az = 25000 km.

• Transfer Multiple Lunar Gravity Assist.

• Launch November 1, 1994.

• Launcher Delta II.

• Mission Study the solar wind and its interaction with the Earth’s magneto-sphere.

• Operational Lifetime 3 years. Extended mission since 1997 continues to evolve. WIND
will return to the Earths on November 2008.

• Manoeuvres 685 m/s (allocation cost). During WIND’s nominal mission phase, sixty-two
manoeuvres were executed with a total ∆v of 307 m/s.

• Agency NASA

• Web page http://www-istp.gsfc.nasa.gov/istp/wind/

http://pwg.gsfc.nasa.gov/wind.shtml

Spacecraft

• Mass 1195 kg (includes 300 kg fuel at launch).

• Dimensions cylinder-shaped spacecraft measuring 2.4 m in diameter and 1.8 m in height.

• Structure

• Propulsion Hydrazine propellant for orbit and attitude control.

• Power

• Attitude Subsystem Spinning spacecraft (20 rpm). Spin axis within 1 degree of normal
to the ecliptic. Four 2.2-N thrusters for spin control.

• Communication Subsystem

• Instrumentation Two gamma ray detectors (TGRS, KONUS), radio wave receivers (WAVES,
MFI), and five instruments to measure solar wind properties (EPACT, SWE, SMS, 3-D
PLASMA, SWIM).

Notable remarks

1. Eclipse duration lower to 90 minutes.



2.1. GALLERY OF MISSIONS TO THE LIBRATION POINTS 15

Figure 2.2: WIND spacecraft and nominal orbit (http://www-istp.gsfc.nasa.gov/istp/wind/).

2. Sun-Earth-Vehicle angle > 3o in DLS and > 5o in halo orbit loop

3. Geocentric Ecliptic Latitude < 10o for range < 50o Earth radii.

More about the mission

The Interplanetary Physics Laboratory spacecraft, better known as Wind, was launched on
November 1, 1994, on a mission to study the solar wind and its interactions with the Earth’s
magneto-sphere. Wind is a component of NASA’s Global Geospace Science initiative, an element
of the International Solar Terrestrial Physics (ISTP) Program. Wind’s nominal mission comprised
3 years in a Double Lunar Swingby trajectory, in which pairs of lunar flybys alternately raise
and lower apogee and maintain orbital alignment near the Sun-Earth line. The DLS trajectory
allowed Wind to study different regions of the magneto-sphere and the upstream solar wind with
a minimum of propellant.

Upon completion of its 3-year nominal mission, Wind embarked on an ambitious extended
mission in October 1997. To date, the extended mission has comprised 13 separate phases in-
cluding a variety of orbit types. Wind has made space history on several occasions, holding the
current record for lunar gravity assist flybys -38 so far. In addition, Wind was the first spacecraft
to complete the treacherous Lunar Back-flip Trajectory in April 1999, as well as the first to fly a
distant prograde orbit in August 2000. Wind also utilised high Earth orbits (or ”petal orbits”, as
are they known within the Wind Project) at varying ecliptic inclinations. These different orbit
configurations have allowed the project scientists to expand Wind’s original charter and obtain
measurements in previously unexplored regions of the Sun-Earth environment. Future plans for
Wind include visit L2 and spending considerable time in a Lissajous orbit at the Sun-Earth L1

point.
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Figure 2.3: XY projection in geocentric solar ecliptic coordinates of WIND extended mis-
sion trajectory 1st time back-flip (November 1998-April 1999) and XY projection in L1 ro-
tating libration point coordinates of WIND extended mission trajectory (January 2000-July
2003).(http://fdf.gsfc.nasa.gov/plots.htm).
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2.1.3 SOHO: Solar Heliospheric Observatory

Mission overview

• Orbit L1 Halo orbit,

Ax = 206448 km, Ay = 666672 km, Az = 120000 km.

• Transfer Direct

• Launch December, 2nd 1995

• Launcher Atlas II-AS rocket (AC-121)

• Mission Study the Sun, from its deep core to the outer corona, the solar wind and cosmic
rays

• Operational Lifetime Planned for 2 years, extended in 1997 to 2003, and in 2002 for 4
more years

• Manoeuvres 275 m/s (allocation cost). Total capability 318 m/s

• Agency ESA–NASA

• Web page http://sohowww.nascom.nasa.gov, http://solar-center.stanford.edu/

Spacecraft

• Mass 1853 kg (launch weight), including 610 kg of payload and 251 kg of fuel

• Dimensions 4.3 × 2.7 × 3.65 m
9.5 m width with deployed solar array
21.9 m2 deployed cross sectional area

• Structure Modular, with two main elements: payload module (scientific instruments) and
the services module (thrusters, power, communications, thermal control)

• Propulsion first stage: Atlas sustainer and 2 booster and 4 Thiokol Castor IVA solid rocket
booster (SRB)
second stage: Centaur (2 LO2/LH2 engines)
In-orbit: On board hydrazine thrusters

• Power 1150 W, solar cell array panels

• Attitude Subsystem 3-axis stabilised, one axis always facing the Sun with one arc-second
precision. Attitude stabilisation and pointing control via a closed loop system employing
an inertial reference frame consisting of 3 roll gyroscopes, 4-wheel reaction wheel assembly
for momentum management, a fixed-head star tracker and 2 sun sensors
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• Communication Subsystem S-band, Earth-pointing high gain antenna, 200 kbps during
real time operation, 40 kbps during on-board storage mode transmitting continuously to
the DSN ground stations

• Instrumentation 12 instruments which observe and study the solar corona, solar oscilla-
tions, ultraviolet emissions and solar wind

Figure 2.4: SOHO spacecraft and orbit around L1.

Notable remarks

1. Second mission orbiting L1 to observe the Sun (after ISEE-3)

2. Enlargement of the mission due to perfect orbit insertion with low fuel consumption

3. When in a certain control mode, SOHO is capable of autonomously stabilising its Sun-
pointing attitude using thrusters

More about the mission

SOHO Halo orbit has a period of 178 days (it cycles L1 twice a year approximately). It has
several particular advantages as compared to low Earth orbits (LEO):

1. It provides a smooth Sun-spacecraft velocity change throughout the orbit, appropriate for
helioseismology.

2. It is permanently outside of the magneto-sphere, appropriate for the in situ sampling of the
solar wind and particles.

3. It allows uninterrupted observation of the Sun, appropriate for all the investigations.
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Figure 2.5: SOHO orbit insertion.

The primary mission constraints for the halo orbit were: 1) That the minimum Sun-Earth-
Vehicle (SEV) angle never be less than 4.5 degrees (solar exclusion zone, where strong solar
interference would make communication impossible), 2) That he maximum SEV angle never be
greater than 32 degrees (limit for the High gain antenna). The selected halo orbit fulfils both of
these requirements, with a SEV angle never greater than 25.5 degrees.

This joint ESA and NASA mission has been very successful. Its almost perfect orbit transfer
and insertion have led to a low fuel consumption, which will allow SOHO to complete a 11
year solar cycle around L1. In addition to all solar data gathered by the Observatory, since the
beginning of the observations around L1 SOHO has found more than 620 comets.

However, SOHO has had to face some important problems in his operating life up to now.
In June, 24th-25th 1998 it suffered a loss of communication with the Earth. SOHO’s roll rate
began increasing, and the attitude control failed as it rolled into a tumble while still thrusting.
Fortunately at the time of the loss there was still 206 kg of fuel remaining in SOHO’s tanks,
representing a ∆v capability of 225 m/s to perform correcting manoeuvres. If re-contact and
recovery could not be achieved, SOHO would be flying an uncontrolled, decaying trajectory that
would either escape to heliocentric orbit or fall back to Earth. All that could be done at that
time was to study possibilities for the SOHO mistaken trajectory, and the necessary recovery
manoeuvres for each case. After some weak radio contacts from SOHO and gradually longer
contacts during early August, its position was guessed and attitude control reestablished. Two
recovery manoeuvres were performed on September the 1st and 25th, with a total moderate cost
of 7 m/s. Nevertheless, two of the three roll control gyros were now useless.

Another correcting manoeuvre was necessary in October, and by the last half of November
the situation for SOHO was rapidly improving. A small orbit correcting manoeuvre (10 cm/s)
was planned for December the 21st 1998, when the only remaining gyroscope failed irretrievable.
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The orbital energy was continually increasing, which threatened SOHO to escape into solar orbit.
The mission was again in great danger. Doppler data and Swingby simulations were used to plan
a new ’recovery strategy’, successfully carried out on January the 31st 1999.

Despite all the problems, which account for SOHO’s being one of the most spectacular mission
in the history of space flight, it was estimated to have as much as 145 kg of fuel remaining after
the crisis, representing a ∆v capability of 170 m/s (more than enough to complete the three years
of extended nominal mission). The gyro-less operation has proven to be successful, after all, and
the science achievements of the Solar observatory are immense.
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2.1.4 ACE: Advanced Composition Explorer

Mission overview

• Orbit Lissajous orbit around the Earth-Sun libration point L1.

Ax = 81755 km, Ay = 264071 km, Az = 157406 km.

• Transfer Direct (Constrained), 109 days.

• Launch August 25, 1997.

• Launcher Delta II 7920.

• Mission Measure the composition of energetic particles from the Sun, the heliosphere and
the Galaxy.

• Operational Lifetime There is sufficient hydrazine for ACE to remain in an L1 orbit until
2019, depending of the details of the orbit.

• Manoeuvres Baseline for the launch/transfer trajectory

1. Transfer trajectory insertion (TTI).

2. Orbit Shaping Manoeuvres (OSM) - by Launch+20 days, restricts the Sun-Earth-
Vehicle (SEV) angle.

3. Lissajous Orbit Insertion Manoeuvre (LOI) - at TTI + 109 days, establishes the desired
motion about L1.

Maintenance manoeuvres

1. Station Keeping manoeuvres - once every 8 weeks.

2. Orbit Shaping manoeuvres - once every 3-6 months or as necessary to maintain SEV
angle requirements.

3. Attitude reorientation manoeuvres - once every 5-7 days.

4. Spin rate adjustment manoeuvres - as required.

• Agency NASA

• Web page http://www.srl.caltech.edu/ACE/

Spacecraft

• Mass 785 kg (includes 195 kg fuel at launch).

• Dimensions Two octagonal decks, 1.6 m across, 1.0 m high.
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• Structure Six of the scientific instruments are on the sun-ward deck, two are on side-panels,
and the ninth is mounted on the Y-axis booms. The earth-ward deck has the fixed high
gain antenna for communication.

• Propulsion Hydrazine fuel for insertion and maintenance in orbit.

• Power 443 W, four fixed solar arrays.

• Attitude Subsystem Spinning spacecraft (5 rpm), spin axis aligned within 20 degrees of
the Earth/Sun line. Star Sensor and Sun Sensors.

• Communication Subsystem S-band, 7 kbps (real time), 2 Gbit (total) solid state
recorders.

• Instrumentation Nine instruments that measure plasma and energetic particle composi-
tion, and one to measure the interplanetary magnetic field.

Figure 2.6: Exploded view of the ACE spacecraft structure and projections, in Geocentric Solar Ecliptic
Coordinates (GSE), of the position of the ACE spacecraft (http://www.srl.caltech.edu/ACE/).
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Notable remarks

1. First spacecraft flying in a small amplitude Lissajous orbit.

2. First mission including ”z-axis control” manoeuvres to avoid the solar exclusion zone.

More about the mission

Launched on August 25, 1997, ACE was placed in a modified halo orbit around the Sun-
Earth L1 libration point. This orbits is a “broken Lissajous” approximation to a true halo orbit
providing Sun-Earth-ACE angles of ten and five degrees respectively. The period of this orbit is
about 178 days.

The ACE spacecraft is spin-stabilised at 5 rpm with the spin axis of the spacecraft required
to point within 20 degrees (β-angle) of the Sun at all times, as a result of thermal, power, and
payload considerations. In addition, the High Gain Antenna is required to point Earth-ward
within 4.5 degrees. This two constrains require ACE to perform reorientation manoeuvres as
frequently as every 5 days.

The ACE station-keeping strategy is a loose control virtually identical to that used for SOHO.
The station-keeping technique is a one-dimensional differential correction process in order to
obtain an RLP VX = 0 km/sec at a future Sun-Earth line crossing. The lone independent
targeting variable is the ∆v along the spin-axis. Given the ACE β-angle constraint, 94 % of this
manoeuvres are parallel to the ACE-Sun line.

Due to range ambiguity problems in the tracking systems in 1998 ACE seemed to indicate that
a small, continuous extraneous force of unknown origin was acting on the spacecraft as success
with SOHO.

Another particular concern of the ACE mission is the sensitivity of the science instruments
to the expelled fuel during manoeuvres. It was decided in early 1998 that station keeping burns
would be performed before the ∆v grew to a magnitude of 0.30 m/sec.
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2.1.5 MAP: Microwave Anisotropy probe

Mission overview

• Orbit L2 Lissajous,

Ay = 264000 km, Az = 264000 km.

• Transfer 3 Earth-moon phasing loops, lunar gravity assist to L2

• Launch June, 30th 2001

• Launcher Delta II-7425-10 number 286

• Mission Produce an accurate full-sky map of the cosmic microwave background tempera-
ture fluctuations (anisotropy), the oldest light in the universe

• Operational Lifetime 27 months: 3 months trajectory to orbit insertion + 2 years at L2.
Fuel limit over 3 years

• Manoeuvres Station keeping trim manoeuvres approximately every three months

• Agency NASA

• Web page http://map.gsfc.nasa.gov/

Spacecraft

• Mass 836 kg

• Dimensions 3.6 m (height), the disk in the basis has a diameter of 5.1 m

• Structure Upper part: high gain antennas, data gathering instruments. Middle: thermal
control, thrusters, attitude control. Basis: medium gain antennas, circular solar array panels

• Propulsion Blow-down hydrazine with 8 thrusters

• Power 419 W (solar arrays + battery)

• Attitude Subsystem 3-axis controlled. Attitude control electronics, 3 wheels, 1 gyro,
star trackers, 6 prime and 6 redundant coarse Sun sensors, 2 star trackers. It spins every
two minutes and its spin axis maintains a constant 22.5 degrees angle with the Sun-Earth
line

• Communication Subsystem Two S-band transponders (2GHz), one prime and the other
redundant, with an output power ≥ 5 which receive data from the antennas at all time. Two
omni-directional antennas and two medium gain antennas for high speed data transmission
to Earth
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• Instrumentation A set of passively cooled microwave radiometers with 1.4 × 1.6 m di-
ameter primary reflectors to measure the temperature of the microwave sky to an accuracy
of one millionth of a degree. (Instrument parts: 2 primary reflectors, 2 secondary reflec-
tors, differential microwave receivers, diffraction shielding, thermally isolating cylinder and
passive radiators)

Figure 2.7: MAP spacecraft and orbit.

Notable remarks

1. First mission to use L2 as its permanent observing station, orbits L2 every six months and
requires occasional station keeping manoeuvres (usually about every 3 months to remain in
position)

2. The angle between MAP-Earth vector and Sun-Earth vector must be > 0.5 degrees to
avoid eclipses, and < 10.5 degrees to maintain the antenna angles necessary for a sufficient
communication link margin

3. MAP’s design allows a highly interconnected and redundant set of differential observations
to be made in 5 frequency bands (22 to 90 GHz) to enable a separation of galactic foreground
signal and cosmic background radiation

More about the mission

An orbit about the Sun-Earth L2 libration point provides for a very stable thermal environ-
ment and near 100% observing efficiency since the Sun, Earth, and Moon are always behind the
instruments field of view.

During the phasing loops and until MAP is past the Moon, MAP communicates with Earth
with the use of its transponders and two omni antennas located at the top and bottom of the
spacecraft. On the way to L2, MAP switched to use of the Medium Gain Antennas located at
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the bottom of the spacecraft. Data is transmitted to Earth once per day from L2. On orbit
operations are conducted at NASA’s Goddard Space Flight Center

MAP uses a scan strategy that rapidly covers the sky and allows for a comparison of many
sky pixels on many time scales. To realize the full value of the MAP measurements, sources of
error must be controlled to an extraordinary level. This was the most important factor driving
the MAP design, and led to the following design choices:

• Differential: MAP measures temperature differences on the sky using symmetric microwave
receivers coupled to back-to-back telescopes. By measuring temperature differences, rather
than absolute temperatures, most spurious signals cancel. This is analogous to measuring
the relative height of bumps on a high plateau rather than each bumps elevation above sea
level.

• Sky scan pattern: MAP spins like a top. This observing pattern covers a large fraction of
the sky (approximately 30 percent) during each one hour precession.

• Multi-frequency: Five frequency bands from 22 GHz to 90 GHz allow emission from the
Galaxy and environmental disturbances to be modelled and removed based on their fre-
quency dependence.

• Stability: The L2 Lagrange point offers an exceptionally stable environment and an unob-
structed view of deep space, with the Sun, Earth, and Moon always behind MAP’s protective
shield. MAP’s large distance from Earth protects it from near-Earth emission and other
disturbances. At L2, MAP maintains a fixed orientation with respect to the Sun for thermal
and power stability.
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2.1.6 Genesis

Mission overview

• Orbit Lissajous Orbit around Sun-Earth libration point Point L1.

Ax = 25000 km, Ay = 800000 km, Az = 250000 km.

• Transfer Direct, 83 days.

• Launch August 28, 2001.

• Launcher Delta 7326.

• Mission Collect and return solar wind samples to Earth.

• Operational Lifetime On 8 September 2004 the sample return capsule will re-enter the
Earth’s atmosphere.

• Manoeuvres Genesis ∆v budget estimated

Launch Error Corrections 93 m/s
LOI 6–36 m/s
Station Keeping 24 m/s
Return Station Keeping 45 m/s
Primary Entry Target 4 m/s
Deboost Spacecraft 20 m/s
ACS 71 m/s
Backup Entry 87 m/s
Margin 70 m/s

• Agency NASA

• Web page http://genesismission.jpl.nasa.gov/,

http://www.gps.caltech.edu/genesis/IP.html

Spacecraft

• Mass 636 kg (includes 142 kg fuel at launch).

• Dimensions 2.3 meters long, 2 meters wide spacecraft deck with two fixed solar panels
wings with a total span of 7.9 meters and a sample return capsule mounted on top of the
deck.

• Structure Equipment deck that supports engineering components and the science instru-
ments. The medium-gain antenna is on the underside, and the low-gain antennas are
mounted on the solar winds.
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Figure 2.8: Genesis spacecraft and mission trajectory (http://genesismission.jpl.nasa.gov/).

• Propulsion Hydrazine mono-propellant thruster using a helium pressurant.

• Power 254 W

• Attitude Subsystem Spinning spacecraft (1.6 rpm during solar wind collection, during
manoeuvres, the spin rate will be increased). Spin axis pointing 4.5o ahead of the Sun.
Three axis stabilisation with only a star tracker and two types of Sun sensors.

• Communication Subsystem S-band telemetry reception at 15 kilobits per second during
the halo orbit phase, and 120 bits per second during the cruise and return phases.

• Instrumentation The science payload includes three primary components: the solar wind
monitors (an ion monitor and an electron monitor), five collector arrays, and a concentrator.

Notable remarks

1. First mission designed using modern Dynamical Systems Theory.

2. After launch, only one deterministic ∆v of 6-36 m/s is required for the entire trajectory (for
the insertion in the target orbit).

3. As many as four TCM’s were planned to correct the launch error.

4. About 13 station keeping manoeuvres were anticipated to maintain the L1 libration point
orbit (approximately one station keeping manoeuvre every three months)

5. To avoid battery depletion, a time limit of about 85 minutes is imposed during which the
spacecraft can be more than 30 degrees off Sun.

6. A manoeuvre may be required every day to compensate the approximate one degree pre-
cession angle drift between the spin-axis and the Sun-spacecraft line.

7. Thermal requirements prevent the spacecraft from pointing more than 60 degrees away from
the Sun.
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More about the mission

Genesis has three operations phases: launch segment, acquisition and return leg. The tech-
niques used to design the pieces represent an innovative approach to trajectory design so Genesis
is the first mission designed using modern Dynamical Systems Theory. The near optimal Genesis
trajectory launch segment was obtained using the stable manifold of the nominal Lissajous orbit
and the return leg by using the unstable manifold, in fact, exploiting the homoclinic behaviour
of the L1 and L2 regions (homoclinic and heteroclinic chains).

Launched on August 28, 2001, from Delta 7326 launch vehicle using a Thiakol Star37 motor
as the final upper state. The most important error introduced by the inaccuracies of the launch
vehicle were the velocity magnitude error. In this case the expected error was 7 m/s (1 σ value)
relative to a boost of approximately 3200 m/s from a 200 km circular parking orbit. Due to the
sensitivity to launch errors of the halo orbit missions, this error must be corrected within the first
days after launch. This critical Trajectory Correction Manoeuvre is called TCM1, being the first
TCM of any mission. Since TCM1 was executed so well TCM3 was cancelled (TCM2 and TCM4
were contingency manoeuvres).

Genesis was placed in a Lissajous orbit around the Sun-Earth libration point L1 on Novem-
ber16, 2001, with solar-wind collection starting shortly thereafter, on December 3. The spacecraft
completed five orbits by April, 2004, making approximately two orbits per year. To maintain its
sun pointing, the spacecraft executes an autonomous 1-degree precession manoeuvres each day.
It has three station keeping manoeuvres each orbit. In April, 2004, it departed from the Lissajous
orbit, swings past the Earths (there is no lunar flyby), and passe close to L2 point. This trajectory
puts the spacecraft in position for a daylight re-entry.
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2.1.7 TRIANA

Mission overview

• Orbit L1 Lissajous orbit,

Ax = 264000 km, Ay = 81000 km, Az = 148000 km.

• Transfer Direct transfer (depending on the launcher) from a LEO along an outgoing asymp-
tote, that is essentially in the Earth-Sun line, to the Lissajous

• Launch Winter 2008

• Launcher Space Shuttle preferably. However, other options are being studied (Delta II,
Ukrainian Tsyklon . . . )

• Mission Send images of the nearly fully lit Earth disk in 10 different wavelengths once
every 15 minutes. Educational products

• Operational Lifetime 2 years minimum, 5 year goal

• Manoeuvres 620 m/s (Allocation ∆v)

• Agency NASA

• Web page http://triana.gsfc.nasa.gov/home/

Spacecraft

• Mass Observatory+instruments= 565 kg, spacecraft ejected total mass=2989 kg

• Dimensions

• Structure Two major components: Observatory (science instruments, the Spacecraft Bus,
and the subsystems required to operate the mission and process the data) and the GUS =
Gyroscopic Upper Stage (provides the power and thrust to transport the Observatory from
Low Earth Orbit (LEO) to the Lissajous Orbit Insertion (LOI) point)

• Propulsion Hydrazine: Star-48B kick motor (in GUS)

• Power 1700 W (10 solar cell modules)

• Attitude Subsystem 4 wheels, gyro, star tracker, sun sensors, propulsion module

• Communication Subsystem 100 to 200 kbps down-link / 2 kbps up-link, 1.3 meter
communication high gain antenna and two omni antennas to insure that a communication
link to Triana is always available

• Instrumentation Earth viewing and solar wind instruments (NISTAR radiometer, EPIC
telescope and Plasma Magnetometer Solar Weather Instrument)
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Figure 2.9: TRIANA spacecraft and orbit.

Notable remarks

1. First Earth science mission to take advantage of a Lissajous around L1

2. The satellite is ready to fly, it just needs an adequate ride to space

3. It will use IRIS (Italian Research Interim Stage) to provide the physical supporting structure
for Triana while it’s in the Space Shuttle Payload bay. IRIS spins the Spacecraft up to 60
rpm and then ejects it from the Shuttle

4. In the past, scientists have had to stitch together thousands of measurements from satellites
in low Earth or geostationary orbits to get a perspective comparable to Triana’s

More about the mission

From L1, Triana will have a continuous view of the Sun-lit side of the Earth at a distance
of 1.5 million kilometres. In order to obtain the same coverage with current Earth-observing
satellites in low Earth orbits and geostationary orbits, scientists must manipulate, calibrate, and
correlate data from four or more independent satellites. The full view of the Sun-lit disk of the
Earth, afforded by the L1 location, has tremendous potential for Earth science. Triana will be
the first mission to explore this potential by helping to answer difficult questions facing climate
researchers. For example, scientists still do not accurately know how much of the Sun’s energy the
Earth absorbs, re-emits, and reflects. This common measurement, called the planetary albedo,
is vital for climate research. Unfortunately, it is difficult to measure the Earth’s albedo due to
cloud cover, ice, snow, smoke, volcanic ash, and other factors which cause it to constantly change.
Triana can provide significantly better measurements of global albedo, and can re-determine the
albedo every fifteen minutes, making it a good barometer of global change.

Budget reductions resulted in cutting the number of Space Shuttle missions per year. Thus,
Triana is being kept “in a box” waiting for a travel option. Meanwhile, Triana Project has
explored various expendable launch vehicle options. Delta II ELVs have the capability to boost
Triana directly onto its transfer trajectory, and this seems to be a viable option, as the software
available allowed for a solution to be found concerning the orbit insertion. However, the lack
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of funding on the Triana Project is responsible for this still haven’t come to fruition. A 3-stage
version of the Ukrainian Tsyklon vehicle, being proposed by United Start, would be capable of
putting the Triana/GUS stack into an orbit from which a transfer to L1 would be possible. The
final possibility, and possibly the most difficult to accommodate is Ariane 5. What makes it
difficult is that Ariane’s standard product is a specific geostationary transfer orbit, which would
imply a new transfer trajectory (triangular) to be computed. These trajectory has departing
asymptotes that are much farther off the Earth-Sun line than the baseline trajectory.

To sum up, even though Triana is ready for launch, its future observations being very useful
for Earth-observation educational products and investigation, it is waiting for its opportunity to
fly and follow its L1 libration orbit.
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2.1.8 NGST/JWST: Next Generation Space Telescope

Mission overview

• Orbit Lissajous orbit around the Earth-Sun libration point L2

Ax ' 290000 km, Ay ' 800000 km, Az ' 131000.

• Transfer Direct.

• Launch August 2011.

• Launcher Ariane 5.

• Mission Determine the shape of the Universe, explain galaxy evolution, understand the
birth and formation of stars, determine how planetary systems form and interacts, determine
how the Universe built up its present chemical/elemental composition and probe the nature
and abundance of Dark Matter.

• Operational Lifetime 5 to 10 years.

• Manoeuvres 150 m/s (allocation cost)

• Agency CESA, ESA, NASA

• Web page http://ngst.gsfc.nasa.gov/

Spacecraft

• Mass Approximately 6200 kg, including observatory, on-orbit consumables and launch ve-
hicle adaptator.

• Dimensions 6.5 m primary mirror, comprised of 18 hexagonal-shaped segments. Five-layer
sun-shield, nearly the size of a tennis court.

• Structure NGST has three elements: Optical Telescope Element (deployable optical sys-
tem with diffraction limited by 2 µm), Integrate Science Instrument Module Element, and
Spacecraft Element (highly stable pointing platform)

• Propulsion Hydrazine thrusters for gyro despin.

• Power Solar power.

• Attitude Subsystem The Fine Guidance Sensor is integral to the attitude control system
of NGST, and consists of two fully redundant instruments that will enable precise (3 milli-
arcseconds) pointing of the telescope.

• Communication Subsystem X-band 1.6 Mbps down-link.

• Instrumentation Near-Infrared Multi-Object Spectrometer, Near-Infrared Camera, Mid-
Infrared Camera/Spectrometer.
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Figure 2.10: NGST artistic image and transfer orbit (http://ngst.gsfc.nasa.gov/).

Notable remarks

1. Basic challenges compared to the HST

• Primary mirror ten times larger in collecting area,

• A quarter of the mass (and cost),

• Located far from Earth.

2. Technological Challenges At-A-Glance

• Developing a lightweight, 6-meter-class deployable mirror that will unfold en-route to
its nominal orbit.

• Tennis court-sized deployable sun-shield, which passively cools instruments and other
mechanisms to 35 Kelvin and prevents the electronics from radiating heat and inter-
fering with the collection of extremely faint infrared photons.

• Constructing a highly capable spacecraft that weighs about 5000 kg.

• Building low-noise, large-area detectors.

• Designing, launching and operating JWST at a significantly lower cost than that of its
predecessors.

More about the mission

The Next Generation Space Telescope (NGST), renamed James Webb Space Telescope (JWST)
on September 10, 2002 in honour of James E. Webb, NASA administrator from 1961-1968, is in
many ways a successor to the highly successful Hubble Space Telescope (HST). With a planned
launch in August 2011, the NGST will be bigger and much more powerful than the HST, yet also
cheaper to build and operate.

The powerful observatory’s design features a 6.5 meter aperture primary mirror, comprised of
18 hexagonal-shaped segments. The large-size mirror, which could fit seven HST mirrors within
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its surface area, gives it the light-collecting sensitivity to see objects 400 times fainter than those
currently observed by ground and space-based telescopes.

The telescope’s five-layer sun-shield wild shield the telescope from sunlight and keep it a cold
temperature only 30 degrees above absolute zero. The extreme cold enables NGST to see light in
infrared wavelengths, allowing it to detect light through dense, dusty clouds were star and planet
formation take place.

To fit inside the launch vehicle, an Ariane 5, the large NGST mirror must be folded in
sections for launch, then unfolded (deployed) precisely into places after launch, making it the
first segmented optical system deployed in space. Once in space, the sun-shield that was folded
over the optics during launch wild unfold to its full size and keep the telescope in the cold shadow
of the Sun.
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2.1.9 FIRST/HERSCHEL: Far InfraRed and Submillimeter Telescope

Mission overview

• Orbit L2 large amplitude Lissajous

Ax ' 800000 km, Ay ' 500000 km, Az ' 500000.

• Transfer Stable manifold transfer from ARIANE launch

• Launch 2007

• Launcher ARIANE 5

• Mission Far infrared astronomy. To investigate the history of how stars and galaxies formed
and to study how they continue to form in our own and other galaxies.

• Operational Lifetime At least 3 years, 4 years extended

• Manoeuvres Once it is inserted in the Lissajous, not more than 1 m/s per year of station
keeping ∆v. A manoeuvre once per month

• Agency ESA

• Web page http://www.rssd.esa.int/Herschel/

http://www.space-technology.com/projects/herschel/

Spacecraft

• Mass 2970 kg

• Dimensions 9.3 m high × 4.3 m wide, primary mirror 3.5 m diameter

• Structure Payload module (telescope, liquid helium cooling system, sunshade, support
structures) mounted on top of the services module (power, attitude and orbit control, com-
munications)

• Propulsion

• Power 1450 W (solar panels)

• Attitude Subsystem three-axis stabilised

• Communication Subsystem

• Instrumentation Infrared telescope and 3 scientific instruments: PACS and SPIRE are
cameras to take pictures in six ’different colours’ in the far-infrared. HIFI is a spectrometer
with extremely high resolution

Notable remarks
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Figure 2.11: HERSCHEL (left) and PLANCK (middle) spacecraft and their joint configuration inside
the launcher (right).

1. Accurate orbit selection, according to launch constraints, as well as cheap station-keeping
and eclipse avoidance criteria

2. It is the largest and most advanced infrared telescope ever built and can observe wavelengths
never covered before. Its primary mirror is so large that it cannot be built in one single
piece.

3. The spacecraft design takes advantage of the type of manoeuvres needed to follow the
nominal orbit, which will be all nearly aligned

More about the mission

The design of FIRST/HERSCHEL orbit was constrained in several ways. It had to be an
orbit which can be reached from a maximum mass ARIANE launch, taking into account the Sun
aspect angle during the ARIANE powered ascent and the duration of the eclipse in the transfer.
An specific feature of an ARIANE launch is due to the launch site location, near the equator.
The orbits around L2 lie near the ecliptic plane, so orbits into which ARIANE can deliver large
payloads may not always be suitable for a L2 “cheap” transfer. This led to the class of large size
Lissajous orbits.

In spite of the good observing conditions and stable thermal environment around L2, this
region is dynamically unstable. The escape direction can be computed at every point by linear
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Dynamical Systems Theory (obtaining a fairly good approximation) in order to use it in the
manoeuvres plan. ∆v performance in the non-escape direction will result in a globally cheaper
strategy. All manoeuvres will be nearly aligned or opposite to a direction 28.6 degrees from the
Sun to Earth axis.

The insertion in the orbit also uses Dynamical Systems Theory to minimise fuel consump-
tion, by choosing suitable launch windows. If ARIANE is launched sometime inside these win-
dows, the conditions it reaches touch the stable manifolds of large Lissajous orbits, so that
FIRST/HERSCHEL can approach its planned orbit with near zero cost by travelling along these
manifolds towards its observing location.

Eclipse avoidance when the satellite is orbiting the Lissajous can be achieved by reverting its
velocity at the point with maximum |y| position (ẏ = 0), previous to entering the exclusion zone
(a disk of about 13000 km radius in the yz-plane). However, with a good insertion phase (which
can leave the satellite in a non-eclipse trajectory for about 6 years) these kind of manoeuvres may
not be necessary.
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2.1.10 PLANCK

Mission overview

• Orbit L2 Lissajous, maximum elongation from L2 of 280000 km, Sun-Earth-Spacecraft
angle never exceeding 10 degrees. 6 months period

• Transfer With Herschel. Lissajous amplitude reduction manoeuvre 3 months after launch

• Launch 2007

• Launcher ARIANE 5

• Mission Cosmic microwave background: image the anisotropies of the Cosmic Background
Radiation Field over the whole sky, with unprecedented sensitivity and angular resolution

• Operational Lifetime 21 months (15 months orbiting L2 and collecting data after 6
months transfer)

• Manoeuvres To maintain the spin-axis in the Sun-spacecraft line, approximately 1 ma-
noeuvre/hour of 2.5arc-minutes along the ecliptic plane (most simple law, which may be
modified to fulfil the mission)

• Agency ESA

• Web page http://www.rssd.esa.int/index.php?project=PLANCK,

http://www.jb.man.ac.uk/research/cmb/planck.html

Spacecraft

• Mass 1430 kg

• Dimensions 4.1 high × 4.2 diameter (m)

• Structure Payload module (telescope, focal plane unit, cryogenic radiator baffle) and ser-
vices module

• Propulsion

• Power 1655 W

• Attitude Subsystem Uses gyroscopic rigidity (spin-stabilisation) not passive but with an
on-board capacity for decision and control. Low spinning system (1 rpm), the spin axis is
displaced approximately 1 degree per day in the direction of Sun-Earth rotation

• Communication Subsystem Collects data in a solid state recorder and down-link it to
ground station 3 hours/day. Spacecraft not reoriented towards the Earth, thus the telemetry
antenna is designed to have and adequate gain within a 10 degrees half-cone from the spin
axis to achieve full band width even in the extremes of the orbit
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• Instrumentation A telescope for microwave observations, LFI (low frequency instrument)
which collects data in 4 frequencies from 30 to 100 GHz, HFI (high frequency instrument)
in 6 frequencies from 100 to 857 GHz

Figure 2.12: HERSCHEL and PLANCK orbit.

Notable remarks

1. Launched together with Herschel, it will need an additional manoeuvre to enter its small
size Lissajous around L2

2. Planck’s observations will help to answer questions such as - how did the Universe begin,
how did it evolve to the state we observe today, and how will it continue to evolve in the
future.

More about the mission

Planck will be delivered by ARIANE into the stable manifold of a Lissajous orbit of large
size, together with Herschel (during the launch Planck is on place of the lower passenger, inside
of a launcher adapter). It will have to be manoeuvred from there to an orbit with a smaller size.
The amplitude reduction manoeuvres will be in the plane spanned by the non escape direction
in the xy-plane and by z. Since the motion in the xy-plane and the motion in the z-plane are
decoupled, the problem of finding a cheap reduction manoeuvre can also be decoupled. The cost
and availability of a combined manoeuvre obtained by vector addition can be studied afterwards,
to suit the mission constraints.

Planck Surveyor will observe the whole sky at least twice at all nine frequencies over two
separate six month periods, and after about 18 months in orbit the data will be combined into
maps of the microwave sky at the various data processing centres situated around Europe. It
is important to have redundant observations (same regions of sky observed several times and in
different satellite attitudes) to remove systematic effects.
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2.1.11 GAIA

Mission overview

• Orbit L2 Lissajous, approx. square Ay=Az=110000 km

• Transfer First inserted in a circular orbit of 51.8 degrees inclination, 190 km altitude. A
second burn, with or without lunar gravity assist (which could save about 50 m/s), will
insert GAIA to its orbit around L2

• Launch 2010-2012

• Launcher Soyuz-Fregat

• Mission Galactic structure, astrometry: measure the positions of an extremely large num-
ber of stars with unprecedented accuracy. Clarify the origin and history of our Galaxy, by
providing tests of the various formation theories, and of star formation and evolution.

• Operational Lifetime 5 years planned (220-240 days transfer + 4 years observations). 6
years extended

• Manoeuvres 180 m/s (for a 6 months launch window)

• Agency

• Web page ESA http://www.rssd.esa.int/gaia/, http://www.esa.int

Spacecraft

• Mass 3137 kg (payload = 803 kg, service module = 893 kg, system margin (20%) = 339
kg, fuel = 1010 kg, launch adaptor = 92 kg)

• Dimensions payload: diameter = 4.2 m, height = 2.1 m; service module: diameter = 4.2
m (stowed)/8.5 m (deployed), height = 0.8 m. 9 m width with solar array deployed

• Structure Hexagonal conical shape which consists of: payload module (top) and service
module. In the basis, 6 deployable solar array panels and a sun-shield

• Propulsion Chemical bi-propellant propulsion (transfer phase). Redundant set of FEEP
thrusters once in L2

• Power 14 A/h lithium-ion battery launch and early operations. Once in orbit 2569 W
(payload = 1528 W, service module = 641 W, harness losses = 76 W, contingency (10%)
= 224 W

• Attitude Subsystem 3 Sun acquisition sensors + 1 gyro provide spin-axis (5 rpm) sta-
bilisation during the transfer phase. For the 3-axis stabilised phase, it uses a large field of
view star tracker plus the main instrument sky mappers and electrical (FEEP) thrusters
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Figure 2.13: GAIA spacecraft and observable sky schematic representation.

• Communication Subsystem Continuous payload data rate of about 1Mbps. Down-link
to Earth stations 8 hours a day, X-band 3 Mbps capacity

• Instrumentation Two astrometric telescopes with a common focal plane and a spectra
telescope comprising a radial velocity spectrograph and a medium-band photo-meter

Notable remarks

1. Eclipse avoidance manoeuvres as planned for Herschel and Planck are not possible for GAIA,
because of the extreme low thrust level of the electric propulsion system

2. GAIA will rely on the proven principles of ESA’s Hipparcos mission, and take them to an
enormous degree of accuracy using the technology available

More about the mission

The selection of the orbit arises from a trade-off between communication, operations, cost,
thermal environment, and accessibility with current rockets.

The system fits within a dual-launch Ariane 5 configuration, without deployment of any
payload elements. The telescopes are of moderate size, with no specific design or manufacturing
complexity.

GAIA will be a continuously scanning spacecraft, accurately measuring one-dimensional co-
ordinates along great circles, and in two simultaneous fields of view, separated by a well-defined
and well-known angle (these one-dimensional coordinates are then converted into the astrometric
parameters in a global data analysis). The method used by GAIA to compile its 109 star cata-
logue will be measurements of stellar parallax, that is the apparent angular movement of a star in
the sky when observed from opposite sides of the Earth’s orbit around the Sun. However GAIA
will make these measurements with astounding accuracy, up to 10 micro-arc-seconds (about 3
billionth of a degree) due to its stable position in space and the freedom from distortions induced
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by the shimmering atmosphere of Earth. Such accuracy will allow astronomers to compile the
most detailed 3-D model of the distribution of stars in our Galaxy ever obtained.

Yet there is more to GAIA than just measuring the position of stars. The photometric
detectors used by the spacecraft telescopes will also measure the brightness of the stars in up to
18 wave-bands. The spacecraft will also study the amount of red-shift or blue-shift of the light
to assess the rate at which the star is approaching or receding from Earth. These measurements
will reveal many of the essential properties (e.g. age, mass, true luminosity) of the stars allowing
astronomers to refine theories of how stars evolve.

GAIA will also detect subtle changes in the brightness of stars and small wobbles in their
position. Such variations may reveal the presence of extra-solar planets passing in front of the
star, blocking its light, or by pulling on the star as they orbit. It is thought that up to 30000 new
worlds may be detected. GAIA will also look at objects much closer to home with astronomers
expecting the instruments to detect up to a million asteroids and Kupier Belt objects during their
survey of the sky.
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2.1.12 Constellation X

Mission overview

• Orbit L2 Lissajous orbit. Constellation in loose formation

• Transfer Lunar gravity assist with phasing loops

• Launch 2013

• Launcher Atlas V-500 / Delta II / Delta IV

• Mission X-ray astronomy (black holes, Einstein’s theory of general relativity, galaxy for-
mation, evolution of the universe, recycling of matter and energy, nature of dark matter
. . . )

• Operational Lifetime 3 years minimum, 5 years goal

• Manoeuvres 150-250 m/s (allocation cost)

• Agency NASA

• Web page http://constellation.gsfc.nasa.gov/

Spacecraft

Baseline
Configurations GSFC/SAO TRW Ball Aerospace

spacecraft 4 3 2
mass (kg) 1450 3700 –
structure bus+payload bus + EOB + FOB, temperature

(EOB 1,telescopes) solar arrays separation of components
launcher Delta II Delta IV-Medium EELV (US Air Force)

propulsion – bi-propellant (transfer) –
hydrazine only (once in orbit)

power – 1700 W –
communication – X-band,up-link at 2kbps, –

return data 1Mbps

Table 2.2: Possible configurations for each spacecraft of the constellation. See Figure 2.14.

Notable remarks

1. Multi-satellite design saves money and reduces risk

2. The constellation will collect more data in an hour than they would have collected in days
or weeks with current telescopes, with a sensitivity 100 times greater
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Figure 2.14: From left to right: GSFC/SAO, TRW and BALL AEROSPACE baseline configurations
for Constellation X spacecraft.

More about the mission

The satellites are light enough to be launched individually or in pairs. Depending on the chosen
configuration and launcher, from 2 to 4 launches will be needed to put the whole constellation in
orbit. This yields a more difficult orbit and station keeping design, while reducing costs and risk,
as the use of multiple telescopes allows each of them to be cheaper than a huge one, and the need
for several launches reduces the probability of total failure of the mission.

The spacecraft will be inserted into the Lissajous orbit via a lunar swingby. The lunar swingby
is necessary in order to reduce the amount of on-board ∆v. To increase the number of launch
opportunities, a number of phasing loops will be performed prior to the lunar swingby.

The mission separations between the flotilla are not determined but initial goals indicate
separations of greater than 50 km but less than 50000 km.

The main scientific observation constraints to be taken into account are: 90% of the sky must
be accessible at least twice a year, with viewing windows not shorter than 2 weeks in duration.
100% of the sky available at least once a year, viewing window of 1 week.

Figure 2.15: Artist impression of the whole Constellation-X fleet.
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2.1.13 WSO: World Space Observatory

Mission overview

• Orbit L2, halo type of max. amplitude 800000 km

• Transfer via a 3 months transfer from a LEO (200 km) into Earth’s escape to L2

• Launch mid 2006

• Launcher Proton-block DM (other option: Ariane 5)

• Mission Astronomy in the ultraviolet wavelength range to study planets (atmospheric and
ionospheric conditions), stars, comets, asteroids and galaxies. Long term study of black
holes. Search for planet candidates. Study of star formation.

• Operational Lifetime 5 years nominal mission duration (10 years design lifetime)

• Manoeuvres main ∆v=75 m/s at the beginning of cruise (80% of propellant mass used).
Enough propellant left for a 10 year mission almost without intervention

• Agency International endeavour

• Web page http://wso.vilspa.esa.es/

Spacecraft

• Mass 3456 kg

• Dimensions 8.5 m height, SVM 3.1 m × 2.8 m × 1.1 m, 21 m2 of deployable and fixed
solar arrays

• Structure Modular: Service module, telescope, optical bench

• Propulsion Highest instruments throughput 9.51Mbps. Data acquisition per day 32Gbits
(worst scenario. On board capacity of data acquired during 2 days. Ground: Transmission:
7190-7235 MHz frequency band, and antenna gain 57 dBi. Reception: 8450-8500 MHz, 60
dBi

• Power Batteries (first part of the mission): power required 313 W, capacity 7 Ah (in case
of an Ariane 5 launch, capacity must be enhanced to 14.2 Ah due to a longer eclipse during
orbit insertion). Solar cells (6): power supplied per cell = 400 W, power required = 282.5
W (excess of power used to re-charge batteries)

• Attitude Subsystem Hydrazine reaction control system combined with control wheels
for control actuation, star trackers and fine guidance sensors
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• Communication Subsystem 1 X-band high gain antenna (HGA) and 3 fixed X-band LGA
(low gain antenna). Down-load 32 Gbits per day, transmission time of 8 hours (constrained
to 1.5 Mbps, project design uses an average of 1.1Mbps as the down-load data rate). Up-link
4 kbps

• Instrumentation Telescope (with primary and secondary mirror systems), UV spectro-
graph, UV imager

Notable remarks

1. The WSO concept is aimed at promoting an international cooperation in the field of As-
tronomy/solar system missions in the UV frequency range

2. In the selected orbit, the spacecraft completes the celestial sphere within one year

Figure 2.16: WSO spacecraft.

More about the mission

WSO capabilities will fill a hole in the collection of astronomical data, which cannot be filled
by any other observatory, neither in the ground nor in space.

The World Space Observatory will create opportunities for participation of all countries of the
world, even without the need for excessive investment.

The main advantages of choosing a very big orbit around L2 were the lack of eclipses, (com-
pared to, for example, a highly inclined eccentric orbit), and the free observing environment,
contrary to the large portion of celestial sphere which is not accessible at any time for a circular
orbit of 50000 km to 80000 km of altitude, due to the Sun, Earth and Moon.
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2.1.14 Darwin

Mission overview

• Orbit L2 halo orbit

• Transfer Direct

• Launch January 2014

• Launcher Ariane 5

• Mission To look for Earth-like planets, and signs of life on them, and to provide imaging
of space in the 5 to 28 micron band

• Operational Lifetime Five years

• Manoeuvres

• Agency ESA

• Web page http://sci.esa.int/science-e/www/area/index.cfm?fareaid=28

Spacecraft

• Mass 4240 kg

• Dimensions Master satellite: 1 m sided cube, each telescope at least 1.5 m in diameter
(possibly 2.8 m long × 1.7 m wide, constrained because the eight spacecraft must fit in the
nose of Ariane 5 rocket)

• Structure Flotilla of six space telescopes, the hub and the master spacecraft (8 total). The
hub will be six sided, so that each side of the central spacecraft will always face one of the
free-flying telescopes

• Propulsion Ion engines (corrosive) or squirting cold gas out of the thrusters

• Power

• Attitude Subsystem Field Effect Electrical Propulsion (FEEP) for in-flight alignment
manoeuvres, controlling the spacecraft to nanometric optical path differences and milliarc-
second pointing accuracies. The master satellite is expected to detect deviations of the
flotilla by means of radio and laser transmitters, and emit the corresponding correction
orders

• Communication Subsystem In the master satellite

• Instrumentation Under investigation (active optics control, achromatic phase shifters,
detecting and cooling systems, fibre-optic wavefront filtering...)
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Figure 2.17: Darwin configuration and detail of a telescope.

Notable remarks

1. The six telescopes will be placed around L2 in a hexagonal formation, with the hub in the
center and the master satellite behind

2. NASA is planning a similar mission (Terrestrial Planet Finder). Maybe the final project
will be a joint Darwin/TPF, with collaboration of other countries such as Russia and Japan

3. Investigations are still going on, in order to see whether there is a way to achieve the same
scientific results using 4 free-flying telescopes instead of 6

More about the mission

Darwin will observe in the mid-infrared. Life on Earth leaves its mark at these wavelengths,
so they are good places to look for fingerprints of Earth-like planets and life. In addition to
searching for planets, it is designed to provide images with 10 - 100 times more detail than can be
achieved now (similar technology as Hubble telescope). Darwin will also provide detailed images
of other objects, such as galaxies. Peering into these galaxies it may even “see” black holes. Its
observing window will be a cone of about 45 degrees off the anti-Sun direction.

The central spacecraft, the hub, does not observe the stars itself but collects and combines the
light from the six telescopes. This is known as interferometry. In order to cancel the starlight and
don’t let it overwhelm the planet’s weak gleaming, the light collected by some of the telescopes
will be very slightly delayed before it is combined. This way, starlight is cancelled. Light from
planets is not affected by the delay and can be seen. At the beginning it was supposed to carry
the antenna to communicate with Earth. However, moving the antenna to keep Earth in sight
would cause disturbances to the sensitive optical systems on-board. So, the master satellite had
to be added to the flotilla.

During observation time, the telescopes and the hub must stay rigorously in formation. A
deviation of more than just thousandths of a millimetre will ruin the observation. To achieve
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this accuracy, ESA will rely on an enhanced variation of the GPS (Global Positioning System).
Each of the spacecraft will be equipped with radio transmitters and a number of receivers. If any
spacecraft begins to drift, this will show up immediately in the time it takes for signals from the
other spacecraft to reach its various receivers. On board computers will then quickly compute
the tiny thrust needed to correct for this and activate the propulsion system. The master satellite
has an own propulsion system, which allows it to be placed behind the others, detect and solve
possible separations.

SMART-2 (launch: 2006) will consist of two spacecraft to demonstrate the formation flying
that is essential to the success of Darwin’s fleet. In addition, some other technologies are still
being developed for Darwin, for instance the cooling system which will maintain the telescopes
within 20-30 K, to avoid their own heat radiation to obstruct the observations.
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2.1.15 TPF: Terrestrial Planet Finder

Mission overview

• Orbit Lissajous Orbit around the Sun-Earth libration point L2

• Transfer

• Launch

• Launcher 2012-2015

• Mission Ariane 5, EELV, or Delta IV Heavy.

• Operational Lifetime To search for Earth-like planets that might harbour life. TPF will
take family portraits of stars and their orbiting planets and determine which planets may
have the right chemistry to sustain life.

• Manoeuvres Five years mission duration.

• Agency At the data collection phase the formation drift along the slides of a regular N -gon,
with manoeuvres at the corners of the polygon.

• Web page NASA, ESA http://planetquest.jpl.nasa.gov/TPF/tpf index.html

www.terrestrial-planet-finder.com

Spacecraft

• Mass Combiner 687 kg, outer collector 731 kg, Inner collector 713 kg.

• Dimensions

• Structure Four-element linear array of 3.5 meters free-flying telescopes equally spaced
along the interferometer baseline, and one combiner located at the vertex of an isosceles
triangle formed with the two inner collectors.

• Propulsion Electric propulsion (mini-hydrazine, hot gas, or heated hydrogen are also under
consideration).

• Power Fixed solar arrays.

• Attitude Subsystem Fine guidance sensors. Reaction wheels, with vibration isolation,
are used for momentum accumulation and slewing. Six degree-of-freedom attitude and
translation control of each spacecraft, using bi-directional arrays of micro-thrusters and
vibration free magnetic-bearing reaction wheels.

• Communication Subsystem Combiner 986 W, outer collector 568 W, inner collector 568
W (averaged power).
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Figure 2.18: Artist’s concepts of TPF-I (left) and TPF-C (right) (http://planetquest.
jpl.nasa.gov/TPF/tpf architectures.cfm).

• Instrumentation four telescopes, the beam combining apparatus and astronomical instru-
mentation.

Notable remarks

1. Distributed sensing-and-control autonomous formation flying approach is used

2. Determination of relative position knowledge to ±1cm, relative velocity to ±0.1mm/s, and
attitude knowledge to ±1 arcmin.

3. To minimised off-axis aberration, the telescopes keep pointed to within approximately one
arcsecond of the target star.

4. Diffraction-limited at 2 µm, operating at < 40K.

5. Baseline from 75 to 1000 m.

6. Angular resolution of 0.75 milli-arcsec (3 µm at 1000 m baseline).

More about the mission

The Terrestrial Planet Finder (TPF) is a spacecraft based infrared interferometer that will
combine high sensitivity and spatial resolution to detect and characterise approximately 150
planetary systems within 15 pc of our Sun. In a five year mission, TPF will look for the atmo-
spheric signatures of life using the methods of planetary spectroscopy and long-baseline stellar
interferometry.

The technological challenges for this mission include the need to control the separated tele-
scopes and their delay lines to produce a stabilised interference patter, and to control the fringe
pattern to suppress or “null” the light from the parent star relative to the light from the planet.
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Several of the contractors involved in the architecture studies have focused their attention
on the design of a single large aperture optical telescope equipped with a chronograph and a
high performance adaptive optics system. Whereas this approach is unlike proposed, it would
be competitive if it could be shown capable of detecting Earth-like planets and meet the other
science goals of the TPF program.

Included in the nation’s new vision for space is a plan for NASA to “conduct advanced
telescope searches for Earth-like planets and habitable environments around other stars.” To
meet this challenge, NASA has chosen on May, 2004 to fly two separate missions with distinct
and complementary architectures to achieve the goal of the Terrestrial Planet Finder. The two
missions are:

• Terrestrial Planet Finder-C: a moderate-sized visible-light telescope, similar to the 4-
by 6-meter (13.1- by 19.6-foot) version currently under study, to launch around 2014. On-
board corona-graph instrumentation will use a central disc and other specialised techniques
to block the glare of a star, allowing detection and characterisation of dimmer planets
around it.

• Terrestrial Planet Finder-I: multiple spacecraft carrying 3 to 4 meter (9 to 13 foot)
infrared telescopes flying in precise formation, to launch before 2020, and to be conducted
jointly with the European Space Agency. Combining the infrared, or heat radiation gathered
by the multiple telescopes, using a technique called interferometry, will simulate a much
larger telescope. This will enable the mission to detect and study individual planets orbiting
a parent star observed by TPF-C and also new ones beyond the reach of TPF-C.
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2.1.16 SAFIR: Single Aperture Far-Infrared Observatory

Mission overview

• Orbit Sun-Earth L2 point.

• Transfer

• Launch 2015-2020.

• Launcher

• Mission Probe the epoch of reionization due to the first stars when the Universe was less
than 1/20 its present age, trace the formation and evolution of star-forming and active
galaxies since their inception, explore the connection between black holes and their host
galaxies, reveal the details of star and planet formation in nearby debris-disk systems,
search for and quantify prebiotic molecules in the interstellar medium.

• Operational Lifetime Five years.

• Manoeuvres

• Agency NASA

• Web page http://safir.jpl.nasa.gov/

Spacecraft

• Mass

• Dimensions Primary mirror diameter 10 m with a wavelength coverage from 20 microns
to 1 mm.

• Structure two promising architectures: conventional telescope with segmented fractionary
mirrors and a new concept called the Dual Anamorphic Reflector Telescope (DART).

• Propulsion

• Power

• Attitude Subsystem

• Communication Subsystem While the communication segment baseline for SAFIR is
the set of DSN antennas, a dedicated ground station would also meet SAFIR’s modest
down-link needs if a larger antenna and/or higher transmitting power were implemented on
the Spacecraft.

• Instrumentation Background-limited detector arrays with thousands of pixels for broad-
band imaging over the full wavelength range, moderate resolution spectrometers with back-
ground-limited sensitivity and near-unit fractional bandwidth, heterodyne spectrometers
tunable over the full wavelength regime with quantum-noise limited performance.
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Figure 2.19: A SAFIR concept based on the segmented-mirror technology to be employed for the
JWST (link). The telescope (in the lower left) would be composed of several mirror segments. Multiple
layers of shielding would block the sun’s heat and allow the cryocoolers to keep the telescope at a
temperature of 4 K (http://safir.jpl.nasa.gov).

Notable remarks

1. Large, cryogenic deployable mirrors.

2. Long-life cryocoolers capable of reaching 5 K.

3. Background-limited direct detectors for both continuum and spectral observations.

4. Quantum-noise-limited heterodyne spectrometers tunable over the far-IR spectral region.

More about the mission

SAFIR is a large (10 m-class), cold (4-10 K) space telescope for wavelengths between 20 µm and
1 mm. It will provide sensitivity of a factor of a hundred or more over that of SIRTF and Herschel,
leveraging their capabilities and building on their scientific legacies. Covering this scientifically
critical wavelength regime, it will be complement the expected wavelength performance of the
future flagship endeavours JWST and ALMA.

Must of the key technologies that will make SAFIR possible has been or is being developed
for other missions:

• Lightweight telescopes with large primary mirrors that can collapse for launch and reassem-
bled in space are under intense development for the JWST and TPF.

• Cryogenic systems with multiple stage closed-cycle coolers which provide base temperatures
of a few degrees above absolute zero, are being developed and will be used by PLANCK
and JWST.
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• A heterodyne spectrometer is also envisioned for SAFIR, with receiver elements beyond
even those of Herschel’s HIFI instrument.

The SAFIR study was started on April 2004 and today is just completed the draft of science
requisites. On June will be completed a draft about the reference mission design.
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2.2 Other Missions

2.2.1 Hiten

Mission overview

• Orbit Hiten was put into a highly elliptical Earth orbit which passed by the Moon ten
times during the mission, which ended when Hiten was intentionally crashed into the Moon
on 10 April 1993.

• Transfer First Low Energy Transfer

• Launch January 24, 1990

• Launcher Mu-3SII-5 rocket

• Mission Hiten was meant to test technology for future missions. It included Hagoromo,
a small satellite which was inserted into orbit around the moon. Objectives of the mission
included testing trajectory control, inserting the small satellite, aerobraking experiments,
and measuring the mass and velocity of micro-meteorite particles.

• Operational Lifetime 3 years

• Manoeuvres Orbital Information

Orbit C. Body Start/End Date(s) Periapsis Apoapsis Period Inc. Ecc.
Flyby Moon 1990.077:20:04:09 (18 Mar) 16472.4 km
Orbiter Moon 1992.046:13:33:00 (15 Feb)

1993.100:18:03:26 (10 Apr) 6.52 LR 29.42 LR 4.7 d 34.7 0.32
Lander Moon 1993.100:18:03:26 (10 Apr)

LR = Lunar radii = 1738 km

• Agency ISAS (Japanese Space Agency)

• Web page http://nssdc.gsfc.nasa.gov/nmc/tmp/1990-007A.html

Spacecraft

• Mass The fully fueled mass of Hiten was 197 kg, this included 42 kg of hydrazine fuel and
the 12 kg Hagoromo orbiter.

• Dimensions Hiten was a cylindrically shaped spacecraft, 1.4 m in diameter and 0.8 m high.
The small polyhedral-shaped Hagoromo lunar orbiter was mounted on top of the spacecraft.

• Structure

• Propulsion Spacecraft propulsion and attitude control was provided by eight 23-N and
four 3-N hydrazine thrusters.
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• Power 110 W supplied by solar cells on the cylindrical surface of the spacecraft backed up
by a small onboard battery.

• Attitude Subsystem The spacecraft was spin-stabilized at 10 - 20.5 rpm.

• Communication Subsystem A medium gain collinear array antenna in both X-band and
S-band protruding from the bottom surface of the spacecraft and two cross dipole omni-
directional low gain antennas in S-band only, one mounted on the top and one on the
bottom. Downlink is via onboard X-band and S-band transmitters, each with two power
levels. Two receivers are used for S-band uplink, one connected to the low-gain antennas
and the other to the medium gain antenna. Commands were sent from ground stations at
1 kbps. The onboard command computer consists of three independent processor cells with
a total of 2 Mbits ROM and 512 Kbits RAM.

• Instrumentation

Figure 2.20: HITEN spacecraft and orbit.

Notable remarks

1. The primary objectives of the mission were to:

(a) Test trajectory control utilizing gravity assist double lunar swingbys.

(b) Insert a sub-satellite into lunar orbit.

(c) Conduct optical navigation experiments on a spin-stabilized spacecraft.

(d) Test fault tolerant onboard computer and packet telemetry.

(e) Conduct cis-lunar aerobraking experiments.

(f) Detect and measure mass and velocity of micro-meteorite particles.

2. Three follow-on objectives were also added: excursion to the L4 and L5 Lagrangian points of
the Earth-Moon system, orbit of the Hiten spacecraft around the Moon, and hard landing on
the lunar surface. Hiten was named after a flying, music-playing Buddhist angel. Hagoromo
was named for the veil worn by Hiten. This mission included Japan’s first-ever lunar flyby,
lunar orbiter, and lunar surface impact.
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More about the mission

Hiten was launched into highly elliptical Earth orbit on a Mu-3SII-5 rocket from Kagoshima
Space Center in Japan at 11:46:00 UT (20:46:00 JST) on 24 January 1990. Injection velocity was
50 m/s less than the nominal value, resulting in an apogee of only 290000 km compared to the
expected 476000 km. A number of trajectory correction maneuvers were performed and Hiten
was put back in a nominal orbit. At 19:37 UT on 18 March 1990 (04:37 19 March JST) as Hiten
approached its first lunar flyby, the small Hagoromo spacecraft was released into lunar orbit,
making Japan the third nation to orbit the Moon. Although the S-bamd transmitter aboard
Hagoromo had failed on 21 February 1990, the ignition of the Hagoromo deceleration rocket was
confirmed by ground observation at 20:04:03 UT, the estimated orbit was 7400 × 20000 km with
a period of 2.01 days. Six seconds later, at 20:04:09 UT (05:04:09 19 March JST) Hiten reached
its closest flyby distance to the Moon of 16472.4 km.

Further manuevers were made to have Hiten simulate the planned trajectory of the future
Geotail spacecraft. Hiten completed seven more lunar swingbys by 4 March 1991 and then started
the aerobraking portion of its mission. On 19 March at 00:43 UT Hiten flew into the Earth’s upper
atmosphere at an altitude of 125.5 km over the Pacific at 11.0 km/s. Atmospheric drag lowered
the velocity by 1.712 m/s and the apogee altitude by 8665 km. This was the first time aerobraking
was used to modify a spacecraft orbit at close to escape velocity. Another aerobraking maneuver
was done at 11:36 UT on 30 March at 120 km altitude, reducing velocity by 2.8 m/s and apogee
by 14000 km. This concludied the primary mission and a follow-on mission was started. A ninth
lunar swingby was used to increase the apogee to 1532000 km and a tenth on 2 October 1991 put
Hiten into a looping orbit which passed through the L4 and L5 stable libration points to look for
trapped dust particles. No obvious increase was found. On 15 February 1992 at 13:33 UT (22:33
JST) at a closest approach of 422 km most of Hiten’s remaining fuel was used to put it into lunar
orbit. The very last fuel was used to have the spacecraft, whose orbit was decaying after almost
two months in lunar orbit, crash into the lunar surface on 10 April 1993 at 18:03:25.7 UT (11
April 03:03:25.7 JST) at 55.3 E, 34.0 S.

The Hagoromo orbiter was a 12 kg, 26-faced polyhedron, 36 cm between opposite faces. A
solid propellant (KM-L) retrorocket with a mass of 4 kg was mounted inside the spacecraft for
lunar orbit insertion. Sixteen of the surfaces were covered with 1000 sheets of indium-phosphorus
solar cells which could generate about 10 W. Two way communications with a ground station
were provided by an S-band transponder and an omni-directional cross-dipole antenna mounted
on top of the orbiter. No scientific instrumentation was included, only housekeeping data such as
temperature was transmitted. The transmitter malfunctioned on 21 February 1990, before lunar
orbit insertion, and no data were transmitted after this time.
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2.2.2 JIMO: Jupiter Icy Moons Orbiter

Mission overview

• Orbit Around Jupiter (capture orbit), and successively orbiting the moons Callisto, Ganymede
and Europa

• Transfer Spiralling from high Earth orbit to Jupiter gravitational capture

• Launch 2012 or later

• Launcher heavy lift expendable launch vehicle

• Mission Investigate the origin of Jupiter’s moons and the possibility that they sustained
life

• Operational Lifetime Not determined. Constrained by the intensity of the radiation belts
of Europa

• Manoeuvres

• Agency NASA

• Web page http://www.jpl.nasa.gov/jimo/mission.cfm

Spacecraft

• Mass launch mass of 20 tones

• Dimensions deployed length of 30 meters

• Structure

• Propulsion Ion thrusters with a nuclear fission reactor and a system for converting the
reactor’s heat to electricity

• Power 10-30 kW. Generous electrical power supply, available from the on-board nuclear
system

• Attitude Subsystem

• Communication Subsystem Much higher data transmission rate than previous missions

• Instrumentation Radar instrument for mapping the thickness of surface ice, laser instru-
ment for mapping surface elevations. Possibly a camera, an infrared imager, a magneto-
meter and instruments to study charged particles, atoms and dust found near each moon

Notable remarks
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Figure 2.21: JIMO orbit and spacecraft.

1. This mission, still under investigation, will test new technologies and propulsion systems

2. JIMO is a mission to search life far from the Earth

3. It would be the biggest space probe ever flown (JIMO’s design is still being considered)

More about the mission

Voyager (1979) encountered Jupiter moons and Galileo (1995) found evidence for subsurface
oceans on them. JIMO will successively orbit around Europa, Ganymede and Callisto, which
apparently have three ingredients essential for life: water, energy and the necessary chemical
elements.

In addition to the scientific goals of JIMO mission, it is also conceived to develop a nuclear
reactor and prove that it can be processed and operated safely in deep space for long-duration
space exploration. The amount of power available from a nuclear reactor would make the use
of more capable instruments and faster data transmission possible. A subsidiary objective is
the development of nuclear fission technology and associated system technologies necessary for
demonstrating their effectiveness in deep space exploration.

The severe radiation environment around the moons, particularly Europa, are important in
the selection of micro-electronics technologies, and in the use of new methods for radiation risk
mitigation such as better shielding.
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2.2.3 Bepi Colombo

Mission overview

• Orbit 400 × 11800 km (MMO, magneto-spheric orbiter) and 400 × 1500 km (MPO, plan-
etary orbiter) polar orbits around Mercury

• Transfer 4.2 years heliocentric transfer with Earth/Venus/Mercury gravity assists

• Launch 2012

• Launcher Soyuz-Fregat

• Mission Study the origin and structure of the planet, close to the Sun, and the origin of
Mercury’s magnetic field

• Operational Lifetime 1 year orbit around Mercury (+ 4 years transfer)

• Manoeuvres

• Agency ESA

• Web page http://sci.esa.int/science-e/www/area/index.cfm?fareaid=30

Spacecraft

• Mass 1500 kg

• Dimensions

• Structure Planetary orbiter and magneto-spheric orbiter

• Propulsion Ion-propulsion during cruise trajectory (0.34N), chemical engine (4000N) for
capture and insertion

• Power

• Attitude Subsystem Planetary orbiter: 3-axis stabilised, Magneto-spheric orbiter: 15
rpm spin-stabilised

• Communication Subsystem 1.5 m X/Ka band high-gain antenna and UHF data relay
package

• Instrumentation Planetary orbiter: Visible/near IR camera, photon spectrometer, neu-
tron spectrometer, accelerometer. Magneto-spheric orbiter: Magnetometer, ion spectrome-
ter, ion/electron analyser, wave analyser, cold plasma detector, energetic particle detector

Notable remarks



2.2. OTHER MISSIONS 63

1. First ESA mission travelling to hot parts of the Solar System

2. It will use the combination of gravity assist with low thrust solar electric propulsion (demon-
strated by SMART-1)

More about the mission

Bepi Colombo is a joint mission of ESA (MPO) with the Japanese Space Agency (MMO). It
is named after Giuseppe Colombo (mathematician and engineer from the university of Padua)
who was the inspirer of NASA’s Marine 10 passes by Mercury in 1974/75.

It is a challenging and costly mission, because it consists of two spacecraft and will explore
unknown regions of the solar system, which yield serious problem (such as high temperatures).

Data gathered by BepiColombo is expected to cast some light on the origin and formation not
only of Mercury itself, but of all inner planets, including the Earth.

Figure 2.22: BepiColombo spacecraft.
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2.2.4 Mars Express

Mission overview

• Orbit Orbital Inclination: 86.3 degrees, pericentre: 258 km, apocentre: 11560 km, period:
7.5 h (around Mars)

• Transfer Taking advantage of Mars closest approach to Earth (summer 2003)

• Launch 2 June 2003

• Launcher Soyuz-Fregat

• Mission Answer questions about: geology, atmosphere, surface environment, history of
water and potential for life on Mars

• Operational Lifetime 2.5 years (until Nov. 2005)

• Manoeuvres

• Agency ESA

• Web page http://www.esa.int/SPECIALS/Mars Express/

Spacecraft

• Mass 1223 kg (including propellant 427 kg, payload 116 kg)

• Dimensions Spacecraft bus: 1.5 × 1.8 × 1.4 m

• Structure The spacecraft and its instruments, the lander

• Propulsion Mixture of two propellants which are contained in two tanks each with a
capacity of 267 litres. The fuel is fed into the engine using pressurised helium from a
35-litre tank

• Power Observation: 410 W, Manoeuvre: 360 W, Communication: 500 W. Provided by
solar arrays (11.42 m2) or lithium batteries (3 at 22.5 Ah each) during eclipses

• Attitude Subsystem Two star trackers, six laser gyros, two coarse Sun sensors

• Communication Subsystem Rate of up to 230 kbps down-link (between 0.5 and 5 Gbits
of scientific data very day). 12 Gbit solid state mass memory prior to the down-link to
Earth. 1.6-metre diameter high-gain antenna for receiving and transmitting radio signals
when the spacecraft is a long way from Earth. 40 centimetre-long low-gain antenna, when
close to the Earth
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• Instrumentation Seven instruments and a lander (at launch): High Resolution Stereo
Camera (HRSC), Energetic Neutral Atoms Analyser (ASPERA), Planetary Fourier Spec-
trometer (PFS), Visible and Infra Red Mineralogical Mapping Spectrometer (OMEGA),
Sub-Surface Sounding Radar Altimeter (MARSIS), Mars Radio Science Experiment (MaRS),
Ultraviolet and Infrared Atmospheric Spectrometer (SPICAM)

Figure 2.23: Mars Express spacecraft and insertion orbit.

Notable remarks

1. First European mission to Mars, a planet on which there is a strong possibility to find life
(past or present)

2. The mission is a test case for new working methods to speed up spacecraft production and
minimise mission costs

More about the mission

Mars Express project is the start of a new way of organising the building blocks for European
missions. The spacecraft was built and launched in record time and at a much lower cost than
previous, similar missions into outer space. It is maybe the start of low cost European missions.

The orbiters instruments are now performing remote sensing of the red planet. The lander,
Beagle 2, had to carry out on-the-spot investigations of the surface. Unfortunately, it was declared
lost on 6 February 2004 after no signals were received. It was also the lander which was supposed
to look for signs of past or present life, by searching for water from deep under the surface to the
highest layers of the Martian atmosphere.

Mars Express can also provide relay communication services between the Earth and the two
NASA rovers, deployed on the surface in early 2004, so forming a centrepiece of the international
effort in Mars exploration.
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Chapter 3

Review on the Main Topics of Libration
Point Dynamics

Many missions, such as the near-Earth missions, or even the Voyager and Galileo multiple fly-bys,
are well approximated by two-body problems, which are fully integrable. This enables analysis
using the well developed “patched conics” or “multi-conics” techniques. Conic segments provide
excellent approximations to the final trajectories along with estimates of propulsion and power
requirements. For missions in which this approximation is not valid, trajectory design requires
greater sensitivity to the underlying dynamics as well as appropriate computational tools.

The use for mission design of dynamical models of motion beyond the two body problem,
represents one of the most interesting challenges of the future. This is because of

1. The sophistication and realism of the more elaborated models.

2. The great amount of techniques that have been developed around these models.

The less elaborated of these dynamical models is the RTBP. The dynamics of the RTBP is
simple except at the vicinities of the libration points. Indeed, close enough to the secondary, a
massless particle moves like a satellite of it. Far away from the secondary, the particle is just
a satellite of the primary, unless the libration points are approached in the phase space. The
interesting (and most difficult) point is to know where and how the transition between these two
different regimes of motion is organised. The objects which play a key role in this organisation,
not only in this problem but for any dynamical system, are those which remain invariant under
the action of the dynamics. Among them we have: the equilibrium points and the periodic orbits.
Other invariant objects, which also have an important role, are: the invariant tori, invariant
unstable and stable manifolds, centre manifolds, energy manifolds, etc. Altogether they give a
key to interpret and predict the behaviour of most of the points in the phase space and constitute,
in some sense, the skeleton of the system.

As an illustration of organising role of the above mentioned invariant objects, Figure 3.1
displays the orbit of the comet Oterma and the invariant stable and unstable manifolds of the
libration points L1 and L2 for the Sun-Jupiter system. These two sets are invariant in the sense
that if a particle starts its motion on one of the them it will never leave it. They are called stable
and unstable manifolds of the equilibrium points, because if a particle starts moving on the stable

67
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Figure 3.1: The orbit of comet Oterma in an inertial and synodical reference frames (see [20]).

(unstable) manifold, it will tend to the equilibrium point as time tends to plus (minus) infinity.
From the Figure 3.1 it is clear that these manifolds act as natural guide-lines or channels for the
motion of the comet Oterma in its transition between two resonant motions around the Sun.

The invariant manifolds are surfaces in the trajectory design space consisting of global families
of trajectories that wind on and off periodic orbits such as halo orbits. Dynamical Systems Theory
(DST) enables us to compute and visualise these surfaces so that we can obtain a map of the orbit
design space and hone in on the specific trajectories useful to a particular mission. An example
is the design of the trajectory for the Genesis Discovery Mission, which was the first mission
designed using DST. The entire trajectory after launch requires a single deterministic manoeuvre
of only 6 m/s to capture into halo orbit for two years and automatically return to Earth. Without
this approach, this mission could not have been accomplished within its propellant budget.

Figure 3.2: The Genesis mission trajectory. (http://genesismission.jpl.nasa.gov)

Based on a deeper understanding of these invariant manifolds, a network of “passageway” that
are called dynamical channels, govern the material transport in the solar system. A number of
new techniques for constructing spacecraft trajectories with desired characteristics have also been
developed using this methodology. These techniques have been used to design a “Petit Grand
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Tour” of Jovian moons (see [127]) and an Earth-to-Moon lunar ballistic capture (see [159]) mission
which uses up to 20% less fuel than a Hohmann transfer. This network of dynamical channels
can be a key component in designing low-fuel paths for the exploration of the solar system.

All these invariant objects can be obtained by a combination of symbolic computation and
numerical continuation. It is essential to know about the dynamical properties in a neighbourhood
of these objects in order to design robust algorithms for their computation.

The important role played by the libration points in the dynamics of the RTBP has produced
a lot of studies. Since Poincaré published his fundamental work in 1892 ([205]), much of the
attention has been focused on the search for periodic solutions around them which, aside from the
considerations already done, have been seen for a long time as “the only opening through which
the reputably inaccessible problem of three bodies could be penetrated”. Early investigations
quickly narrowed the study to solutions in the planar circular RTBP, and a number of families of
periodic orbits were identified. This work was mainly done under the direction of Elis Strömgren,
at the Copenhagen Observatory during the first quarter of the XX-th century (1900-1925). After
this, it was possible to give a rather complete picture of how the “most relevant” families of
periodic orbits were organised in the RTBP (for the case of equal masses) and the role that some
of them had in the dynamics of the problem. This work was completed during the 60’s and
70’s, mainly by the work of Deprit and Henrard, making use of electronic computers for both the
numerical computation of families of periodic orbits and the analytical study of the dynamics of
the model.

Figure 3.3: Periodic orbits computed at the Copenhague Observatory ([214]).

By 1920, Moulton ([203]) considered the three-dimensional problem and, significantly for
this discussion, he was interested in oscillating satellites in the vicinity of the collinear libration
points. But, definitively, the new interest in this problem came with the ISEE-3 spacecraft. This
spacecraft used, for the first time, a trajectory for which both the gravitational effects of the Sun
and the Earth where of the same order of magnitude and so, the motion of the spacecraft could
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not be considered as the perturbation of a Sun-spacecraft or Earth-spacecraft two-body problem.
In this situation, the RTBP was a suitable model for the mission analysis and the role of the
libration points was displayed, since they allowed some orbital acrobatics of the spacecraft in the
Sun-Earth-Moon system. It was mainly because of this mission that the use of the dynamics of
the collinear libration points was considered a feasible engineering technology more than a merely
scientific curiosity.

In the rest of this section we will review the state of the art in the main topics related to the
dynamics of the libration points. In particular, we will consider the following topics:

• N-body models as a perturbation of the RTBP.

• Libration points and dynamical substitutes.

• The phase space around the libration points in the RTBP.

• Analytical computation of libration point orbits in the RTBP.

• Computation of nominal libration point orbits in accurate solar system models.

• Station keeping strategies.

• Transfers from the Earth to libration point orbits.

• Transfers between libration point orbits.

• Low energy transfers and weak stability boundaries.

• Formation flight using libration point orbits.

3.1 The Restricted Three Body Problem and the Libra-

tion Points

3.1.1 The Restricted Three Body Problem and its Perturbations

The RTBP is a simple model useful to gain insight and to give a fairly complete description of
the phase space in the regions of interest around the libration points. For concrete applications
better models are required. The more realistic models are the numerical ones, for instance the one
provided by the JPL ephemeris. These numerical models, accurate for the purpose of designing
missions, are not suitable if what is required is to obtain a global picture of the vicinity of a
libration point. One can recur to compute many orbits, but always on the basis of one by one
orbit. This is precisely what has to be done in the final step of the definition of a nominal orbit,
but it is not useful when trying to choose among many nearby orbits or if one wants to understand
the geometry of the phase space.

Between the RTBP and these more realistic models, there are several intermediate models
of motion that have been considered in the literature and that will be described in this section.
Their study provides a closer approach to the real situation than the one given by the RTBP in
some cases.
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In this section we will review some of the most relevant restricted models for the analysis of
the motion in the vicinity of the libration points and we will write the equations of motion for
these models as a perturbation of the RTBP, in order to identify and compute the dynamical
substitutes of the libration points in them.

Most of the well known restricted problems take as starting point the circular RTBP, which
models the motion of a massless particle under the gravitational attraction of two punctual
primaries revolving in circular orbits around their centre of mass. In a suitable coordinate system
and with adequate units, the Hamiltonian of the RTBP is (see [215])

H =
1
2
(p2

x + p2
y + p2

z) + ypx − xpy

− 1− µ

((x− µ)2 + y2 + z2)1/2
− µ

((x− µ + 1)2 + y2 + z2)1/2
,

being µ = m2/(m1 +m2), where m1 > m2 are the masses of the primaries and x, y, z, px, py, pz

are the coordinates and momenta, respectively. In order to get closer to more realistic situations,
or simplifications, this model is modified in different ways. For instance:

1. Hill’s problem. Is useful for the analysis of the motion around m2. Can be obtained setting
the origin at m2, rescaling coordinates by a factor µ1/3 and keeping only the dominant terms
of the expanded Hamiltonian in powers of µ1/3. The Hamiltonian function is

H =
1
2
(p2

x + p2
y + p2

z) + ypx − xpy −
1

(x2 + y2 + z2)1/2
− x2 +

1
2
(y2 + z2).

This Hamiltonian corresponds to a Kepler problem perturbed by the Coriolis force and the
action of the Sun up to zeroth-order in µ1/3. Hill’s model is the first approximation to the
RTBP appropriate for studying the neighbourhood of m2 and taking into account the action
of the primary m1 (see [10], [5]). This model has a remarkable set of solutions known as the
Variation Orbit Family. This is a family of 2πm–periodic solutions (m is the parameter of
the family) which serves as the first approximation in the modern theory of lunar motion.

2. Restricted Hill four body problem. This is a time periodic model that contains two parame-
ters: the mass ratio µ of the RTBP and the period parameter m of the Hill Variation Orbit.
As m→ 0, the RTBP is recovered and the classical Hill model is recovered as µ→ 0, both
in the proper reference frames (see [9]).

3. The elliptic RTBP. It is a non–autonomous time–periodic perturbation of the RTBP in
which the primaries move in an elliptic orbit instead of a circular one (see [215]).

4. The Bicircular Restricted Problem. It is one of the simplest restricted problem of four
bodies, obtained from the RTBP by adding a third primary. It can be also considered a
periodic perturbation of the the RTBP in which one primary has been splitted in two that
move around their common centre of mass. This model is suitable to take into account the
gravitational effect of the Sun in the Earth–Moon RTBP or the effect of the Moon in the
Sun–Earth RTBP. In a coordinate system revolving with Earth and Moon, the Hamiltonian
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of this problem is (see [253])

H =
1
2
(p2

x + p2
y + p2

z) + ypx − xpy

− 1− µ

((x− µ)2 + y2 + z2)1/2
− µ

((x− µ + 1)2 + y2 + z2)1/2

− mS

((x− aS cos θ)2 + (y + aS sin θ)2 + z2)1/2
− mS

a2
S

(y sin θ − x cos θ),

with θ = wSt + θ0, where wS is the mean angular velocity of the Sun, mS its mass and aS

the distance from the Earth–Moon barycentre to the Sun.

5. The coherent models. They are restricted four body problems in which the three primaries
move along a true solution of the three body problem. These models have been introduced
for the study of the motions around the geometrically defined collinear and triangular equi-
librium points of the Earth–Moon system (see [1], [6]) and the Sun–Jupiter system perturbed
by Saturn (see [3]). The Hamiltonian of these problems can be written as

H =
1
2
α1(p2

x + p2
y + p2

z) + α2(ypx − xpy)

+α3(xpx + ypy + zpz) + α4x + α5y

−α6

(
1− µ

((x− µ)2 + y2 + z2)1/2
+

µ

((x− µ + 1)2 + y2 + z2)1/2

+
mS

((x− α7)2 + (y − α8)2 + z2)1/2

)
,

where the αi are time periodic functions, with the same basic frequency as the Bicircular
Problem.

In a different approach, instead of taking as starting equations those of the RTBP, we can
consider Newton’s equation for the motion of an infinitesimal body in the force field created by
the bodies of the Solar System

R′′ = G
∑

i

mi
Ri −R

‖R−Ri‖3
.

Performing a suitable change of coordinates (see [47], [4]), the above equations can be written in
Hamiltonian form with the following Hamiltonian function

H = β1(p2
x + p2

y + p2
z) + β2(xpx + ypy + zpz) + β3(ypx − xpy) +

+β4(zpy − ypz) + β5x
2 + β6y

2 + β7z
2 + β8xz +

+β9px + β10py + β11pz + β12x + β13y + β14z +

+β15

(
1− µ

[(x− µ)2 + y2 + z2]1/2
+

µ

[(x− µ + 1)2 + y2 + z2]1/2
+

+
∑
i∈S∗

µi

[(x− xi)2 + (y − yi)2 + (z − zi)2]1/2

)
,
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where S∗ denotes the set of bodies of the Solar System except the two selected as primaries and
the βi are time dependent functions that can be computed in terms of the positions, velocities, ac-
celerations and over-accelerations of the two primaries. Notice that this Hamiltonian is, formally,
a perturbation of the RTBP one. Most of all the intermediate models that have been mentioned
are particular cases of this one. Once two primaries have been selected, a Fourier analysis of the
βi functions (see [4]) allows the explicit construction of a graded set of models with an increasing
number of frequencies, that can be considered between the RTBP and the true equations.

3.1.2 Libration Points and their Dynamical Substitutes

For most of the models of the preceding section, although they close to the RTBP, the dynamical
libration points do not subsist; since as they are non autonomous they do not have any critical
point. However, some geometrically defined libration points can be introduced, such that a
particle placed on them moves slowly, provided it is not too far from them. There is still a lot
of effort to be done towards the understanding of the dynamics of these more elaborated models
which can be of much help for mission design.
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Figure 3.4: Evolution with the continuation parameter ε (y-axis) of the initial y0 coordinate (x-axis)
of the libration point L4 and some periodic orbits.

If a model is time–periodic, under very general non–resonance conditions between the natural
modes around the equilibrium points and the perturbing frequency, the libration points can be
continued to periodic orbits of the model. In the continuation process, the periodic orbit can go
through bifurcations and end up in more than a single periodic orbit or reach a turning point and
disappear. This fact is displayed in Figure 3.4 in which we show the evolution, with respect to a
continuation parameter ε, of a periodic orbit around the triangular libration point L4. For ε = 0
we have the RTBP and for ε = 1 a bicircular restricted problem. The infinitesimal solution at L4

evolves with ε to yield a periodic orbit at the point B. Starting at A, for ε = 1, we get a third orbit
C which is much smaller than the other two. All these periodic orbits, which have the same period
as the perturbation, are the dynamical substitutes of the equilibrium points. For models with a
quasi–periodic perturbation the corresponding substitutes will also be quasi–periodic solutions.
In Figure 3.5 we show the dynamical substitutes for the L1 point in the Earth–Moon system for
a time–periodic and a quasi–periodic model.

Dynamical substitutes of the triangular points, for several of the models already mentioned,
have been studied in Gómez et al.[235], Simó et al.[253] and Jorba et al.[196]. For the collinear
points of the Sun–Earth system, the dynamical substitutes of L2 for time–periodic models have
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L1 substitute
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Figure 3.5: Dynamical substitutes for the L1 point in the Earth–Moon system for a time–periodic
(left) and a quasi–periodic (right) model.

been given by Farquhar [45], Howell [6]. In [1], Andreu does a complete study of the substitutes
of the collinear libration points for a coherent model close to the Earth–Moon problem and
compares some of the results obtained with the ones corresponding to a bicircular model. For
models depending in more than one frequency, results can be found in [4].

3.2 The Phase Space around the Libration Points

Concerning the understanding the dynamics around the collinear libration points, a lot of effort
has been devoted to give a global description of the different kinds of solutions that appear around
them. This has enlarged the possibilities of the libration point orbits for spacecraft missions. In
a first approximation, the motion in the vicinity of these equilibrium points can be seen as the
composition of two oscillators and some “hyperbolic” behaviour. This means that the oscillations
are not stable and that very small deviations will be amplified as time increases. One of the
oscillations takes place in the plane of motion of the primaries and the other orthogonal to this
plane. These two periodic motions are known as the planar and vertical Lyapunov periodic orbits.
The frequencies of the oscillations vary with the amplitudes (since the problem is not linear) and
for a suitable amplitude, both frequencies become equal. At this point the well known halo type
periodic orbits appear. When the frequencies of the two oscillations (vertical and planar) are not
commensurable, the motion is not periodic and it remembers a Lissajous orbit. Then we say that
we have a quasi-periodic orbit. This kind of motion can be found both around the vertical periodic
orbit and around the halo orbits. Some of these different kinds of orbits have been represented in
Figure 3.6. A more synthetic way of displaying all this zoo of orbits consists in representing only
their intersection with the z = 0 plane. This is what is usually called Poincaré map representation.
A planar orbit will appear as a closed curve on the plane and a quasi-periodic orbit as a set of
points lying, more or less, on a curve. Figure 3.7 shows one of these representations. Near the
centre of the figure one can see a fixed point. It corresponds to a vertical periodic orbit that
crosses the z = 0 plane just at this point. It (and so, the corresponding orbit) is surrounded by
quasi-periodic motions that take place on invariant tori. The external curve of the figure is the
planar Lyapunov orbit (corresponding to a given value of the Jacobi constant). Two other fixed
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Figure 3.6: Several types of orbits around L1. Upper left: vertical Lyapunov periodic orbit. Upper
right: Quasi-periodic orbit around a vertical periodic orbit (Lissajous orbit). Lower left: halo periodic
orbit. Lower right: quasi-halo orbit (quasi-periodic orbit around a halo orbit).

points correspond to the two halo orbits, which are symmetrical to one another with respect to
z = 0. They are, in turn, surrounded by invariant 2D tori. Between the 2D tori around the
vertical orbit and the ones around the halo orbit there is the trace of the stable and unstable
manifolds of the planar Lyapunov orbit.

Since we are interested in the motion in the vicinity of a given libration point, following
Richardson [56], we set the origin of coordinates at the libration point and scale variables in such
a way that the distance from the smallest primary to the selected equilibrium point will be equal
to one. Expanding r1 = ((x−µ)2 +y2 + z2)1/2 and r2 = ((x−µ+1)2 +y2 + z2)1/2 in power series,
one gets

H =
1
2

(
p2

x + p2
y + p2

z

)
+ ypx − xpy −

∑
n≥2

cn(µ)ρnPn

(
x

ρ

)
, (3.1)

where ρ2 = x2 + y2 + z2, the cn are constants depending on the equilibrium point and the mass
ratio µ and Pn is the Legendre polynomial of degree n. With a linear symplectic change of
coordinates (see [46]), the second order part of the Hamiltonian is set into its real normal form,

H2 = λxpx +
ωp

2
(y2 + p2

y) +
ωv

2
(z2 + p2

z),

where, for simplicity, we have kept the same notation for the variables. Here, λ, ωp and ωv are
positive real numbers. From H2, it is clear that the linear behaviour near the collinear equilibrium
points is of the type saddle× centre× centre. Hence, one can expect families of periodic orbits
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Figure 3.7: Poincaré map representation of the orbits near the libration point L1 for the value of the
Jacobi constant 3.00078515837634. The RTBP mass parameter corresponds to the Earth+Moon–Sun
system.

which in the limit have frequencies related to both centres: ωp and ωv (called planar and vertical
frequencies, respectively). This is assured by the Lyapunov centre theorem, unless one of the
frequencies is an integer multiple of the other (which only happens for a countable set of values of
the mass ratio (see [207])). Near the libration points we can also expect 2D tori to appear, with
two basic frequencies which tend to ωp and ωv when the amplitudes tend to zero. The rigorous
existence of these tori is more problematic. Firstly, the basic frequencies at the collinear point
can be too close to resonant. Furthermore, the frequencies change with their amplitudes and so,
they go across resonances when the amplitudes are changed. This leads to a Cantor set of tori.
The proof of the existence of these tori follows similar lines to the proof of the KAM theorem (see
[199]).

Close to the L1 and L2 libration points, the dynamics is that of a strong unstable equilibrium,
because of the saddle component of the linear approximation. This is the reason why it is not
feasible to perform a direct numerical simulation of the Poincaré map in order to get an idea of
the phase space. Due to the centre × centre part, and considering all the energy levels, there
are 4D centre manifolds around them (they are also called neutrally stable manifolds). On a
given energy level this is just a 3D set where dynamics have a “neutral behaviour”. There are
periodic orbits and 2D invariant tori on it. The L3 point has the same linear behaviour, however
the instability is quite mild. Nevertheless, the long term effects associated to the unstable/stable
manifolds of L3 or to the ones of the central manifold around L3 are extremely important (see
[235], [47]). In what follows we will show results about the phase space in a large neighbourhood
of the collinear libration points and will see how all the mentioned invariant sets (periodic orbits
and tori) are organised. We will use two different and complementary methods: an analytical
approach and a numerical procedure.

3.2.1 Analytical Approach

The analysis of the dynamics in the centre manifold for values of the energy close to the one of
the equilibrium point can be done in a semi-analytical way using different strategies. One consists
in performing a reduction of the Hamiltonian that decreases the number of degrees of freedom,
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removes the hyperbolic directions and allows the numerical study of the Poincaré map in a vicin-
ity of the equilibrium points (see [46] and [17]). Another possibility is to reduce Hamiltonian to
its normal form around the equilibrium point (see [22]). This approach is usually known as the
reduction to the centre manifold. Note that, generically, the expansions required for these com-
putations cannot be convergent in any open set, because of the crossing of resonances. Another
procedure consists in the use of Lindstedt-Poincaré methods to explicitly compute the periodic
orbits the invariant tori (see [54], [46], [47], [235]) . It looks for an analytical expressions for them
in terms of suitable amplitudes and phases. Both approaches are limited by the convergence of
the expansions used, for the changes of coordinates and the Hamiltonian in the first case and for
the periodic orbits and invariant tori in the second, which is discussed in the mentioned papers.
The general ideas and main results obtained with both procedures will be discussed in the next
sections.

3.2.2 Reduction to the Centre Manifold

The reduction to the centre manifold is similar to a normal form computation. The objective
is not to remove all the monomial in the expansion H, up to a given order, but to remove only
some, in order to have an invariant manifold tangent to the elliptic directions of H2. This is done
through a series of changes of variables which can be implemented by means of the Lie series
method (see [190]).

The Hamiltonian of the RTBP, with the second order terms in normal form, can be written
in a suitable set of coordinates and momenta, as

H(q, p) =
√
−1ωvq1p1 +

√
−1ωpq2p2 + λq3p3 +

∑
n≥3

Hn(q, p), (3.2)

where Hn denotes an homogeneous polynomial of degree n.
To remove the instability associated with the hyperbolic character of H, we first note that

the second order part of the Hamiltonian, H2, displays the instability associated with the term
λq3p3. In the linear approximation of the equations of motion, the central part is obtained setting
q3 = p3 = 0. If we want that the trajectory remains tangent to this space when adding the
nonlinear terms, this is, with q3(t) = p3(t) = 0 for all t > 0, once we set q3(0) = p3(0) = 0, we
need to have q̇3(0) = ṗ3(0) = 0. Then, because of the autonomous character of the system, we
will obtain q3(t) = p3(t) = 0 for all t ≥ 0.

Recalling the form of the Hamiltonian equations of motion, q̇i = Hpi
, ṗi = −Hqi

, one can get
the required condition, q̇3(0) = ṗ3(0) = 0 when q3(0) = p3(0) = 0, if in the series expansion of
the Hamiltonian, H, all the monomial, hijq

ipj, with i3 + j3 = 1 have hij = 0 (i and j stand for
(i1, i2, i3) and (j1, j2, j3), respectively). This happens if there are no monomial with i3 + j3 = 1 Of
course, other expansions could give us the same required tangency condition, but this is the one
that needs to cancel less monomial in (3.2) and, in principle, it is better behaved both in terms
of convergence and from a numerical point of view.

All the computations can be implemented using specific symbolic manipulators that can carry
out the full procedure up to an arbitrary order (see [17]). In this way, we end up with a Hamilto-
nian H(q, p) = HN(q, p) +RN(q, p), where HN(q, p) is a polynomial of degree N in (q, p) without
terms with i3 + j3 = 1 and RN(q, p) is a remainder of order N + 1 that is skipped in the compu-
tations.
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Figure 3.8: Poincaré maps of the orbits in the central manifold of L1 (two top figures) and L2 (two
bottom figures) for the following values of the Jacobi constant: 3.00085, and 3.00078515837634.
RTBP mass parameter of the Earth+Moon–Sun system, µ = 3.040423398444176× 10−6.

In order to reduce the number of degrees of freedom, after setting q3 = p3 = 0 in the initial
conditions, we look only at the orbits in the same energy level; in this way only three free variables
remain. A further reduction is obtained by looking at the orbits when they cross a surface of
section. Now, all the libration orbits with a fixed Hamiltonian value, can be obtained just varying
two variables in the initial conditions. For instance, the initial conditions can be chosen selecting
arbitrary values for q2 and p2. Setting q1 = 0 (the surface of section) and finally computing p1 in
order to be in the selected level of Hamiltonian energy. The propagation of this initial condition,
looking when and where it crosses the surface of section again and again, gives what is called
the images of the Poincaré map on the Poincaré section q1 = 0. Alternatively, the plane z = 0
(in RTBP coordinates) can be used to get a more familiar picture. Note that, due to the linear
part of the RTBP equations of motion around the collinear equilibrium points (3.7), z = 0, is a
surface of section for all the libration orbits in a neighbourhood of the equilibrium point, except
for the planar ones which are contained in the z = 0 plane.

This is the procedure used to get Figure 3.8, where the libration orbits around L1 and L2 are
displayed for two different values of the Jacobi constant, CJ , of the RTBP. From Figure 3.8, we
note that for each level of CJ there is a bounded region in the Poincaré section. The boundary of
the region is the planar Lyapunov orbit of the selected energy (related to the planar frequency ωp

of H2) and is completely contained in the surface of section. The fixed point, in the central part of
the figures, corresponds to an almost vertical periodic orbit, related to the vertical frequency ωv.
Surrounding the central fixed point, we have invariant curves corresponding to Lissajous orbits.
The motion in this region is essentially quasi-periodic (except for very small chaotic zones that
cannot be seen in the pictures).

Depending on the value of the Jacobi constant, there appear two additional fixed points close
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to the boundary. These points are associated to halo orbits of class I (north) and class II (south).
Surrounding the fixed points corresponding to the halo orbits, we have again invariant curves
related to quasi-periodic motions. These are Lissajous orbits around the halos that we call quasi-
halo orbits (see [235]).

Finally, in the transition zone from central Lissajous to quasi-halo orbits there is an homoclinic
connection of the planar Lyapunov orbit. We note that the homoclinic trajectory that goes out
from the orbit and the one that goes in, do not generally coincide; they intersect with a very
small angle. This phenomenon is known as splitting of separatrices. We also note in this case,
that the planar Lyapunov orbit is unstable even in the central manifold.

3.2.3 Numerical Approach

In this section we will show how with a numerical approach, the analysis of the phase space using
semi-analytical methods, can be extended to a wider range of energy values, including several
bifurcations and also to the L3 libration point. The approach is based in the computation of the
2D invariant tori of the centre manifolds of the three collinear libration points.

Numerical methods have been widely used to compute fixed points and periodic orbits and
we will not enter into the details for their computation here. The reader can find an excellent
exposition in the paper by Doedel et al. [27]. There are not many papers dealing with the
numerical computation of invariant tori. For this purpose, there are mainly two different methods:
one is based in looking for a torus as a fixed point of a power of the Poincaré map, P x, with
x being a real number and where P x is obtained by interpolation. The details of the method,
as well as some numerical examples, can be found in [209]. The second procedure, introduced
in [228], is based in looking for the Fourier series of the parametrisation of an invariant curve
on a torus, asking numerically for quasi-periodic motion. This has been the approach, combined
with a multiple shooting procedure, that we have used to study the quasi–periodic motions in a
neighbourhood of the collinear libration points. The details can be found in [23] and in [48].

As a first step of the numerical approach, the study of the families of periodic orbits around
the libration points and their normal behaviour must be done.

3.2.4 Normal Behaviour Around a Periodic Orbit

Let ϕt(x) be the flow of the RTBP. The normal behaviour of a T -periodic orbit through x0 is
studied in terms of the time-T flow around x0, whose linear approximation is given by the mon-
odromy matrix M = DϕT (x0) of the periodic orbit. As the monodromy matrix M is symplectic,
we have that

SpecM = {1, 1, λ1, λ
−1
1 , λ2, λ

−1
2 }.

The stability parameters of the periodic orbit, that are defined as sj = λj + λ−1
j for j = 1, 2, can

be of one of the following kinds:

• Hyperbolic: sj ∈ R, |sj| > 2. It is equivalent to λj ∈ R\{−1, 1}.

• Elliptic: sj ∈ R, |sj| < 2. It is equivalent to λj = eiρ with ρ ∈ R (if |sj| = 2, then it is said
to be parabolic).



80 CHAPTER 3. REVIEW ON THE MAIN TOPICS OF LIBRATION POINT DYNAMICS

• Complex unstable: sj ∈ C\R. It is equivalent to λj ∈ C\R, |λj| 6= 1.

If sj is complex unstable, then s3−j is also complex unstable and, in fact, s3−j = sj. After
the complex unstable bifurcation, following a Hamiltonian Hopf pattern, there appear invariant
tori, as is shown in [204]. If sj is hyperbolic, then the periodic orbit has stable and unsta-
ble manifolds, whose sections at x0 through the {λj, λ

−1
j }–eigenplane of M are tangent to the

{λj, λ
−1
j }–eigenvectors at x0. If sj is elliptic, the {λj, λ

−1
j }–eigenplane of M through x0 is foliated

(in the linear approximation) by invariant curves of the restriction of the linearisation of ϕT (that
is, the map x → x0 + M(x − x0)), which have rotation number ρ. For the full system, some of
these invariant curves subsist and give rise to 2D tori.

In what follows, we will say that a periodic orbit has central part if one of the stability
parameters s1, s2 is elliptic and we will use them to compute the tori of the central manifolds.

3.2.5 Numerical Computation of Invariant Tori

We look for a parametrisation of a 2-dimensional torus ψ : T2 = R2/2πZ → R6, satisfying

ψ(θ + ωt) = ϕt

(
ψ(θ)

)
, ∀θ ∈ T2, ∀t ∈ R, (3.3)

where ω = (ω1, ω2) ∈ R2 are the frequencies of the torus and ϕt(x) is the flow associated to the
RTBP. Let us denote by Ti the period corresponding to the ωi frequency, that is Ti = 2π/ωi,
and θ = (ξ, η). In order to reduce the dimension of the problem, instead of looking for the
parametrisation of the whole torus, we can look for the parametrisation of a curve {η = η0} (or
{ξ = ξ0}) on the torus, which is invariant under ϕT2 , namely

ϕT2

(
ψ(ξ, η0)

)
= ψ(ξ + ω1T2, η0), ∀ξ ∈ T1. (3.4)

Then, we look for a parametrisation ϕ : T1 → Rn satisfying

ϕ(ξ + ρ) = φδ

(
ϕ(ξ)

)
, ∀ξ ∈ T1, (3.5)

where δ = T2 and ρ = δω1. Note that ρ is the rotation number of the curve we are looking for.
We assume for ϕ truncated Fourier series representation

ϕ(ξ) = A0 +

Nf∑
k=1

(
Ak cos(kξ) +Bk sin(kξ)

)
, (3.6)

with Ak, Bk ∈ Rn. This representation of the geometrical torus {ψ(θ)}θ∈T2 is non unique for
two reasons: (1) For each choice of η0 we have a different ϕ in (3.6), i.e., a different invariant
curve on the torus. (2) Given the parametrisation (3.6), for each ξ0 ∈ T1, ϕ(ξ − ξ0) is a different
parametrisation with a different Fourier expansion of the same invariant curve of the torus. In
order to overcome both indeterminations, some components of the Fourier coefficients Ak must
be fixed.

Finally, and in order to deal with high instabilities, a multiple shooting procedure is used.
It consists of looking for several invariant curves on the torus {ψ(θ)}θ∈Td instead of just one, in
order to reduce the maximum time of integration to a fraction of δ. Concretely, we will look
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for m parametrisations ϕ0, ϕ1, . . . , ϕm−1 satisfying for all ξ ∈ T1: ϕj+1(ξ) = φδ/m

(
ϕj(ξ)

)
, for

j = 0÷m− 2 and ϕ0(ξ + ρ) = φδ/m

(
ϕm−1(ξ)

)
.

The details of the computational aspects (implementation, computing effort, parallel strate-
gies, etc.) of this procedure are given in [48]. As a sample of the tori that can be computed with
this procedure, in Fig. 3.9 we display families around bifurcated halo-type orbits of L1 and L2

with central part.
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Figure 3.9: Tori around the bifurcated halo-type orbits. The two on the top are in the families around
L1 and have energy h = −1.501. The two on the bottom are in the families around L2 and have
energy h = −1.507.

3.2.6 Invariant Tori Starting Around Vertical Orbits

In Fig. 3.10 we have displayed the region (in the energy–rotation number plane) covered by the
2–parametric family of tori computed starting from the vertical L1 Lyapunov families of periodic
orbits with central part. The diagrams corresponding to L2 and L3 are similar (see [48]). The
boundary has different pieces:

• The lower left piece α (from vertex 1 to 2) is related to the planar Lyapunov family. The
orbits of this family represented in the curve are just the first piece of the family with
central part. The horizontal coordinate is the energy level h of the curve and the vertical
coordinate is ρ = (2π)2/(2π − ν)− 2π, where 2 cos ν is the stability parameter of the orbit.
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• The upper piece β (from vertex 2 to 3) is strictly related to the vertical Lyapunov family.
The points on this curve are (h, ρ) where h is the energy of the orbit and the rotation
number ρ is such that the elliptic stability parameter of this orbit is 2 cos ρ. Note that this
relation between ρ and ν is different from the previous item in order to have continuity of
ρ along an isoenergetic family of tori.

• The bottom boundary γ (from vertex 3 to 1), that corresponds to ρ = 0, begins at the value
of the energy where the halo families are born. It is related to a separatrix between the tori
around the vertical Lyapunov families and the halo ones.
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Figure 3.10: Region in the energy–rotation number plane, covered by the two-parametric family of
tori computed using the vertical Lyapunov family of p.o. for L1 as the starting point. The number of
harmonics used for the computation of the tori (< 25, < 50, < 100 and > 100) is shown in the figure.
Vertex 1 is at the value of the energy at which the halo family is born. Vertex 2 is at the value of the
energy of the equilibrium point. Vertex 3 is at the value of the energy of the first bifurcation of the
vertical Lyapunov family.

There are different ways of computing the tori within the region surrounded by the curves
mentioned above. We always start from the pieces of boundary formed by periodic orbits. One
possibility is then to perform the continuation procedure keeping the value of the energy h fixed.
Another one is to allow the variation of the energy but keeping the rotation number ρ fixed. In
this last case, and in order to be as close as possible to conditions that guarantee the existence
of tori, it is convenient to set the rotation number “as irrational as possible”. To this end, when
we used this second strategy, we set the values of ρ such that 2π/ρ is an integer plus the golden
number. In both cases, and for all L1, L2 and L3 cases, we have always reached a region where
the number of harmonics is larger than the maximum value allowed, which at most has been set
equal to 100. Larger values of this parameter make computing time prohibitive. Just to have an
idea of the computing effort, the constant rotation number family with ρ = 0.176 requires about
3 days of CPU time of an Intel Pentium III at 500MHz.
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3.2.7 An Extended View of the Centre Manifold

Using the periodic orbits and the tori computed using the aforementioned strategies, we have
been able to extend the Poincaré map representation of the central manifolds around the collinear
libration points.
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Figure 3.11: Energy slices of the section z = 0, pz > 0 of the invariant tori around L1
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Figure 3.12: Energy slices of the section z = 0, pz > 0 of the invariant tori around L3.

Figures 3.11, and 3.12 show the results for L1, and L3, respectively (the results for L2 are
close to the ones obtained for L1). In all these figures we have represented the x–y coordinates
at the intersections with z = 0, pz > 0. All the plots have a similar structure. The exterior
curve in each plot is the Lyapunov planar orbit of the energy level corresponding to the plot.
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As this orbit is planar, it is completely included in the surface of section, and it is the only
orbit for which this happens. For the three equilibrium points, and for small energy values, the
whole picture is formed by invariant curves surrounding the fixed point associated to the vertical
orbit. They are related to the intersections of the Lissajous type trajectories around the vertical
periodic orbit. The halo orbits appear at the energy levels corresponding to the first bifurcation
of the Lyapunov planar family. This can be clearly seen in the Poincaré map representations,
since there appear two additional fixed points surrounded by invariant curves. Increasing the
values of the energy, the L1 and L2 families of halo orbits have two relevant bifurcations, by
period triplication and duplication (see Figure 3.9). Both bifurcations can also be detected in
the Poincaré representations. This additional structure has not been detected for the L3 case.
Within the bifurcated families there are some which have got a central part, which are surrounded
by invariant tori. These tori give rise to the “island chain” structure typical of two–dimensional
area–preserving maps. This behaviour is only clear in a magnification of the figures, as is shown
in [48].

The region between the tori around the vertical Lyapunov orbit and the tori around the halo
orbits is not empty, as it appears in the above figures, and should contain, at least, the traces, on
the surface of section, of the invariant manifolds of the Lyapunov planar orbit. These manifolds
act as separatrices between both kinds of motion. The same thing happens between the islands
of the bifurcated halo–type orbits and the tori around the halo orbits. In this case, the region
between both kinds of tori is filled with the traces of the invariant manifolds of the bifurcated
hyperbolic halo–type orbits. In all these boundary regions, the motion should have a chaotic
behaviour. With the current tools we have not been able to compute these separatrices.

3.3 Orbit Computations

3.3.1 Analytical Computation Using Lindstedt-Poincaré Procedures

The planar and vertical Lyapunov periodic orbits as well as the Lissajous, halo and quasi-halo
orbits can be computed using Lindstedt-Poincaré procedures and ad hoc algebraic manipulators.
In this way one obtains their expansions, in RTBP coordinates, suitable to be used in a friendly
way. In this section we will give the main ideas used for their computation.

We will start with the computation of the Lissajous trajectories (2D tori) and halo orbits (1D
tori or periodic orbits). The RTBP equations of motion can be written as

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρnPn

(
x

ρ

)
,

ÿ + 2ẋ + (c2 − 1)y =
∂

∂y

∑
n≥3

cnρnPn

(
x

ρ

)
, (3.7)

z̈ + c2z =
∂

∂z

∑
n≥3

cnρnPn

(
x

ρ

)
,
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with cn, ρ and Pn as in (3.1). The solution of the linear part of these equations is

x(t) = α cos(ωpt + φ1),
y(t) = κα sin(ωpt + φ1), (3.8)
z(t) = β cos(ωvt + φ2),

where ωp and ωv are the planar and vertical frequencies and κ is a constant. The parameters α
and β are the in-plane and out-of-plane amplitudes of the orbit and φ1, φ2 are the phases. These
linear solutions are already Lissajous trajectories. When we consider the nonlinear terms, we look
for formal series solutions in powers of the amplitudes α and β of the type

x
y
z

 =
∞∑

i,j=1

 ∑
|k|≤i,|m|≤j


x
y
z


ijkm


cos
sin
cos

 (kθ1 + mθ2)

 αiβj , (3.9)

where θ1 = ωt + φ1 and θ2 = νt + φ1. Due to the presence of nonlinear terms, the frequencies ω
and ν cannot be kept equal to ωp and ωv, and they must be expanded in powers of the amplitudes

ω = ωp +
∞∑

i,j=1

ωijα
iβj , ν = ωv +

∞∑
i,j=1

νijα
iβj .

The goal is to compute the coefficients xijkm, yijkm, zijkm, ωij, and νij recurrently up to a finite
order N = i+ j. Identifying the coefficients of the general solution (3.9) with the ones obtained
from the solution of the linear part (3.8), we see that the non zero values are x1010 = 1, y1010 = κ,
z1010 = 1, ω00 = ωp and ν00 = ωv. Inserting the linear solution (3.8) in the equations of motion,
we get a reminder for each equation, which is a series in α and β beginning with terms of order
i+ j = 2. In order to get the coefficients of order two, this known order 2 terms must be equated
to the unknown order 2 terms of the left hand side of the equations. The general step is similar.
It assumes that the solution has been computed up to a certain order n−1. Then it is substituted
in the right hand side of the RTBP equations, producing terms of order n in α and β. This known
order n terms must be equated with the unknown terms of order n of the left hand side.

The procedure can be implemented up to high orders. In this way we get, close to the
equilibrium point, a big set of KAM tori. In fact, between these tori there are very narrow
stochastic zones (because the resonances are dense). Hence we will have divergence everywhere.
However, small divisors will show up only at high orders (except the one due to the 1:1 resonance),
because at the origin ωp/ωv is close to 29/28. The high order resonances have a very small
stochastic zone and the effect is only seen after a big time interval.

Halo orbits are periodic orbits which bifurcate from the planar Lyapunov periodic orbits when
the in plane and out of plane frequencies are equal. This is a 1:1 resonance that appears as a
consequence of the nonlinear terms of the equations and, in contrast with the Lissajous orbits,
they do not appear as a solution of the linearised equations. Of course, we have to look for these
1-D invariant tori as series expansion with a single frequency. In order to apply the Lindstedt-
Poincaré procedure, following [54], we modify the equations of motion (3.7) by adding to the third
equation a term like ∆ · z, where ∆ is a frequency type series

∆ =
∞∑

i,j=0

dijα
iβj ,
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that must verify the condition ∆ = 0. We start looking for the (non trivial) librating solutions
with frequency ωp

x(t) = α cos(ωpt+ φ1),

y(t) = κα sin(ωpt+ φ1), (3.10)

z(t) = β cos(ωpt+ φ2).

We note that after this step, halo orbits are determined up to order 1, and ∆ = 0 is read as
d00 = 0. Halo orbits depend only on one frequency or one amplitude since they are 1-D invariant
tori, so we have not two independent amplitudes α and β. The relation between α and β is
contained in the condition ∆ = 0 which implicitly defines α = α(β).

When we consider the full equations, we look for formal expansions in powers of the amplitudes
α and β of the type 

x
y
z

 =
∞∑

i,j=1

 ∑
|k|≤i+j


x
y
z


ijk


cos
sin
cos

 (kθ)

 αiβj ,

where θ = ωt + φ and, as in the case of 2-D invariant tori, the frequency ω must be expanded
as ω =

∑∞
i,j=0 ωijα

iβj. The procedure for the computation of the unknown coefficients xijk, yijk,
zijk, ωij and dij is close to the one described for the Lissajous trajectories.

Quasi-halo orbits are quasi-periodic orbits (depending on two basic frequencies) on two di-
mensional tori around a halo orbit. Given a halo orbit of frequency ω, the series expansions for
the coordinates of the quasi-halo orbits around it will be of the form

x
y
z

 =
∞∑
i=1

 ∑
|k|<i,|m|<i


x
y
z


km

i


cos
sin
cos

 (k(ωt + φ1) + m(νt + φ2))

 γi.

These expansions depend on two frequencies (ω, ν) and one amplitude, γ (related to the size of
the torus around the halo orbit). The frequency ν is the second natural frequency of the torus,
and it is close to the normal frequency around the base halo orbit. The amplitude, γ, is related
to the size of the torus around the “base” halo orbit which is taken as backbone.

In order to apply the Lindstedt-Poincaré method to compute the quasi-halo orbits, it is con-
venient to perform a change of variables transforming the halo orbit to an equilibrium point of
the equations of motion. Then, orbits librating around the equilibrium point in the new coordi-
nates correspond to orbits librating around the halo orbit in the original ones. The details of the
procedure for their computation can be found in [235].

All the different kinds of orbits displayed in Figure 3.8 have been computed using the Lindsted-
Poincaré procedure according to the previous explanations.

3.3.2 Numerical Refinement

The purpose of this section is to show procedures aimed getting solutions, close to the ones
previously obtained for the RTBP, of more realistic equations of motion as Newton’s equations
using JPL ephemeris for the motion of the bodies of the solar system, or some of the intermediate
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models mentioned in previous sections. For these more realistic models there is not a complete
study of the phase space around the libration points (or their dynamical substitutes) like the one
that exists for the RTBP.

Since the solutions will be computed numerically and the equations of motion are time depen-
dent, an initial epoch and a fixed time span is selected and the orbit is computed for this period
of time. In the next section we describe a multiple shooting procedure similar to the one used for
the numerical solution of boundary-value problems (see [213]).

Multiple shooting

As in the standard multiple shooting method, the total time span is splitted into a number of
shorter subintervals selecting, for instance, N equally spaced points t1, t2, ..., tN . (t1 is the initial
epoch and tN − t1 the length of the time interval mentioned above). Different time intervals could
have been used too. Let us denote by ∆t = ti+1 − ti and by

Qi = (ti, xi, yi, zi, ẋi, ẏi, żi, )
T , i = 1, 2, ..., N

the points on a fixed orbit of the RTBP, equally spaced (∆t) in time. This orbit can be, for
instance, any of the ones for which we have been able to compute their formal expansions using
a Lindstedt–Poincaré method. Let φ(Qi) be the image of the point Qi under the flow associated
to the equations of motion in the solar system after an amount of time ∆t. As, in this way, the
epochs ti are fixed, we can write Qi = (xi, yi, zi, ẋi, ẏi, żi, )

T . If all the points Qi would be on the
same orbit of the new equations, then φ(Qi) = Qi+1 for i = 1, ..., N − 1. As this is not the case, a
change of the starting values is needed in order to fulfil the matching conditions. Consequently,
one must solve a set of N − 1 nonlinear equations, which can be written as

F


Q1

Q2
...
QN

 =


φ(Q1)
φ(Q2)

...
φ(QN−1)

−


Q2

Q3
...
QN

 = Φ


Q1

Q2
...

QN−1

−


Q2

Q3
...
QN

 = 0.

A Newton’s method is used to solve the system above. If Q(j) =
(
Q

(j)
1 , Q

(j)
2 , ..., Q

(j)
N

)T

, denotes

the j-th iterate of the procedure, Newton’s equations can be written as

DF (Q(j)) · (Q(j+1) −Q(j)) = −F (Q(j)),

where the differential of the function F has the following structure

DF =


A1 −I

A2 −I
. . . . . .

AN−1 −I

 ,

with DΦ = diag(A1, A2, ..., AN−1). As each of the transition matrices, Ai, that appear in DΦ
are 6 × 6, at each step of the method we have to solve a system of (N − 1) × 6 equations with
6×N unknowns, so some additional conditions must be added. This is the only difference with
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the standard multiple shooting method and is due to the fact that our problem is not a real
boundary-value one. As additional equations we could fix some initial and final conditions at
t = t0 and t = tN . In this case, one has to take care with the choice because the problem can
be ill conditioned from a numerical point of view. This is because the matrix DF (Q) can have a
very large condition number. To avoid this bad conditioning, we can choose a small value for ∆t,
but in this case, as the number of points Qi increases (if we want to cover the same time span)
the instability is transfered to the procedure for solving the linear system. In addition, the extra
boundary conditions can force the solution in a non natural way giving convergence problems
when we try to compute the orbit for a long time interval.

To avoid this, we can apply Newton’s method directly. As the system has more unknowns than
equations, we have (in general) an hyper-plane of solutions. From this set of solutions we try to
select the one closer to the initial orbit used to start the procedure. This is done by requiring the
correction to be minimum with respect to some norm (i.e. the Euclidean norm). The use of the
normal equations must be avoided because they are usually ill conditioned too. More precisely,
denoting by ∆Q(j)

∆Q(j) = Q(j+1) −Q(j),

requiring ‖∆Q(j)‖2 to be minimum, one gets the Lagrange function L(∆Q, µ) with (vector) mul-
tiplier µ

L(∆Q,µ) = ∆QT ·∆Q+ µT · (F (Q) +DF (Q) ·∆Q),

we get

∆Q(j) = −DF (Q(j))T ·
[
DF (Q(j)) ·DF (Q(j))T

]−1 · F (Q(j)), (3.11)

which gives the value of ∆Q(j) explicitly. However since the matrix DF (Q(j)) is usually very
big, a special factorisation in blocks is suitable to get the solution 3.11 in a computationally and
efficient way. See [235] for the implementation and the properties of the algorithm.

In order to illustrate the procedure we reproduce the details of some iterations of the compu-
tation of a particular solution using JPL ephemeris DE403.

The algorithm is started using as initial nodes, Qi, that is, the components of Q(0), points
on a quasi-halo orbit of the Sun–Earth+Moon system around the L1 point with β = 0.20 and
γ = 0.08. The initial epoch is fixed to be January 1 of the year 2000, and 40 nodes are used
with a time step, ∆t, between them of 180 days. This covers a total time span of 19.7 years. So,
the total number of revolutions “around” the equilibrium point L1 is approximately 39 and one
point (approximately) has been taken on each revolution to perform the multiple shooting. In
Figure 3.13 we show the (x, y) projection of the orbit after different iterations of the procedure.
All the figures are represented in normalised coordinates centred at the L1 point. The first plot
corresponds to the orbit, computed with the analytical expansions, from where the points Qi

were taken. It is an approximate solution (due to the truncation and asymptotic character of
the series) of the RTBP equations of motion. The next two, showing large discontinuities at
some points, are the results obtained after the first two iterations. The different pieces that
constitute the orbit do not match at the nodes in these first steps because the initial conditions
were taken from a solution of the RTBP and now we are integrating these initial conditions in a
model including all the bodies of the solar system with its real motion. These discontinuities are
so large because of the highly unstable character of the solution and because the few number of
nodes per revolution that have been taken. The last plot corresponds to the orbit computed after
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8 iterations. The discontinuities that appear in the first iterations are reduced to “zero” by the
method. In the first step, adding the corrections applied at all the nodes, the total correction in
position (|∆Q(0)

1,2,3|2 + |∆Q(0)
7,8,9|2 + ...) is of 319600.6 km and of 9360.6 km/day in velocity, which

means an average value for the corrections at each point of 8000 km and 1044,1 235 km/day.
After eight iterations the total amount of the corrections has been reduced to 37 mm and less
than 1 mm/day, for positions and velocities, respectively. Taking shorter time intervals between
consecutive nodes, the norm of the function F is much smaller at the first steps and the number
of Newton iterations decreases. For the Sun–Earth+Moon system, a value of ∆t equal to 7 days
requires no more than 4 or 5 iterations to get a final solution with discontinuities at the nodes
smaller than tracking errors. For the Earth–Moon system, computations must be done more
carefully and a time step of half a day usually gives good results.
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Figure 3.13: (x, y) projections of the orbits obtained with the multiple shooting procedure at different
steps. The figure on the left upper corner is the orbit of the RTBP, computed with the expansions, from
which the initial points Qi are taken. The orbits with large jumps discontinuities are the ones obtained
after the first two iterations. The figure on the right lower corner is the orbit computed after 8 iterations.
The initial orbit is a quasi-halo orbit with β = 0.2 and γ = 0.08.

Resonances

The L2 point in the Earth–Moon system is quite close to a resonance with the solar effects
which in some sense, results in the “distance” between the RTBP model and the real one being
too large so as to easily extend the solutions of the RTBP to the real problem.
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In order to deal with this situation Andreu, in [1] and [2], has introduced a time-dependent
restricted four body model that, within a certain degree of simplicity, captures some of the
most basic dynamical properties of the true motion around the libration points. The model is
time periodic since it depends in just one frequency: the difference between the mean synodical
frequencies of the Sun and the Moon. This makes the computation of the most relevant invariant
objects of the dynamics simpler.

The main success of the model is that it has allowed the computation of halo-type orbits around
L2 for very large time spans, covering at least a Saros period. When the analytical techniques
are applied to get the centre manifold around the dynamical substitutes of the libration points,
the results allow only for the exploration of energy levels very close to the one of he dynamical
substitute, so the information obtained is poor.

3.4 Transfers to LPO and the Use of Invariant Manifolds

In this and in the next sections the role of the invariant manifolds as natural channels of motion
for spacecraft missions will be explained. Here we would like to mention that these manifolds,
which play an important role in the evolution of the solar system and that when used for the
design of spacecraft missions enhance the set of opportunities and can save precious fuel, are often
seen as celestial mechanics “tricks” with no theory supporting them.

Figure 3.14: Three different kinds of transfer to a libration point orbit: direct transfer, gravitational
assisted transfer and transfer using invariant manifolds ([147]).

More recently, the heteroclinic connections in the region of space near L1 and L2 have also been
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successfully exploited for mission design. As scientific goals become increasingly ambitious and,
therefore, mission trajectory requirements become more complex, innovative solutions become
necessary. Thus, new directions emerge, such as the studies of dynamical channels and transport
in and through this region of space that offers options for transit-type orbits and low energy
captures. When coupled with numerical techniques, frequently based on a differential correction
process, the results of all these investigations are powerful and effective techniques for generating
accurate and varied libration point trajectory options that may serve as a basis for many types
of future mission opportunities. It is important to note that these various investigations are
all ongoing and far from completion. Yet, even at this juncture, early insights and preliminary
observations have yield useful results with immediate and significant impact.

3.4.1 Transfer Using Invariant Manifolds

There are two different approaches in the computation of transfer trajectories to a libration
point orbit. One uses direct shooting methods (forward or backward) together with a differential
corrector, for targeting and meeting mission goals. Proceeding in this way one can get direct or
gravitational assisted transfers, such as the ones shown in Figure 3.14.

Since the libration point orbits, for values of the energy not too far from the ones corresponding
to the libration point, have a strong hyperbolic character, its is also possible to use their stable
manifold for the transfer. This is what is known in the literature as the dynamical systems
approach to the transfer problem. Other ways to obtain transfer trajectories from the Earth to
a libration point orbit use optimisation procedures. These methods look for orbits between the
Earth and the libration orbit maintaining some boundary conditions, subject to some technical
constraints, and minimising the total fuel to be spent in manoeuvres during the transfer (see
[167]). According to Masdemont, see [175] and [163], in the dynamical systems approach one can
proceed as follows:

1. Take a local approximation of the stable manifold at a certain point of the nominal orbit.
This determines a line in the phase space based on a point of the nominal orbit.

2. Propagate, backwards in time, the points in the line of the local approximation of the stable
manifold until one or several close approaches to the Earth are found (or up to a maximum
time span is reached). In this way some globalisation of the stable manifold is obtained.

3. Look at the possible intersections (in the configuration space) between the parking orbit
of the spacecraft and the stable manifold. At each one of these intersections the velocities
in the stable manifold and in the parking orbit have different values, vs and vp. A perfect
manoeuvre with ∆v = vs − vp will move the spacecraft from the parking orbit to an orbit
that will reach the nominal orbit without any additional manoeuvre.

4. Then |∆v| can be minimised by changing the base point of the nominal orbit at which the
stable manifold has been computed (or any equivalent parameter).

Note that, depending on the nominal orbit and on the parking orbit, the intersection described
in the third item can be empty, or the optimal solution found in this way can be too expensive.
To overcome these difficulties several strategies can be adopted. One possibility is to perform a
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transfer to an orbit different from the nominal one and then, with some additional manoeuvres,
move to the desired orbits. In a next section we will show how these last kind of transfers can
be performed. Another possibility is to allow for some intermediate manoeuvres in the path from
the vicinity of the Earth to the final orbit.

In the case the nominal orbit is a quasi-halo or Lissajous orbit and any phase can be accepted
for the additional angular variable, the stable manifold has dimension 3. This produces, from
one side, a heavier computational task than in the case of halo orbits, but from the other side it
gives additional possibilities for the transfer. One should think that the stable manifolds of the
full centre manifold (for a fixed value of t) have dimension 5 which offers a lot of possibilities.

3.4.2 The TCM Problem

The Trajectory Correction Manoeuvres (TCM) problem, deals with the manoeuvres to be done
by a spacecraft in the transfer segment between the parking orbit and the target nominal one.
The purpose of the TCMs is to correct the error introduced by the inaccuracies of the injection
manoeuvre.

In connection with the Genesis mission (see [128]), the TCM problem has been studied in
[183] and [185]. For this mission a halo type orbit, around the L1 point of the Earth–Sun system,
is used as nominal orbit. The insertion manoeuvre, from the parking orbit around the Earth to
the transfer trajectory, is a large one, with a ∆v of the order of 3000 m/s; for the Genesis mission,
the error in its execution was expected to be about a 0.2 % of ∆v (1 sigma value) and a key point
to be studied is how large the cost of the correction of this error is when the execution of the first
correction manoeuvre is delayed.

In the paper by Serban et al. [185], two different strategies are considered in order to solve
the problem, both using an optimisation procedure and producing very similar results. It is
numerically shown that, in practice, the optimal solution can be obtained with just two TCMs
and that the cost behaves almost linearly with respect to both TCM1 epoch and the launch
velocity error.

The same results can be obtained without using any optimal control procedure. This is what is
done in [158] and [182]. The quantitative results, concerning the optimal cost of the transfer and
its behaviour as a function of the different free parameters, turn out to be the same as in [185].
Additionally, we provide information on the cost of the transfer when the correction manoeuvres
cannot be done at the optimal epochs. These results are qualitatively very close to those obtained
by Wilson et al. in [179] for the cost of the transfer to a Lissajous orbit around L2, when the time
of flight between the departure and the injection in the stable manifold is fixed but the target
state (position and velocity) on the manifold is varied. For this problem it is found that the cost
of the transfer can rise dramatically.

In our approach, the transfer path is divided in three different legs:

• The first leg goes from the fixed departure point to the point where the TCM1 is performed.
Usually, this correction manoeuvre takes place few days after the departure.

• The second leg, between the two trajectory correction manoeuvres TCM1 and TCM2, is
used to perform the injection in the stable manifold of the nominal orbit.
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• The last path corresponds to a piece of trajectory on the stable manifold. Since both TCM1
and TCM2 are assumed to be done without errors, the spacecraft will reach the nominal
halo orbit without any additional impulse.

Let t1, t2 and t3 be the TCM1, TCM2 and arrival epochs, respectively, and ∆v1, ∆v2 the values
of the correction manoeuvres at t1 and t2. In this way, given the departure state, Xdep, and the
time t1, we define X1 = ϕt1(Xdep), where ϕt(X) denotes the image under the flow of the point X
after t. Then, the transfer condition is stated as

ϕt2−t1(X1 + ∆v1) + ∆v2 = ϕt2−t3(Xa), (3.12)

where Xa represents the arrival state to the target orbit, which is chosen as Xa = Xh
a +d ·V s(Xh

a )
in the linear approximation of the stable manifold based at the point Xh

a . In (3.12), a term like
X1 + ∆v1 has to be understood as: to the state X1 (position and velocity) we add ∆v1 to the
velocity. Note that for a given insertion error ε (which determines Xdep) we have six equality
constraints, corresponding to the position and velocity equations (3.12), and ten parameters: t1,
t2, t3, ∆v1, ∆v2 and Xa (given by the parameter along the orbit) which should be chosen in an
optimal way within mission constraints.

The sketch of the exploration procedure is the following. To start with, we consider the error
of the injection manoeuvre and t1 fixed. Two types of explorations appear in a natural way:
the fixed time of flight transfers for which t3 is fixed, and the free time of flight transfers, where
t3 is allowed to vary. In both cases, we start the exploration by fixing an initial value for the
parameter along the orbit, Xa. In the case of fixed time of flight, the problem then reduces to
seven parameters (t2, ∆v1, ∆v2) and the six constraints (3.12). Using ∆v1 and ∆v2 to match the
constraints (3.12), the cost of the transfer, ‖∆v‖ = ‖∆v1‖ + ‖∆v2‖, is seen as a function of t2.
In the case of free time of flight, ‖∆v‖ is seen as a function of t2 and t3, or equivalently, as a
function of t2 and the parameter along the flow, tws = t3 − t2.

Once we have explored the dependence of the transfer cost on t2 and t3, we study the behaviour
when moving the parameter along the orbit, Xa. Finally, the dependence with respect to the
magnitude of the error (which is determined by the launch vehicle) and t1 is studied (which, due
to mission constraints, is enough to vary in a narrow and coarse range).

As an example, Figure 3.15 shows the results obtained when: the magnitude of the error in
the injection manoeuvre is −3m/s, the first manoeuvre is delayed 4 days after the departure
(t1 = 4), the total time of flight and t3, is taken equal to 173.25 days.

Several remarks should be done concerning the figure:

• The solutions of equation (3.12) are grouped along three curves at least. For t2 = 99.5 days
there is a double point in the cost function, corresponding to two different possibilities.

• For t2 = 113 days we get the optimum solution in terms of fuel consumption: ‖∆v1‖ +
‖∆v2‖ = 49.31 m/s. This value is very close to the one given in [185] for the MOI approach,
which is 49.1817 m/s. The discrepancies can be attributed to slight differences between the
two nominal orbits and the corresponding target points.

• When t2 is small or very close to the final time, t3, the total cost of the TCMs increases, as
it should be expected.
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Figure 3.15: Cost of the trajectory correction manoeuvres when TCM1 is delayed 4 days after departure
and the total time of flight is fixed to 173.25 days. The curves labelled with (a) correspond to ‖∆v1‖,
those with (b) to ‖∆v2‖ and those with (c) to the total cost: ‖∆v1‖+ ‖∆v2‖.

• Around the values t2 = 92, 97 and 102 days, the total cost increases abruptly. This sudden
growth is analogous to the one described in [183] in connection with the TCM problem for
the Genesis mission. It is also similar to the behaviour found in [179] for the cost of the
transfer to a Lissajous orbit around L2, when the time of flight between the departure and
the injection in the stable manifold is fixed. This fact can be explained in terms of the
angle between the two velocity vectors at t = t2. This is, when changing from the second
to the third leg of the transfer path. This angle also increases sharply at the corresponding
epochs.

3.5 Transfers Between Libration Point Orbits

In this section we will describe a method to perform transfers between libration point orbits
around the same equilibrium point.

The interest on this problem was initially motivated by the study of the transfer from the
vicinity of the Earth to a halo orbit around the equilibrium point L1 of the Earth-Sun system
([46], [236], [175]). There, it was shown that the invariant stable manifolds of halo orbits can be
used efficiently for the transfer from the Earth, if we are able to inject the spacecraft into these
manifolds. This can be easily achieved when the orbits of the manifold come close to the Earth.
But this is true only when the halo orbit is large enough, or when the effect of the Moon, bending
some orbits of the manifold, is big enough to bring these orbits to the vicinity of the Earth. For
small halo orbits, if a swingby with the Moon is used, there are launch possibilities only during two
or three days per month (see [157], [236], [163], [175]). These launching possibilities can be longer
for halo orbits with larger z-amplitude. This is because they have a stable manifold coming closer
to the Earth. After the transfer from the Earth to a large halo orbit has been done, we must be
able to go from it to a smaller one in a not very expensive way, in terms of the ∆v consumption and
time. Although this rule also applies for the transfer to Lissajous orbits, the study of the transfer
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between Lissajous orbits was first motivated by the missions HERSCHEL, Plank and GAIA of
the European Space Agency Scientific Program (see section 2). HERSCHEL is the cornerstone
project in the ESA Science Program dedicated to far infrared Astronomy. Planck, renamed from
COBRAS/SAMBA, is expected to map the microwave background over the whole sky and is
now combined with HERSCHEL for a common launch in 2007. Several options were considered
during the orbit analysis work. The one finally adopted was the so-called “Carrier”, where both
spacecraft are launched by the same Ariane 5, but will separate after launch. For this option, the
optimum solution is a free transfer to a large amplitude Lissajous orbit. HERSCHEL will remain
in this orbit whereas Planck, of much less mass, will perform a size reduction manoeuvres.

In what follows we will consider the problem of the transfer between halo type orbits and
between Lissajous orbits, always around the same libration point.

3.5.1 Transfers Between Halo Orbits

The method that we present is based on the local study of the motion around the halo orbits
and uses the geometry of the problem in the neighbourhood of an orbit of this kind (see [175],
[164]). The approach is different from the procedure developed by Hiday and Howell (see [170],
[171]) for the same problem. In the Hiday & Howell approach, a departure and arrival states
on two arbitrary halo orbits are selected, and a portion of a Lissajous orbit is taken as a path
connecting these states. At the patch points there are discontinuities in the velocity which must
be minimised. The primer vector theory (developed by Lawden [202] for the two body problem)
is extended to the RTBP and applied to establish the optimal transfers.

In a first step of our approach we study the transfer between two halo orbits which are assumed
to be very close in the family of halo orbits. With this hypothesis, the linear approximation of the
flow in the neighbourhood of the halo orbits, given by the variational equations, is good enough
to have a better understanding of the transfer.

Assume that at a given epoch, t1, we are on a halo orbit, H1, and that at this point a
manoeuvre, ∆v(1), is performed to go away from the actual orbit. At t = t2 > t1, a second
manoeuvre, ∆v(2), is executed in order to get into the stable manifold of a nearby halo orbit H2.
Denoting by ∆β the difference between the z-amplitudes of these two orbits, the purpose of an
optimal transfer is to perform both manoeuvres in such a way that the performance function

∆β

‖∆v(1)‖2 + ‖∆v(2)‖2

,

is maximum.
Let ϕ be, as usual, the flow associated to the differential equations of the RTBP and ϕτ (y)

the image of a point y ∈ R6 at t = τ , so we can write

ϕτ (y + h) = ϕτ (y) +Dϕτ (y)H +O(| h |2) = ϕτ (y) + A(τ)h+O(| h |2).

Let β(0) be the initial point on a halo orbit, H1, with z-amplitude β. The corresponding points
in the phase space at t = t1, t2, and assuming that the time required to execute the manoeuvre
can be neglected, will be, respectively,

ϕt1(β(0)) +

(
0

∆v(1)

)
, and ϕt2(β(0)) + A(t2)A(t1)

−1

(
0

∆v(1)

)
.
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At t = t2, the insertion manoeuvre, ∆v(2), into the stable manifold of the halo orbit of z-amplitude
β + ∆β is done. So, denoting by At1,t2 = A(t2)A(t1)

−1, we must have

ϕt2(β(0)) + At1,t2

(
0

∆v(1)

)
+

(
0

∆v(2)

)
= ϕt2(β(0) + ∆β) + γ2e2,β+∆β(t2) + γ3e3,β+∆β(t2),

where e2,β+∆β(t2) and e3,β+∆β(t2) are the eigenvectors related to the stable direction and to the
tangent to the orbit direction, respectively, of the orbit of amplitude β + ∆β at t = t2. The first
term in the right hand side of the above equation can be written as

ϕt2(β(0) + ∆β) = ϕt2(β(0)) +
∂ϕt2(β(0))

∂β
∆β +O((∆β)2).

We normalise taking ∆β = 1, so the equation to be solved is

At1,t2

(
0

∆v(1)

)
+

(
0

∆v(2)

)
=
∂φt2(β(0))

∂β
+ γ2e2,β(t2) + γ3e3,β(t2),

from which we can isolate ∆v(1), ∆v(2), getting

∆v(1) = u10 + γ2u12 + γ3u13,

∆v(2) = u20 + γ2u22 + γ3u23.

All the magnitudes that appear in these two equations, except the scalars γ2 and γ3, are three-
dimensional vectors. As ∆β = 1 has been fixed, the maxima of the performance function corre-
sponds to the minima of ‖∆v(1)‖2 + ‖∆v(2)‖2. Computing the derivatives of this function with
respect to γ2 and γ3 and equating them to zero, we get a system of two polynomial equations of
degree four in the two variables γ2 and γ3, that must be solved for each couple of values t1, t2
(which are the only free parameters).

The results of the numerical computations show that for a fixed value of t1, there are, usually,
two values of t2 at which the performance function has a local maximum (for values of t1 close
to 90o and 240o there are three and four maxima). The difference between these two values of t2
is almost constant and equal to 180o. That is, after the first manoeuvre has been done, the two
optimal possibilities appear separated by a difference of 1/2 of revolution.

The cost of the transfer using the optimal t2 is almost constant and the variation around the
mean value does not exceed the 4%. As an example, if the z-amplitude of the departure orbit is
β =0.1, the optimum value is reached using the first maximum for t1 = 102o and t2 = 197o. For
these particular values, the cost of the transfer, per unit of ∆β, is of 696 m/s. The cost increases
with β: for β =0.15, the optimal value is ∆v = 742 m/s (t1 = 102o, t2 = 193o) and for β =0.2
∆v = 785 m/s (t1 = 101o, t2 = 187o). It has been found that the variation with respect to β of
the optimal value of the cost is almost linear. The value of t1 for the first manoeuvre is almost
constant and equal to 100o, the corresponding point in the physical space being always very
close to the z = 0 plane. For very small values of β, the second manoeuvre must be done after
t2 = 270o, but this value decreases quickly and for β ∈ (0.1, 0.3) it is of the order of t2 = 190o,
approximately. That is, one has to wait, typically, 1/4 of revolution after the first manoeuvre, to
do the second one.
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The transfer computed with the above procedure is not optimal if the initial and final orbits
are not close to eachother. This is because the solution given by the linear analysis is not good
enough when the orbits have very different z-amplitudes. Several possibilities are discussed in
[164]. As a final conclusion we can say that the cost of a unitary transfer is of 756 m/s and the
behaviour with the z–amplitude β is almost linear. In this way, the cost of the transfer between
two halo orbits of amplitudes β =0.25 and 0.08 is (0.25− 0.08)× 756 m/s = 128.5 m/s. In Figure
3.16 we show the three projections of a transfer trajectory that goes form β = 0.25 to β = 0.08
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Figure 3.16: Projections of the transfer trajectory starting at a departure orbit of z-amplitude β = 0.25
and arriving at a final one with z-amplitude β = 0.08. The dotted points correspond to the epochs at
which the manoeuvres have been done.

3.5.2 Transfers Between Lissajous Orbits

The method of this section is based in the dynamical study of the linearised RTBP equations of
motion about a collinear equilibrium point. The development was initiated during preliminary
studies of the HERSCHEL/Plank mission (see [111]) and is fully developed in [12] and [154].

Let us start with the solution of the linear part of the equations of motion (3.7) which can be
written as,

x(t) = A1e
λt + A2e

−λt + A3 cosωt+ A4 sinωt
y(t) = cA1e

λt − cA2e
−λt − k̄A4 cosωt+ k̄A3 sinωt

z(t) = A5 cos νt+ A6 sin νt

 (3.13)

where Ai are arbitrary constants and c, k̄, ω, λ and ν are constants depending only on c2.
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Introducing amplitudes and phases (3.13) can also be written as

x(t) = A1e
λt + A2e

−λt + Ax cos (ωt+ φ)
y(t) = cA1e

λt − cA2e
−λt + k̄Ax sin (ωt+ φ)

z(t) = Az cos (νt+ ψ)

 (3.14)

where the relations are A3 = Ax cosφ, A4 = −Ax sinφ, A5 = Az cosψ and A6 = −Az sinψ.
The key point is that choosing, A1 = A2 = 0, we obtain periodic motions in the xy components

with a periodic motion in the z component of a different period. These are the Lissajous orbits in
the linearised restricted circular three-body problem, Ax, Az being the maximum in plane and out
of plane amplitudes respectively. The first integrals A1 and A2 are directly related to the unstable
and stable manifold of the linear Lissajous orbit. For instance, the relation A1 = 0, A2 6= 0, defines
a stable manifold . Any orbit verifying this condition will tend forward in time to the Lissajous
(or periodic) orbit defined by Ax, Az since the A2-component in (3.13) will die out. A similar fact
happens when A1 6= 0, A2 = 0, but now backwards in time. Then, this later condition defines a
unstable manifold.

The analysis consits of computing the manoeuvres that keep the A1 component equal to zero
in order to prevent escape from the libration zone, and studiing how the amplitudes change when
a manoeuvre is applied. We note that for the linear problem the motion in the z-component is
uncoupled from the motion in the xy component and z-manoeuvres only change the Az amplitude
but do not introduce instability. Assuming that the motion takes place in a Lissajous orbit with
A

(i)
z amplitude and phase ψi and the desired final z-amplitude is A

(f)
z . The possible z-manoeuvres

∆ż which performs the transfer at time tm are given by,

∆ż

ν
= A

(i)

z sin (νtm + ψi)±
√
A(f)

z

2 − A(i)

z

2
cos2 (νtm + ψi) (3.15)

We note that if,

• A
(f)

z ≥ A
(i)

z the transfer manoeuvre is possible at any time.

• A
(f)

z < A
(i)

z the transfer manoeuvre is possible only if the expression inside the square root is

positive; more precisely, when t ∈
[
ε, π

ν
− ε

]
∪

[
π
ν

+ ε, 2π
ν
− ε

]
, where ε = 1

ν
(arccos (A

(f)
z

A
(i)
z

)−ψi).

This condition essentially says that it is not possible to reduce the amplitude with an
impulsive manoeuvre in case that the actual position at time tm has a z component bigger
than A

(f)

z .

The change in the in-plane amplitude is a little more tricky since one must keep the unstable
component equal to zero. Assuming that the motion takes place in a Lissajous orbit with A

(i)
x

amplitude and phase φi and the desired final in-plane amplitude is A
(f)
x , the possible manoeuvres

at time tm are given by,

(∆ẋ,∆ẏ) = α
1√

c2 + k̄2
(d2,−k̄d1), α ∈ R (3.16)

where, α, indicating the size of the manoeuvre can be,

α = A
(i)

x sin (ωtm + φi − β)±
√
A(f)

x

2 − A(i)

x

2
cos2 (ωtm + φi − β).

Where β is a fixed angle given by the direction of the vector (c, k̄). Again we observe that if,
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• A
(f)

x ≥ A
(i)

x , the transfer manoeuvre is possible at any time.

• A
(f)

x < A
(i)

x , the transfer manoeuvre is possible only when the expression inside the square

root is positive; more precisely, when t ∈
[
δ, π

ω
− δ

]
∪

[
π
ω

+ δ, 2π
ω
− δ

]
, where δ = 1

ω
(arccos (A

(f)
x

A
(i)
x

)−
φi + β).

We also note that the manoeuvre (3.16) always ahs the same direction. This direction plays a
similar role to the direction orthogonal to the z-plane in the case of the previous commented
z-manoeuvres.

Once the target amplitudes are selected, the epochs of the manoeuvres essentially can be
chosen according to the following possibilities,

• Select tm in such a way that the ∆v expended in changing the amplitude be a minimum.

• Select tm in such a way that you arrive at the target orbit with a selected phase.

Assuming that the amplitudes prior and after the manoeuvres are different, in the first case
the optimal tm for changing the in-plane amplitude is when the angle ωtm +φi verifies ωtm +φi =
β + π

2
+ kπ, k ∈ Z. In this case the minimum fuel expenditure for the manoeuvre is |A(f)

x −A
(i)

x |.
In a similar way the optimal tm for a change in the out of plane amplitude is when νtm + ψi

verifies νtm + ψi = π
2

+ kπ, k ∈ Z and the manoeuvre is given by ∆ż = ν(A
(f)

z − A
(i)

z ).
In case that we decide to arrive at the selected Lissajous orbit with a certain phase the analysis

proceeds considering the in-plane and out-of-plane amplitudes Ax and Az written in term of its
respective components A3, A4 and A5, A6 and studying the angle which they define. A particular
interesting case are the manoeuvres which maintain the amplitudes (the non trivial possibilities
of (3.15) and (3.16)). In this case an in-plane manoeuvre (3.16) at time tm produces an in-plane
change of phase given by,

φf − φi = −2(ωtm − β + φi) (mod 2π), (3.17)

and an out-of-plane manoeuvre (3.15) produces an out-of-plane change of phase given by,

ψf − ψi = −2(νtm + ψi) (mod 2π). (3.18)

These manoeuvres give two strategies for the avoidance of the exclusion zone needed in many
missions (see, for instance, [80]), besides the well known z-strategy given by (3.18), we have
another xy one given by (3.17) which for the HERSCHEL/Plank mission implies only a delta-v
expenditure of 15 m/s every six years (see [111] and [154]).

3.6 Homoclinic and Heteroclinic Connections

In the preceding sections we have shown how to use the local dynamics around a halo orbit for
“local” purposes. In this one we will study the global behaviour of the invariant stable/unstable
manifolds, of the central manifolds of L1 and L2, to perform some acrobatic motions connecting
libration orbits around those equilibrium points.
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In order to obtain heteroclinic trajectories between libration orbits around L1 and L2, we have
to match an orbit of the unstable manifold of a libration orbit around one point, with another
orbit, in the stable manifold of a libration orbit around the other point. This is, both orbits have
to be the same one. Since these orbits, when looked in the X coordinate of the RTBP system,
have to go from one side of the Earth to the other one, the place where we look for the connection
is the plane X = µ− 1, this is, the plane orthogonal to the X axis that cuts it at the point where
the centre of the Earth is located.

Although the technical details are much more complex, the main idea is similar to the com-
putations introduced in [193] for L4,5 connections. Once a Jacobi constant is fixed, we take initial
conditions in the linear approximation of the unstable manifold of all the libration orbits inside
the level of energy. Since the energy is fixed, we have three free variables (usually q1, q2 and
p2). A scanning procedure in these variables is done. Since the selected orbits will leave the
neighbourhood of the libration point, each initial condition in the variables (q, p) is changed into
RTBP coordinates and then propagated forward in time until it crosses the plane X = µ− 1. We
apply the same procesure to the orbits in the stable manifold, where all the propagation is done
backward in time.

We have to remark that as usual, the unstable and stable manifolds have two branches. In
the process we select only the branches that, at the initial steps of the propagations approach the
X = µ− 1 plane.

Since the Jacobi constant is fixed, the set of all RTBP values C = {(Y, Ẏ , Z, Ż)} obtained,
characterise the branch of the manifold of all the libration orbits around the selected equilibrium
point for the particular section. Let us denote these sets by C+sj

i , where + or − denote the branch
of the s (stable) or u (unstable) manifold of the Lj, j = 1, 2 libration orbits at the i-th intersection
with the X = µ− 1 plane.

Looking at the above mentioned branches of the manifolds, the simplest heteroclinic orbits
will be obtained from I1− = C−s1

1 ∩C−u2
1 and I1+ = C−u1

1 ∩C−s2
1 . Both sets give transfer orbits that

cross the plane X = µ− 1 once. We will denote by Ik− (respectively Ik+) the set of heteroclinic
trajectories from L2 to L1 (resp. from L1 to L2) that cross the plane X = µ− 1 k times, following
the above mentioned branches of the manifold. We note that, due to the symmetries of the RTBP
equations, for any heteroclinic orbit from L1 to L2 we have a symmetrical one from L2 to L1 and
so just one exploration must be done.

Unhopefully, it has been found (see [123]) that I1+ is empty and so one must look for connec-
tions crossing at least twice the plane X = µ − 1. In this case many possibilities of connections
appear. As an example, in Figure 3.17 a connection between a Lissajous orbits around L2 and
quasi-halo orbit around L2 is displayed. Both the 3-D representation of the homoclinic orbits and
the intersections with the surface of section Z = 0, around both equilibrium points, are given.

As another kind of connection, the homoclinic transition inside the central manifold, that
differences the central Lissajous orbits from the quasi-halo ones, is computed in [123]. These
kind of solutions are interesting because they perform a transition from a planar motion (close
to a Lyapunov orbit) to an inclined orbit (close to the quasi-halo orbits) without any ∆v. Figure
3.18 shows one of these orbits in central manifold (q, p) variables. Unfortunately, the transition
is very slow but probably, with very small ∆v, it could be possible to accelerate the transition
from planar to inclined motion.
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Figure 3.17: L1-L2 heteroclinic connection between a Lissajous orbit around L2 and a quasi-halo orbit
around L1. In the lower pictures the intersections of the orbits with the surface of section (Z = 0) for
L2 (left) and for L1 (right) are displayed with crosses.

3.7 Weak Stability Boundaries and Low Energy Transfers

According to Simó [210]: “It seams feasible to produce accurate and enough complete descriptions
of the dynamics on the centre manifolds of the collinear libration points as well as large parts of the
corresponding stable and unstable manifolds. Having these concepts in hand, the design of space
missions à la carte, involving the vicinities of these points, could be done in an automatic way”.
Although not all the theoretical and practical questions underlying the above idea and required
for its implementation have been solved, some progress has been done and will be summarised in
this section.

The invariant manifold structures associated to the collinear libration points, provide not only
the framework for the computation of complex spacecraft mission trajectories, but also can be
used to understand the geometrical mechanisms of the material transport in the solar system.
This approach has been used recently for the design of low energy transfers from the Earth to
the Moon [159] and for a “Petit Grand Tour” of the Moons of Jupiter [20], [148]. It has also been
used to explain the behaviour of some captured Jupiter comets, see [186], [187].

The weak stability boundary, although it is not a clearly defined concept, provides also some
kind of low energy transfers, as will be explained in what follows.
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Figure 3.18: Homoclinic transition between Lyapunov orbits inside the central manifold (in central
manifold coordinates).

3.7.1 The Weak Stability Boundary

The weak stability boundary (WSB) is a concept mainly developed after [61] and the rescue of the
Hiten spacecraft [62]. The transfer trajectory of this spacecraft from the Earth to the Moon first
visited a neighbourhood of the collinear libration point L1 of the Earth-Sun system. Afterwards,
it went to the vicinity of the L2 point of the Earth-Moon system and finally reached the Moon.
This kind of transfer trajectories require a large transfer time (between 60 to 100 days) but a
small ∆v (they can save up to 150 m/s with respect to a Hohmann transfer) since they eliminate
the hyperbolic excess velocity at lunar periapsis upon arrival and use the dynamics of the problem
in a more natural. For this reason, they are also called low energy transfers.

The WSB (also named fuzzy boundary) has not got a precise definition (at least in the
mathematical sense of the word). Some definitions that can be found in the literature are:
“a generalisation of the Lagrange points and a complicated region surrounding the Moon”, “a
region in phase space supporting a special type of chaotic motion for special choices of elliptic
initial conditions with respect m2”,.... According to Belbruno [68], the WSB can also be defined
algorithmically in the following way:

In the framework of the RTBP, consider a radial segment, l, departing from the small primary
m2. Take trajectories for the infinitesimal body, m, starting on l which satisfy

1. The particle m starts its motion at the periapsis of the oscullating ellipse.

2. The initial velocity vector of the trajectory is perpendicular to the line l.

3. The initial two-body Kepler energy of m with respect to m2 is negative.
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Figure 3.19: Qualitative representation of stable and unstable orbits about m2.

4. The eccentricity of the initial two-body Keplerian motion is held fixed along l.

According to [67], the motion of a particle with the above initial conditions is stable about m2

if: after leaving l it makes a full cycle about m2 without going around m1 and returns to l at a
point with negative Kepler energy with respect to m2. Of course, the motion will be unstable if
the above condition is not fulfilled.

Belbruno claims (without giving any proof or numerical evidence) that as the initial conditions
vary along l, there is a finite distance r∗(θ, e), depending on the polar angle θ (which l makes with
the x-axis) and the eccentricity e of the initial oscullating ellipse, such that

• If r2 < r∗, the motion is stable.

• If r2 > r∗, the motion is unstable.

Furthermore, r∗(θ, e) is a smooth function of θ and e which defines the WSB

W = {r∗(θ, e) | θ ∈ [0, 2π], e ∈ [0, 1]}

The above definition has several weak points:

1. The requirements 1. and 2. on the initial conditions fix the modulus of the velocity and its
direction, but not the sense. So, there are two different orbits with the initial conditions
specified in Belbruno’s definition, which can have different stability behaviour.

2. It is not true that for fixed values of θ and e there is a finite distance r∗(θ, e) defining the
boundary of the stable and unstable orbits. Figure 3.20 shows this fact clearly. In this
Figure we have represented for a fixed value of e = 0.70 and for θ ∈ [0, 2π], the points
associated to initial conditions producing an stable orbit, using the two possible senses of
the velocity at the perigee. As it has been said, the two plots do not agree since two orbits
with the same initial position and opposite velocities may have different stability properties.
If we draw any line through the origin (which is the point where we have set m2), there
are several transitions from stability to instability. In fact, for a fixed value of θ, the set of
stable points recalls a Cantor set.
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Figure 3.20: Stable initial positions (x, y) about m2 (at the origin) for θ ∈ [0, 2π] according to
Belbruno’s definition. µ = 0.012 (Earth-Moon mass ratio) and e = 0.70. The two plots correspond
to the two possible senses of the velocity at the perigee of the oscullating ellipse.

The suitable setting for the WSB is the restricted four body problem, as follows from the kind
of trajectories associated to the low energy transfers and as it is also established in [64]. This paper
has an heuristic explanation, using invariant manifolds and Hill’s regions, about how a ballistic
capture by the Moon can take place but it has not any numerical computation supporting the
claims.

3.7.2 Numerical Determination of WSB and Low Energy Transfers

There is only a few number of papers dealing with the numerical computation of WSB, now with
a different definition from the algorithmic one given in the preceding section. They are, in fact,
procedures to determine transfer trajectories with low ∆v requirements of two different kinds:

1. Direct numerical search (see [60], [66], [65] and [69]).

2. Computations using invariant manifolds (see [70]).

The direct numerical search is usually done directly in accurate models of motion. The method
developed in [66] is a forward targeting algorithm that uses as initial orbit a Keplerian ellipse
with an Earth apoapsis of 1.5 million kilometres. The one developed in [65], [60] and [69] is
backward/forward integration with three steps:

1. First a backward integration from the final injection conditions up to the vicinity of the L1

libration point of the Earth-Sun system (at 1.5 million kilometres from the Earth). This
vicinity is what is defined, in an ambiguous way, as the WSB.

2. Second, a forward propagation from the Earth departure to the WSB region. An optimal
intermediate lunar gravity assist may be incorporated in this trajectory.

3. A matching of the forward/backward trajectories using a constrained parameter optimisa-
tion algorithm.
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Using this methodology, a large number of trajectories can be obtained for certain Sun-Earth-
Moon configurations, as is shown in the above mentioned papers.

The computations using invariant manifolds, which uses the natural dynamics of the problem,
proceeds along the following steps:

1. The first step is to decouple the restricted four body problem (spacecraft-Moon-Earth-Sun)
in two coupled three body systems: spacecraft-Moon-Earth and spacecraft-Earth-Sun.

2. Within each three body system they transfer from the vicinity of the Earth into the region
where the invariant manifold structure of the Earth-Sun libration points interacts with the
invariant manifold structure of the Moon-Earth libration points. The region of intersection
is computed using a Poincaré section (along a line of constant x-position passing through
the Earth) which helps to glue the Sun-Earth Lagrange point portion of the trajectory with
the lunar ballistic capture portion.

3. The Earth to Moon trajectory is integrated in the bi-circular four body model where both
the Moon and the Earth are assumed to move in circular orbits about the Earth and the Sun
respectively. Finally, the bicircular solution is differentially corrected to a fully integrated
trajectory with the JPL ephemerides.

The second item of this procedure must be done as follows: first a suitable Sun–Earth L2 periodic
orbit is computed as well as their stable and unstable manifolds. Some orbits on the stable
manifold come close to the Earth and, at the same time, points close to the unstable manifold
propagated backwards in time come close to the stable manifold. So, with an small ∆v, is
possible to go from the Earth to the unstable manifold of this periodic orbit. At the same time,
when we consider the L2 point of the Earth–Moon system, is has periodic orbits whose stable
manifold “intersect” the unstable manifold that we have reached departing from the Earth and
are temporary captured by the Moon. With a second small ∆v we can force the intersection to
behave as a true one.

This second procedure, which is also known as the Shoot the Moon method, gives the good
approach for the computation, in a systematic way, of all the possible low energy transfer orbits.
The term “low energy” applied to these trajectories is due to the small manoeuvres that must be
done.

Using the same ideas of the Shoot the Moon procedure, the “Petit Grand Tour” of the moons
of Jupiter can be designed. In a first step, the Jovian–moons n-body system is decoupled into
several three–body systems. The tour starts close to the L2 point of an outer moon (for instance
Ganymede). Thanks to an heteroclinic connection between periodic orbits around L1 and L2, we
can go from the vicinity of L2 to the vicinity of L1 and, in between, perform one o several loops
around Ganymede. Now, we can look for “intersections” between the unstable manifold of the
periodic orbit around the L1 point and the stable manifold of some p.o. around the L2 point of
some inner moon (for instance Europa). By the same considerations, we can turn around Europa
and leave its influence through the L1 point. Once the orbits have been obtained, they are refined
to a more realistic model easily.
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3.7.3 Solar System Low Energy Transfers and Astronomical Applica-
tions

As Lo and Ross [188] suggested, the exploration of the phase space structure as revealed by
the homoclinic/heteroclinic structures and their association with mean motion resonances, may
provide deeper conceptual insight into the evolution and structure of the asteroid belt (interior
to Jupiter) and the Kuiper belt (exterior to Neptune), plus the transport between these two belts
and the terrestrial planet region.

Figure 3.21: Dynamical channels in the solar system. Local semi-major axis versus orbital eccentricity.
The L1 (grey) and L2 (black) manifolds for each of the giant outer planets is displayed. Notice the
intersections between manifolds of adjacent planets, which leads to chaotic transport. Also shown are
the asteroids (dots), comets (circles) and Kuiper Belt objects (lighter circles). (see [188]).

Potential Earth–impacting asteroids may use the dynamical channels as a pathway to Earth
from nearby heliocentric orbits in resonance with the Earth. This phenomena has been observed
recently in the impact of comet Shoemaker–Levy 9 with Jupiter, which was in 2:3 resonance
with Jupiter just before impact. Also, the behaviour of comet Oterma that switches from a
complicated trajectory outside the orbit of Jupiter to one lying within, can be explained with
this kind of ideas. To make the transition, the comet passed through a bottleneck near two of
Jupiter’s libration points–where objects maintain a fixed distance relative to the planet and the
Sun.

Numerical simulations of the orbital evolution of asteroidal dust particles show that the earth
is embedded in a circumsolar ring of asteroidal dust known as the zodiacal dust cloud. Both
simulations and observations reveal that the zodiacal dust cloud has structure. When viewed
in the Sun–Earth rotating frame, there are several high density clumps which are mostly evenly
distributed throughout the Earth’s orbit. The dust particles are believed to spiral towards the
Sun from the asteroid belt, becoming trapped temporarily in exterior mean motion resonances
with the Earth. it is suspected that the gross morphology of the ring is given by a simpler RTBP
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model involving the homoclinic and heteroclinic structures associated with the libration points.

A complete exploration of all the possible connections between the manifolds related to the
libration points of the Solar System bodies should be of interest, not only for spacecraft mission
design, but also to understand better the dynamics of the solar system.

3.8 Station Keeping

3.8.1 The Target Mode Approach and the Floquet Mode Approach

The problem of controlling a spacecraft moving near an inherently unstable libration point orbit is
of current interest. In the late 1960’s, Farquhar [113] suggested several station–keeping strategies
for nearly–periodic solutions near the collinear points. Later, in 1974, a station–keeping method
for spacecraft moving on halo orbits in the vicinity of the Earth–Moon translunar libration point
(L2) was, published by Breakwell, Kamel, and Ratner [72]. These studies assumed that the control
could be modelled as continuous. In contrast, specific mission requirements influenced the station–
keeping strategy for the first libration point mission. Launched in 1978, the International Sun–
Earth Explorer–3 (ISEE–3) spacecraft remained in a near–halo orbit associated with the interior
libration point (L1,) of the Sun–Earth/Moon barycentre system for approximately three and one
half years [145]. Impulsive manoeuvres at discrete time intervals (up to 90 days) were successfully
implemented as a means of trajectory control. Since that time, more detailed investigations have
resulted in various station–keeping strategies, including the two identified here as the Target Point
and Floquet Mode approaches.

The Target Point method (as presented by Howell and Pernicka [92], Howell and Gordon
[90], and Keeter [94], which is based in Breackwell’s ideas) computes correction manoeuvres
by minimising a weighted cost function. The cost function is defined in terms of a corrective
manoeuvre as well as position and velocity deviations from a nominal orbit at a number of
specified future times ti. The non–final state vectors at each time ti are denoted as ”target
points.” The target points are selected along the trajectory at discrete time intervals that are
downstream of the manoeuvre. In contrast, the Floquet Mode approach, as developed by Simó
et al. [107], [108], incorporates invariant manifold theory and Floquet modes to compute the
manoeuvres. Floquet modes associated with the monodromy matrix are used to determine the
unstable component corresponding to the local error vector. The manoeuvre is then computed
in such a way that the dominant unstable component of the error is erradicated. It is noted that
both approaches have been demonstrated in a complex model such as the Earth–Moon system.

Target Point Approach

The goal of the Target Point station–keeping algorithm is to compute and implement ma-
noeuvres to maintain a spacecraft ”close” to the nominal orbit, i.e., within a region that is locally
approximated in terms of some specified radius centred about the reference path. To accomplish
this task, a control procedure is derived from minimisation of a cost function. The cost function,
J , is defined by weighting both the control energy required to implement a station–keeping ma-
noeuvre, ∆v, and a series of predicted deviations of the six–dimensional state from the nominal
orbit at specified future times. The cost function includes several sub-matrices from the state
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transition matrix. For notational ease, the state transition matrix is partitioned into four 3 × 3
sub-matrices as

Φ(tk, t0) =

[
Ak0 Bk0

Ck0 Dk0

]
. (3.19)

The controller, in this formulation, computes a ∆v in order to change the deviation of the space-
craft from the nominal path at some set of future times. The cost function to be minimised is
written in general as

J = ∆vTQ∆v + pT
1Rp1 + vT

1 Rνv1 + pT
2 Sp2 + vT

2 Sνv2 + pT
3 Tp3 + vT

3 Tνv3, (3.20)

where superscript T denotes transpose. The variables in the cost function include the corrective
manoeuvre, ∆v at some time tc, and p1, p2 and p3 that are defined as 3 × 1 column vectors
representing linear approximations of the expected deviations of the actual spacecraft trajectory
from the nominal path (if no corrective action is taken) at specified future times t1, t2 and t3,
respectively. Likewise, the 3×1 vectors v1, v2 and v3 represent deviations of the spacecraft velocity
at the corresponding ti. The future times at which predictions of the position and velocity state of
the vehicle are compared to the nominal path are denoted as target points. They are represented
as ∆ti such that ti = t0 + ∆ti. The choice of identifying three future target points is arbitrary.

In equation. (3.20), Q, R, S, T , Rν , Sν , and Tν , are 3× 3 weighting matrices. The weighting
matrix Q is symmetric positive definite; the other weighting matrices are positive semi–definite.
The weighting matrices are generally treated as constants that must be specified as inputs. Selec-
tion of the appropriate weighting matrix elements is a trial and error process that has proven to
be time–consuming. A methodology has been developed that automatically selects and updates
the weighting matrices for each manoeuvre. This ”time-varying” weighting matrix algorithm is
based solely on empirical observations.

Determination of the ∆v corresponding to the relative minimum of this cost function allows
a linear equation for the optimal control input, i.e.,

∆v∗ = −
[
Q + BT

10RB10 + BT
20SB20 + BT

30TB30 + DT
10RνD10 + DT

20SνD20 + DT
30TνD30

]−1

×
[(

BT
10RB10 + BT

20SB20 + BT
30TB30 + DT

10RνD10 + DT
20SνD20 + DT

30TνD30

)
v0

+
(
BT

10RA10 + BT
20SA20 + BT

30TA30 + DT
10RνC10 + DT

20SνC20 + DT
30TνC30

)
p0

]
, (3.21)

where v0, is the residual velocity (3×1 vector) and p0 is the residual position (3×1 vector) relative
to the nominal path at the time t0. The performance of the modified Target Point algorithm is
not yet truly ”optimal,” though it has been proved to successfully control the spacecraft at
reasonable costs. This accomplishment alone provides the user with a quick and efficient way to
obtain reasonable station–keeping results. Given some procedure to select the weighting matrices,
the manoeuvre is computed from equation. (3.21). The corrective manoeuvre (∆v∗) is a function
of spacecraft drift (in both position and velocity with respect to the nominal orbit), the state
transition matrix elements associated with the nominal orbit, and the weighting matrices. It is
assumed here that there is no delay in implementation of the manoeuvre; the corrective manoeuvre
occurs at the time t0, defined as the current time. Note that this general method could certainly
accommodate inclusion of additional target points. Although the nominal orbit that is under
consideration here is quasi-periodic, the methodology does not rely on periodicity; it should be
applicable to any type of motion in this regime.
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In this application, three additional constraints are specified in the station–keeping procedure
to restrict manoeuvre implementation. First, the time elapsed between successive manoeuvres
must be greater than or equal to a specified minimum time interval, tmin. This constraint may
be regulated by the orbit determination process, scientific payload requirements, and/or mission
operations. Time intervals of one to three days are considered in the Earth-Moon system. The
second constraint is a scalar distance (pmin) and specifies a minimum deviation from the nominal
path (an isochronous correspondence) that must be exceeded prior to manoeuvre execution. For
distances less than pmin manoeuvre computations do not occur. Third, in the station–keeping
simulation, the magnitude of position deviations are compared between successive tracking inter-
vals. If the magnitude is decreasing, a manoeuvre is not calculated. For a corrective manoeuvre
to be computed, all three criteria must be satisfied simultaneously.

After a manoeuvre is calculated by the algorithm, an additional constraint is specified on the
minimum allowable manoeuvre magnitude, ∆vmin. If the magnitude of the calculated — ∆v is less
than ∆vmin then the recommended manoeuvre is cancelled. This constraint is useful in avoiding
”small” manoeuvres that are approximately the same order of magnitude as the manoeuvre errors.
It also serves to model actual hardware limitations.

Floquet Mode Approach

An alternative strategy for station–keeping is the Floquet Mode approach, a method that
is significantly different from the Target Point approach. It can be easily formulated in the
circular restricted three–body problem. In this context, the nominal halo orbit is periodic. The
variational equations for motion in the vicinity of the nominal trajectory are linear with periodic
coefficients. Thus, in general, both qualitative and quantitative information can be obtained
about the behaviour of the nonlinear system from the monodromy matrix, M , which is defined
as the state transition matrix (STM) after one revolution along the full halo orbit.

The knowledge of the dynamics of the flow around a halo orbit, or any solution close to it,
allows possibilities other than the station–keeping procedure described here, such as the com-
putation of transfer orbits both between halo orbits and from the Earth to a halo orbit [163],
[164]. The behaviour of the solutions in a neighbourhood of the halo orbits is determined by the
eigenvalues, λi, i = 1, ..., 6 and eigenvectors ei, i = 1, ..., 6 of M . Gathering the eigenvalues by
pairs, their geometrical meaning is the following:

a) The first pair (λ1, λ2) with λ1 · λ2 = 1 and λ1 ≈ 1500, is associated with the unstable
character of the small and medium size halo orbits. The eigenvector, e1(t0), associated with
the largest eigenvalue, λ1, defines the most expanding direction, related to the unstable
nature of the halo orbit. The image under the variational flow of the initial vector e1(t0),
together with the vector which is tangent to the orbit, defines the linear approximation of
the unstable manifold of the orbit. In a similar way, e2(t0) can be used to compute the
linear approximation of the stable manifold.

b) The second pair (λ3, λ4) = (1, 1) is associated with neutral variables (i.e., unstable modes).
However, there is only one eigenvector with eigenvalue equal to one. This vector, e3(t0) is
the tangent vector to the orbit. The other eigenvalue, λ4 = 1, is associated with variations
of the energy (or the period) of the orbit through the family of halo orbits. Along the orbit,
the vectors e3 and e4 span an invariant plane under the flow.
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c) The third couple, (λ5, λ6), is formed by two complex conjugated eigenvectors of modulus
one. The restriction of the flow to the corresponding two–dimensional invariant subspace,
is essentially a rotation. This behaviour is related to the existence of quasi-periodic halo
orbits around the halo orbit (see [235]).

When considering dynamical models of motion different from the restricted three–body prob-
lem, halo orbits are no longer periodic, and the monodromy matrix is not defined. Nevertheless,
for quasi-periodic motions close to the halo orbit (and also for the Lissajous orbits around the
equilibrium point) the unstable and stable manifolds subsist. The neutral behaviour can be
slightly modified including some instability which, from a practical point of view, is negligible
when compared with the one associated with λ1.

Instead of the vectors ei(t) it is convenient to use the Floquet modes ei(t) which, for the
periodic case, are defined as six periodic vectors from which the ei(t) can be easily recovered (see
[109]). For instance e1(t) is defined as e1(t) · exp[−(t/T ) log λ1], where T is the period of the halo
orbit. The control algorithm is developed to use this information for station–keeping purposes.
The emphasis is placed on formulating a controller that will effectively eliminate the unstable
component of the error vector, δ(t) = (δx, δy, δz, δẋ, δẏ, δż) defined as the difference between the
actual coordinates obtained by tracking and the nominal ones computed isochronously on the
reference orbit. At any epoch, t, δ can be expressed in terms of the Floquet modes

δ(t) =
6∑

i=1

αiei(t). (3.22)

The objective of the controller is to add a manoeuvre such that the magnitude of the component of
the error vector in the unstable direction, α1, is reduced to zero. The five remaining components
do not produce large departures from the reference orbit. In contrast, the component of the error
vector along the unstable mode increases by a factor of λ1 in each revolution.

Denoting the impulsive manoeuvre as ∆ = (0, 0, 0,∆x,∆y,∆z)
T , cancelling the unitary un-

stable Floquet mode requires

e1
‖e1‖

+ (0, 0, 0,∆x,∆y,∆z)
T =

6∑
i=2

ciei(t). (3.23)

From these equations ∆x, ∆y, ∆z can be obtained as a function of c5 and c6. These free parameters
are determined by either imposing a constraint on the available directions of the control or
minimising a suitable norm of ∆.

For practical implementation it is useful to compute the so–called projection factor along
the unstable direction. It is defined as the vector π such that δ · π = α1. Note that for the
computation of π only the Floquet modes are required, so it can be computed and stored together
with the nominal orbit. To annihilate the unstable projection, α1, with a manoeuvre, ∆v =
(0, 0, 0,∆x,∆y,∆z)

T , we ask (δ + ∆v) · π = 0. In this way,

∆xπ4 + ∆yπ5 + ∆zπ6 + α1 = 0, (3.24)
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is obtained, where π4, π5 and π6 are the last three components of π. Choosing a two axis controller,
with ∆z = 0, and minimising the Euclidean norm of ∆v, the following expressions for ∆x and ∆y

are obtained,

∆x = − α1π4

π2
4 + π2

5

, ∆y = − α1π5

π2
4 + π2

5

. (3.25)

In a similar way, a one or three axis controller can be formulated.
Once the magnitude of the manoeuvre is known, the determination of the epoch at which it

must be applied is an important issue to be addressed. The study of this question requires the
introduction of the gain function, g(t) = ‖∆‖−1, where ∆ is the unitary impulsive manoeuvre. It
measures the efficiency of the control manoeuvre along the orbit to cancel the unitary unstable
component. This component is obtained using the projection factors and the error vector. As the
projection factor changes along the orbit, the same error vector has different unstable components.
Then, it is natural to consider a delay in the manoeuvre until reaching a better epoch with less
cost. So, the function to be studied is

R(t) =
exp

(
t log

(
λ1

T

))
g(t)

. (3.26)

However, as shown in [107], this function is always increasing. Therefore, it is never good to wait
for a manoeuvre except for operational reasons.

As it has been said, when the station keeping has to span for a long time, the satellite can
tend to deviate far away from the nominal orbit. This could happen since the cancellation of
the unstable component does not take care of the neutral components which might grow up to
the limit of loosing controllability. In order to prevent large deviations of the satellite from the
nominal orbit, it is advisable to perform manoeuvres of insertion into the stable manifold. The
main idea of the strategy is to put the satellite in a such state that approaches the nominal orbit
asymptotically in the future. This strategy is, in principle, much cheaper than to target to the
nominal orbit itself since the latter case can be considered, from an implementation point of view,
as a sub-case of targeting to the stable manifold. Moreover, even when the controllability using
only unstable component cancellation manoeuvres (UCCM) is assured, it can be advantageous to
perform an insertion into the stable manifold since the control effect of this manoeuvres usually
persist for a longer time span than UCCM. Moreover, subsequent UCCM would be cheaper due
to the fact that the satellite is closer to the nominal orbit, and consequently the projection of the
deviation in the unstable component is smaller.

Although the idea is simple, the implementation is not so easy since, in the first place, the
target state in the stable manifold can not be accomplished with a single manoeuvre as it happens
with UCCM and secondly, the actual state of the satellite is known but affected by tracking errors.
Moreover the manoeuvres to be done will be noised by some errors too. We refer to [86] for the
details of the implementation.

As a final remark, several constraints that impact the manoeuvres must be specified in the
procedure. The most relevant are the time interval between two consecutive tracking epochs
(tracking interval), the minimum time interval between manoeuvres, and the minimum value of
α1, that can not be considered due solely to tracking errors.

Special emphasis must be placed on the evolution of α1. With no tracking errors, the evolution
of this parameter is exponential in time (see Figures 3.22 and 3.23). When adding tracking errors,
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Figure 3.22: From top to bottom evolution with time of the unstable component, position deviations
with respect to the nominal trajectory and velocity deviations. In the all figures no orbit determination
has been performed because the simulations have been done with no errors for the tracking and the
execution of the manoeuvres. There is only an error at the initial insertion epoch. In the left hand side
figures there are no manoeuvres for the insertion in the stable manifold while in the right hand side
yes. These manoeuvres can be clearly seen because after its execution the distance to the nominal orbit
goes to zero both in position and in velocity. The discontinuities that appear in these two figures are
associated to the execution of the manoeuvres. The points marked with a cross are those at which the
tracking has been performed and then ones marked with a star are those at which a manoeuvre has been
executed.
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Figure 3.23: From top to bottom evolution with time of the unstable component, position deviations
with respect to the nominal trajectory and velocity deviations. In the left figures no orbit determination
if performed while in the right hand side ones yes. In all the figures the manoeuvres and the tracking
are performed with errors. There is also an error at the initial insertion epoch. There are manoeuvres
for the insertion in the stable manifold that can be clearly seen at the moments at which the distance
to the nominal orbit decreases to very small values (which is not equal to zero because there is an error
added to the manoeuvres). The points marked with a cross are those at which the tracking has been
performed and then ones marked with a star are those at which a manoeuvre has been executed.
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and in order to prevent a useless manoeuvre, this value must be greater than the minimum. So, the
minimum value must be selected as a function of the orbit determination accuracy. On the other
hand, the value of α1 should not be too large because this increases the value of the manoeuvre
in an exponential way. Thus, a maximum value is chosen such that if α1, is greater than the
maximum, a control manoeuvre will be executed to cancel the unstable component. When α1,
is between minimum and maximum values, the error can be due to small oscillations around the
nominal orbit. In this case, a manoeuvre is executed only if the error has been growing at an
exponential rate in the previous time steps and the time span since the last manoeuvre agrees
with the selected one. Also, if the magnitude of the calculated ∆v is less than ∆vmin, then the
recommended manoeuvre is cancelled. Once these parameters have been fixed, there are no more
free variables allowing any further minimisation.

3.8.2 Numerical Results

In Figures 3.22 and 3.23 we show some results of simulations done for a halo orbit around L2 in
the Earth-Moon system. We display the evolution of the unstable component and the deviations
from the nominal trajectory, in position and velocity in different situations. In Figure 3.22 the
manoeuvres are done without any error, while in Figure 3.23 they are performed with errors. In
each Figure we show the results of the station keeping strategy with and without stable manifold
insertion manoeuvres. From them, the exponential grow of α1 as well as the role of the insertion
manifold manoeuvres, become clear.

Finally, in Figure 3.24 the averaged ∆v used for the station keeping is displayed. As in the
previous case, the simulations correspond to a halo orbit around L2 in the Earth-Moon system. If
no insertion manifold manoeuvres are done, there appears an exponential grow of the ∆v. On the
contrary, if these manoeuvres are executed the station keeping cost per year remains constant.
From this Figure it is also clear that a good orbit determination procedure can be useful to reduce
the total ∆v.
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Figure 3.24: Averaged ∆v used for the station keeping in cm/s/year in different situations. The two
curves with an exponential grow of the ∆v correspond to simulations with no insertions in the stable
manifold. For the upper curve there was no orbit determination. The other two curves, for which there
seems to be a finite limit for the ∆v, we have used insertion manoeuvres in the stable manifold. The
one with lower cost uses orbit determination and the other no.
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Chapter 4

New Trends in the Assessment of
Mission Design

The invariant manifold structures of the collinear libration points for the restricted three-body
problem give the framework for understanding transport phenomena from a geometric point of
view. In particular, the stable and unstable invariant manifold tubes associated to libration point
orbits are the phase space conduits transporting material between primary bodies for separate
three-body systems. These tubes can be used to construct new spacecraft trajectories, such as a
“Petit Grand Tour” of the moons of Jupiter. The new trends in the assessment of mission design
should include these methodologies, and others, mainly derived from the application of results
coming from Dynamical Systems Theory. The capabilities of modern computers make possible
new tools that just some years ago could only be considered in a theoretical base.

Certainly, many of these tools are of too high degree of complexity to be used in a raw form.
In any case, as the goal of this section, we aim not at the theoretical part of tools by themselves
which are already described in the literature and up to some extent in the previous sections, but
to the practical applications that could be derived. In certain aspects a parallel example would
be the final user of a modern car or electronic device. The actual degree of complexity of the
mechanical and electronic parts make it impossible for the final user to construct a product like
this, anyway the final user has an overall control of the machines and its capabilities in a very
simplified and ergonomic way.

Up to now, the mission analysis of even simple libration point trajectories need to be done
by highly trained people in astrodynamics, and even some re-computations of trajectories to
accommodate a new demand or constraint could need of the order of few days the get the final
one. New space missions are increasingly more complex, requiring new and unusual kinds of orbits
to meet their scientific goals, orbits which are not easily found by the traditional conic approach.
The delicate heteroclinic dynamics employed by the Genesis Discovery Mission illustrates the
need for a new paradigm: study of the three-body problem using dynamical systems theory as
laid out by Poincaré (see [163, 150, 126]). This significant increase of libration point missions
with high degree of complexity and the navigation in the Solar System using low energy transfers,
claim for a design tool of easy use. The human presence in a space gateway station located at L1

Earth-Moon system to service missions to the Moon and to the libration points of the Sun-Earth
system, among other applications, will benefit from a design tool that, in an interactive way,

117
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could provide estimations and real trajectories to fullfill a mission on demand.
Of course the complete design and construction of a such a complex tool is a major task. At

this point, our objective is to present some interfaces that could be of interest mainly from the
point of view of graphical interaction with the final user and the link with its dynamical systems
base.

4.1 Current Software Tools

Libration point mission design capabilities have significantly improved over the last two decades.
To our knowledge, three different space centres have developed their own software tools for mission
analysis at libration points: GSFC, JPL and ESOC. Here we will describe just their main features
since we have not had the possibility to compare their actual capabilities.

4.1.1 Tools at the European Space Agency

The Interplanetary Navigation Software Tool (INTNAV), developed by GMV under ESOC con-
tract, performs trajectory determination and trajectory trim manoeuvres analysis. The package
has some extensions which allow the mission analysis of libration point orbits, including the
triangular libration points.

The capabilities of INTNAV include the design and generation of the Launch and Early Orbit
Phase, of the Transfer Phase using multiple lunar swing-bys and of the operational quasi-periodic
orbits. The tracking of the spacecraft in the different mission phases is assumed by range, range-
rate, VLBI from ground-based facilities and on-board optical navigation. The tool has a graphical
user interface for the relevant mission parameters and case definition. The results are presented
in graphical form and/or in detailed tabular and log files.

INTNAV was finished in 1996 and, to our knowledge, no further extensions have been done, in
particular it lacks the ones related to the use of invariant manifolds for mission analysis purposes.

4.1.2 Tools at Goddard Space Flight Center

Before 1990, the software of choice at GSFC was the Goddard Mission Analysis System (GMAS).
This software had complete optimisation functionality as well as the capability to model any
kind of perturbing force. The software allowed user created object modules to be linked into
the run sequence as a way to allow the user access to data for trajectory analysis. During the
early 1990’s, the GSFC operational PC program called SWINGBY was developed. SWINGBY
had a graphical user interface (GUI) to provide instantaneous feedback of the trajectory design
in multiple coordinate systems. It was designed to be a high fidelity numerical targeting tool to
support libration missions, providing also support to lunar, planetary, and deep space missions,
including gravity assist. SWINGBY still provides complete mission analysis and operations for
the WIND, SOHO, and ACE missions as well as lunar Prospector and Clementine. From this
NASA development beginning, commercial applications, such as Analytical Graphics Inc’s (AGI)
Astrogator, were advanced and are now in operational use. These tools support a direct method,
typically using shooting methods, of attaining a desired trajectory.
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As mission concepts become more ambitious, increasing innovation is necessary in the design
of trajectories. Design capabilities for libration point missions have significantly improved in
recent years and should continue the progress. A recent change in the mission design is the
use of a dynamical systems approach to allow more of the optimisation burden to be performed
autonomously. These efforts include Generator. The success of SWINGBY for construction
of trajectories in this regime is an evidence of the improvement in computational capabilities.
Nevertheless, conventional tools, including commercial applications like STK/Astrogator, do not
currently incorporate any theoretical understanding of the multi-body problem and do not exploit
dynamical relationships.

Nonlinear dynamical systems theory offers new insights into multi-body regimes, where qual-
itative information is necessary concerning sets of solutions and their evolution. For application
to spacecraft trajectory design, it is helpful to first consider special solutions and invariant mani-
folds, since this aspect of dynamical systems offers immediate insight. An example of development
in this area is called Generator. GSFC in collaboration with Purdue University, is developing
various dynamical systems methodologies combined in a software tool (see [147]).

4.1.3 Tools at the Jet Propulsion Laboratory

LTool is JPL’s mission analysis tool with specialisation in libration orbits. It has been used by
the Genesis Mission for its pre-launch mission design as well as in current post-launch operations.
It is also being used by the Terrestrial Planet Mission to study formation flight both in halo
orbits and in SIRTF-like heliocentric orbits. It can also be used to design conventional conic-
based interplanetary missions. LTool is not a program, but what is known as a Problem Solving
Environment which has a Command Line User Interface, Graphical User Interface and 3D visu-
alisation capabilities, all integrated into a common software environment. Matlab, Mathematica,
and JPL’s Quick are other examples of Problem Solving Environments. The user can use LTool
interactively, or run LTool in batch mode for larger and longer computations. Various modules
enable the users to compute conic orbits, halo orbits, invariant manifolds associated to halo or-
bits. Using a user-programmable differential corrector (multiple shooting) the various trajectory
segments may be glued together to produce an end-to-end trajectory.

Some of the features of LTool are: Ability to produce end-to-end trajectories, starting from
first guess solutions to fully integrated trajectories with JPL ephemeris models. LTool tracks
coordinates and units. Trajectories are handled as abstract continuous functions of time. An
algebraic function permits users to manipulate trajectory functions algebraically. In addition to
trajectory design, LTool also provides coverage analysis using a technique called multi-resolution
visual calculus. Currently, low thrust trajectory integration module is being added.

The LTool environment is created using the object oriented Python CLUI, with Qt GUI,
and OpenGL graphics. The integrated environment is called PyShell. Fortran, C, and C++
modules are pulled into the PyShell environment using UDL (Unified Description Language), a
tool developed by the LTool Team. Currently LTool runs under LINUX, but a Windows version
is expected. This modular architecture allows the users to program at a high level, using a high-
level language (Python), while providing speed and flexibility with the Fortran, C, and C++
modules. The various LTool modules provide a high level astrodynamic programming language .
This approach greatly increases the user’s ability to prototype and to solve problems interactively.
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The modules of LTool dealing with the analytical computation of libration point orbits have
been done by the authors of the present report.

4.2 A New Implementation of the Mathematical Tools

The inherent complexity of the problem, with intriguing properties, that at some point lead to
the appearance of the ambiguous term “fuzzy boundary”, which turns out later in the WSB, has
its roots in the six dimensional saddle × center × center that we find in the neighbourhood of
the collinear libration points.

The dynamical structures of the three-body problem (such as stable and unstable manifolds,
and bounding surfaces), reveal much about the morphology and transport of particles within the
solar system, be they asteroids, dust grains, or spacecraft. The cross-fertilisation between the
study of the natural dynamics in the solar system and engineering applications has produced
a number of new techniques for constructing spacecraft trajectories with desired behaviours,
such as rapid transition between the interior and exterior Hill’s regions, resonance hopping, and
temporary capture (see [20]).

The invariant manifold structures associated to the collinear libration points for the restricted
three-body problem, which exist for a range of energies, provide a framework for understanding the
aforementioned dynamical phenomena from a geometric point of view. In particular, the stable
and unstable invariant manifold tubes associated to periodic and quasi-periodic orbits around
the libration points L1 and L2 are phase space structures that conduct particles to and from the
smaller primary body (e.g., Jupiter in the Sun-Jupiter-comet three-body system), and between
primary bodies for separate three-body systems (e.g., Saturn and Jupiter in the Sun-Saturn-comet
and the Sun-Jupiter-comet three-body systems)(see [187]).

These invariant manifold tubes can be used to produce new systematic techniques for con-
structing spacecraft trajectories with interesting characteristics. These may include mission con-
cepts such as a low energy transfer from the Earth to the Moon ([70]) and a “Petit Grand Tour”
of the moons of Jupiter.

As we already described in the section 3.2, one of the technical problems is that we have to face
with objects inside a high dimensional space, and so very difficult to be represented, wherein a four
dimensional set of libration point orbits act as saddle points. The mathematical tools developed
up to present, and essentially based in normal forms or in Lindstedt-Poincaré procedures, pretend,
in some way, to decrease the degrees of freedom as well as to decouple the hyperbolic parts from
the elliptical ones in order to simplify and study the problem from a mathematical point of view.
They should be the base for the construction of new devices that permit the mission analysis in a
systematic way and avoiding trial and error as much as possible. Let us enumerate briefly strong
and weak points of these methodologies.

• Normal Form Methods

– Provide a full description of the orbits in any selected energy level of interest.

– Provide the uncoupling between central, stable and unstable manifolds.

– The change of variables between the usual position and velocity and the normal form
variables can be explicitly obtained in both ways.
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– The variables in the central part have not an special meaning. This is, in general they
do not provide explicitly to which type of libration orbit refer.

– The change of variables is implemented as a long series expansion and is relatively time
consuming to evaluate.

• Lindstedt-Poincaré Methods

– They provide full descriptions of levels of energy close to the one of the libration point.

– The variables, amplitudes and phase have a very concrete and dynamical meaning. In
fact they are the well known action-angle variables of the Hamiltonian systems.

– Because they are invariant tori, libration point orbits are selected fixing the amplitudes
and varying the phases in a linear way. This is libration point orbits are seen as straight
lines moving uniformly in time in suitable coordinates.

– The usual coordinates of position and velocity are obtained by a straightforward eval-
uation of the series.

– They provide only a partial description of levels of energy containing both Lissajous
and halo orbits.

– The change of variables from the usual position and velocity to the amplitudes and
phases is not direct and must be implemented through iterative numerical procedures.

The combination of the best properties of each methodology with an effective implementation
of the numerical procedures, is the basis for the obtention of very efficient gadgets for the mission
design in the Solar System using the libration points. Let us comment some directions that we
think could be of major interest.

4.2.1 Gadgets Derived from Normal Form Computations

One of the best properties of the Poincaré sections of the normal forms about libration points
is that they provide a full description of the orbits in a neighbourhood of them. Moreover, for
levels of energy close to the libration point the invariant curves pointing to Lissajous trajectories
distribute in a neat way about the fixed points corresponding to periodic orbits (see section 3.2),
using interpolation techniques and the normal form computations, it is not difficult to construct
a database for any libration point in the solar system. The database can be used to generate,
to display and to interact with trajectories in an immediate way. Our group in Barcelona has
developed a very simple prototype (see Figures 4.1 and 4.2). The user selects an energy level
or chooses a certain orbit inside an energy level just moving the mouse. The characteristics of
the orbits are presented in an instantaneous way, and the generation of the trajectory and the
initial conditions in the stable or unstable manifold (also in the database) are immediate. Using
efficient and fast numerical integration desired trajectories are generated and chosen at once.
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Figure 4.1: Screen-shots of a possible gadget using the Poincaré sections of the normal form. The basic
capability includes a Poincaré section (down and left of each plot) where one selects the appropriate
orbit by clicking. The user interacts with standard graphical interfaces. Here we present some Lissajous
orbits seen from different viewpoints. In the right hand side figures, the orbits are seen from the Earth
and the central yellow point represents the Sun.



4.2. A NEW IMPLEMENTATION OF THE MATHEMATICAL TOOLS 123

Figure 4.2: In the gadgets, libration point orbits (blue) can be computed and represented together
with some trajectories of their stable manifold (green) and/or of the unstable manifold (red). The
computation and display is immediate due to the design of the internal database.
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Figure 4.3: Lissajous orbits are determined by two amplitudes and two phases. In the left-hand side
plot we represent a qualitative picture that lets the user select an appropriate orbit. Once selected,
the points of the trajectory are characterised by two phases in [0, 2π]× [0, 2π]. These are the angular
variables in what we refer as the Effective Phases Plane (EPP). In the EPP the Lissajous trajectory
is seen as an straight line in the EPP moving with constant velocity and fixed slope (central plot).
The EPP can also contain information about restrictions or requirements of the trajectory. In the
right-hand side figure we present an example which includes the exclusion zone that must be avoided
(see [154] for more details).

4.2.2 Gadgets Derived from Lindstedt-Poincaré Methods

Again a database, or even direct evaluation of the series expansions can be used to generate
trajectories and their manifolds. The selection of a given Lissajous orbit is immediate from the
in-plane and out-of-plane amplitudes. Once these amplitudes are selected, the trajectory is easily
displayed in the plane of effective phases (EPP), which in fact, from a dynamical systems point
of view is the representation of the angular variables of the torus (see Figure 4.3). In the EPP,
the trajectory is seen as a straight line moving with a constant velocity. It is also possible to
represent special zones in the EPP such as the exclusion zone about the solar disc for missions
about L1 in the Sun–Earth system (see Figure 4.4). In the EPP, manoeuvres in the in-plane
component, or in the out of plane component, which maintain the amplitudes of the tori can
be seen as symmetrical jumps of the straight line. These manoeuvres can be instantaneously
computed and could be represented in the same EPP as possible choices for the mission designer
(see again Figure 4.4).

Once in a libration regime, a change of libration orbit, this is a change of amplitudes, can
be easily tracked using the EPP. The best places for the manoeuvres including the required
restrictions can be displayed and the choice for the mission analyst is clear as we represent in the
example of Figure 4.5.

The Lindstedt expansions have also the possibility of adding the amplitudes related to the
unstable and stable component of the Lissajous orbits. This fact provides the capability of
considering the unstable and stable invariant manifolds of the Lissajous orbits and again the
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Figure 4.4: Essentially, manoeuvres are seen as jumps of the straight trajectory in the EPP (jointly
with a possible jump in the amplitudes). For certain types of manoeuvres, such as the exclusion
avoidance maintaining the amplitudes, they look as horizontal or vertical displacements, depending on
whether in-plane or out-of-plane manoeuvres are applied. These type of manoeuvres have symmetrical
properties too and this makes their planning very easy. In the plots we represent exclusion zone
avoidance manoeuvres in the in-plane and out-of-plane components sometime before the satellite is
going to hit an exclusion zone. A delta-v makes the satellite jump from point A to point B in the EPP.
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Figure 4.5: The EPP can also be used to represent the most convenient places for manoeuvres such
as a change of amplitudes. In this example, in the left-hand side plot we represent the suitable places
where a manoeuvre of enlargement of the libration point orbit improves the cost of a certain strategy
using two manoeuvres. In the right-hand side plot we display the maximum percentage of reduction
possible at each given point od the EPP.
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Figure 4.6: Example of a case where the EPP is used to display information about the manifolds of
the libration point orbit. The two curves represented in the EPP correspond to the orbits having an
heteroclinic connection with a certain libration point orbit. The corresponding heteroclinic connections
of each curve are respectively displayed in the 3D plots. The different regions in the EPP can be used
to control the transfer trajectories between the distinct libration regimes as well as transit and non
transit orbits in a similar way that the Poincaré sections commented in 4.2.3.

EPP parametrising all the possible choices of the initial state. In this case, for instance, one can
easily represent the different regions to transfer to distinct libration regimes or to the Earth or
to any other body in the EPP. See Figure 4.6 for an example.

Finally it is also very convenient to consider the EPP for the transfer orbit to libration point
orbits linked with the launch window in the Earth departure. In this way the mission designer
can take into account just with a sight both the required launch conditions and the final state in
the libration regime.

4.2.3 Poincaré Sections Far from the Libration Regimes

For the solar system navigation (this includes transfer trajectories between planets or transfer
trajectories between the moons of the planets as well as transfers from or to stations in libration
point regimes) it is very important to have a map of the main roads. This concept is represented
in Figure 4.7 where an artist conception of the road-map, also known by the interplanetary
superhihgway, is pictured by Cici Koenig from Caltech.

Nevertheless, this is one of the parts that still needs more theoretical study. The building
blocks (these are the orbits of the libration point regimes) are well known but, up to now, few
effort has been put on the knowledge of their interconnections. Apart from some examples, the
computation of transfer orbits relating libration point regimes of different primaries in a systematic
way is still missing. Although the numerical tools to analyse them are already developed.

An important idea in this new mission design concept is to place ad hoc Poincaré sections
where the manifolds coming from different systems meet. This is displayed in Figure 4.8, where
S represents the Sun and P1, P2 two planets, but the example works as well for a planet and
two moons. The manifolds of two libration point orbits, one coming from the S–P1 system and
the other one from the S–P2 one meet at a Poincaré section located in different places. The
appropriate location of the Poincaré section will depend on the type of problem to be solved and



4.2. A NEW IMPLEMENTATION OF THE MATHEMATICAL TOOLS 127

Figure 4.7: Artist conception of the low energy transfer channels in the solar system (Cici Koenig,
JPL-Caltech).

Figure 4.8: The natural way to study the transfer orbits between different planets or libration point
regimes is via the Poincaré section located at suitable places. In this figure we represent three possible
Poincaré sections located at different angles with respect to the S–P1 line. The gray regions represent
the well known Hill regions which are forbidden for the satellite due to its associated energy.
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Figure 4.9: Example of a Poincaré section at y = 0 of the planar RTBP. The plot of the stable
manifold is displayed in the xẋ coordinates. We note that a delta-v in the x component moves the
plot up or down (left-hand side plot). In the right hand side we display the different qualitative roles
of the points in the xẋ plane with respect to the plot of the manifold. We remark that the points
inside the region produce low energy fly-bys.

in general more theoretical work must be done in order to fill in a database with the most suitable
ones. But in any case, let us describe the important role of this tool with some examples of planar
orbits in a RTBP framework. For the examples, we assume that the Poincaré section is located
in the y = 0 axis of the synodical S–P1 system, this is, as it is represented on the left-hand side
plot of Figure 4.8, on the blue line which represents the x-axis. If we consider the variables x and
ẋ for the Poincaré map, we note that selecting a point on it, since y = 0 is already fixed, three
of the four coordinates of the planar problem are determined. For the remaining one, ẏ, we note
that it is equivalent to choose the energy of the trajectory when considering the Jacobi constant
of the S–P1 restricted three body problem. If we are dealing with the manifold of a libration
point orbit, both the orbit and its manifolds have the same energy and so ẏ is also determined.
This is, a point in the Poincaré map and a given level of energy determine a trajectory.

The second important thing to remark is that these Poincaré maps can be used as gateways
in the Solar System exploration. Continuing with the former example with the section located at
y = 0, the ordinary plot of the manifold in the xẋ coordinates of the Poincaré section is a curve
homeomorphic to a circle (see Figure 4.9). Assuming that the plot corresponds to the stable
manifold (W s) of a libration point orbit, the points on the curve give the x and ẋ values at y = 0
that with ẏ matching the same energy as the libration orbit, tend to the libration orbit as the time
increases. But, at the same level of energy, the x, ẋ conditions chosen inside the curve produce
transit orbits towards the small primary, these are low energy flyby orbits, whilst the conditions
taken outside the curve produce non transit orbits. A similar thing happens when the curve on
the Poincaré map corresponds to the unstable manifold of the libration orbit (W u) considering
trajectories backwards in time.

When the plots of the manifolds are at the same level of energy the intersection of an W u

curve with an W s curve produce homoclinic or heteroclinic orbits. These are the asymptotic
trajectories that connect the same or distinct libration point orbits with zero cost in the models.
These properties about transitions and asymptotic trajectories are also explained in Figure 4.10
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Figure 4.10: Using a Poincaré section containing the small primary and perpendicular to the line of
both primaries, the plots of the manifolds of the libration point orbits control the gateways between
distinct regimes as we represent in this example. Let us denote the regimes by, E (exterior to the zero
velocity curve), I (interior to the zero velocity curve) and P (the bottleneck between E and I and
where the small primary is). Let us assume that we plot respectively the stable and unstable manifolds
of Liapunov orbits about L1 and L2 in the same level of energy. For this energy level, orbits in the A
part of the Poincaré plot correspond to the orbits which go from E to P . Orbits in the B part go from
P to I and, as a consequence, orbits in C transit from E to I. The crossings of the plots correspond
to heteroclinic connections from the Liapunov orbit about L1 to the one about L2 in the example.
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Figure 4.11: Example of a simple procedure that a mission designer may use to transfer between
libration point orbits associated with P1 and P2. Having placed a Poincaré section at y = 0, we display
the xẋ coordinates corresponding to the unstable manifold coming from P1 (in red) and the stable one
going towards P2 (in green) in the upper plots. The bold point indicates the selected orbit of the W u.
Applying a manoeuvre at y = 0 the satellite can either be injected in the stable manifold or transfered
to the P2 interior region for a low energy flyby as we see in the bottom plots. See more explanations
in the text.

and it is the main key for the Solar System exploration using low energy transfers.

As a final remark let us illustrate with an example the possible role of the Poincaré sections in
a facility for the mission design. Let us assume that we want to transfer a satellite from a planar
libration point orbit in the S–P1 system to another one in the S–P2 of Figure 4.8. Choosing the
Poincaré section at y = 0 we obtain the left-hand side plot of Figure 4.11. The unstable manifold
comes from the libration point orbit associated with P1 and the stable one from the libration point
orbit associated with P2. For the sake of simplicity, both manifolds have been computed using
uncoupled systems. This is, in the computations of the unstable manifold, P2 has not been taken
into account, as well as P1 has not been taken into account in the computations of the stable
manifold. We also assume that the departure orbit chosen in the unstable manifold corresponds
to the bold point we see in the section plot.

As we see, the curves do not intersect. Besides they correspond to different levels of energy.
But the mission designer has an easy way to find a possible delta-v at the surface of section,
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and to obtain a transfer trajectory suitable as initial guess in any classical optimisation method.
Increasing the x component of the velocity, the W u curve moves upwards. So we can easily locate
the bold point on the W s curve as it is represented in the plot of Figure 4.11. In this way we
match the x, ẋ and y components of an W s point in the section. Finally ẏ is selected in order
that the final condition be in the same level of energy as the target orbit, this gives us the y
component of the delta-v we need.

If we had wanted to transfer to the interior region about P2, this is to obtain an orbit ap-
proaching P2 in a low energy flyby, we would have chosen the x component of the delta-v in
such a way that the bold point were located inside the W s curve (see the right-hand side plot of
Figure 4.11) and then, choosing again the ẏ to match the energy of the W s manifold.

4.2.4 Maps of Asymptotic Orbits

As we already presented in the section 3.6, the homoclinic and heteroclinic orbits are the ones
that depart asymptotically from a libration point orbit and tend also asymptotically to the same
one, or to other one, inside the same level of energy. This is they belong to both unstable and
stable manifolds of libration point orbits, and provide natural transfers between orbits in the
same level of energy at zero cost.

Asymptotic orbits can be considered in the same system (i.e. joining for instance libration
point orbits from L1 and L2 in the Sun-Earth system or in the Earth-Moon system) or in different
systems (i.e joining a libration point orbit in one system and with another libration point orbit
of another system). The knowledge of these orbits can be very useful in the design of missions
and may provide the backbone for other interesting orbits in the future. Up to now, and at least
using coherent models, research has been focused on the computation of this type of orbits joining
libration point orbits of the same system, and the tools to compute them, using either normal
forms or Lindstedt methods (which are developed up to a big extent, see [166], [14], [5] and [22]).
So it would be possible to have a database of these type of trajectories in a RTBP framework and
considering libration point orbits about L1 and L2.

The potential use of these orbits is very clear since they provide transfer trajectories between
libration point regimes at zero cost. For instance, a database could include information in the
following directions

• characteristics of the initial and final orbit.

• crossings at different Poincaré sections.

For example, when the mission designer needs to transfer from a libration point orbit about L1

to a libration point orbit about L2, could consult the database and to choose the heteroclinic
connection that best suits his purposes. This orbit could then be used as starting point in an
iterative procedure including all the required restrictions.

The information of crossings at different Poincaré sections can be used as further information
that could be included in the devices presented in the previous sections.
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Figure 4.12: Example of basic tools to study the transfer to a Lissajous libration point orbit. The user
selects a target orbit with suitable amplitudes (left). Then he uses the Poincaré map with the EPP to
select a transfer trajectory with the required restrictions (centre and right).

4.2.5 The Coordination of the Gadgets

We have commented some of the main building blocks that could be used in the generation
and choice of basic trajectories. All these tools should be implemented in a final device which
permits the study of a particular mission from the different points all-together as well as the
implementation of automatic duties: to match the trajectory at certain point, to minimise the
delta-v consumption restricted to certain constraints. . . These ones go from the usual iterative
procedures for the implementation of differential corrector using parallel shooting to optimisers
of a certain objective function subjected to constraints. Any of them need good initial seeds that
the former tools, due to the their specific design, are able to provide and thus far avoiding a blind
search.

4.3 Some Examples of Applicability

Let us discuss briefly how different situations could be tackled using the above tools.

4.3.1 Direct Transfer to a Lissajous Orbit

In the simplest example we consider a transfer to a libration point orbit about any of L1 or
L2 in the Sun-Earth or Earth-Moon system such as many examples in section 2. The mission
designer chooses a suitable target orbit as a point in the amplitudes plane (see Figure 4.12) and
the curve is highlighted in the Poincaré section. Of course the selected amplitudes can be changed
at any time later at will. Then, the point of the stable manifold producing close encounters with
Earth is selected in the EPP just by scrolling the mouse, or clicking in the invariant curve of the
Poincaré map, or even in an automatic way. Also in the EPP we can include restrictions such
as the eclipse avoidance zones in order to maximise the time in the libration area without this
type of manoeuvres. Departure conditions about the Earth could also be checked in a similar
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Figure 4.13: Example of the process of mission design in the final part of a a Genesis like trajectory.
After completing the L1 phase, the spacecraft is returned to Earth after a passage in the L2 region.
For this purpose the mission designer could use the EPP to control the suitable places for departure
from the station orbit about L1 using the stable manifold. A Poincaré section placed in the x = xEarth
and containing the W u coming from L1 and the W s of the L2 area with the same level of energy is
used for the design. The mission designer chooses a departure point in the EPP which produces a
point in the Poincaré section bouncing towards Earth. This is, outside the W s plot.

way. The orbit obtained in this way is then used as a seed for an optimiser which includes all the
restrictions.

4.3.2 Tours in the Sun-Earth Libration Regime

These type of missions include as examples the GENESIS trajectory (see section 2.1.6) or some
parts of the extended mission ISEE-3 (see section 2.1.1). The main characteristics are acrobacies
of the spacecraft in a region about the Earth visiting the Sun-Earth L1 and L2 area. Of course
the same rules apply for tours in the L1, L2 regime of any other system like Earth-Moon. Let
us consider as an example the Genesis mission design, where the spacecraft is transfered to L1,
remains there for two years, and then it comes back to Earth after having a short pass in the
L2 region. In a first step, the mission designer should compute the transfer trajectory as in the
previous example. During the phase of station maintenance at L1, the EPP and the control
of the unstable components (which also could be provided by the Lindstedt methods), can be
used to control possible requirements and restrictions in the trajectory such as the exclusion zone
avoidance and for performing station keeping manoeuvres. After completing the L1 phase, the
spacecraft is transfered back to Earth via a short visit to the L2 region. For this purpose, the
mission designer uses both the EPP to control the phase departure at L1, and a Poincaré section
placed at x = xEarth in the Sun-Earth rotating coordinates. In this Poincaré section he plots
both the unstable manifold coming from the actual orbit at L1 and the stable manifold of the
orbits about L2 with the same energy as the unstable one coming from L1. He needs to pick up
a departure phase in the EPP that maps ”outside” the W s plot in the Poincaré section (this is
bounces inside after visiting the L2 region) having an approach to Earth. This procedure gives
the initial seed of this particular mission design.
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Figure 4.14: Example of a transfer to a halo orbit about L2 in the Earth-Moon system using low thrust
and invariant manifolds. In this example the low thrust propulsion stops once the satellite is on the
stable manifold of the target orbit. We also note that the spacecraft goes through the L1 region, and
in fact, the part of the transfer from L1 to L2 can be designed using the tools of the previous point.

4.3.3 Missions Related to the Space Gateway Station

During the last decades the efficiency of the Shuttle to service spacecraft about the Earth such
as the Hubble Space Telescope has been proved many times. Human crews have recovered and
repaired spacecraft providing enhancements to the Hubble Space Telescope and replacing failed
control gyros. The new plans of putting expensive telescopes at L1 or L2 in the Sun-Earth system
would benefit from a human presence too. Nevertheless, the trip to L1 and L2 takes about three
months in a radiation environment. In this sense, the solution is a Space Gateway Station located
at L1 in the Earth-Moon system. The transfer form the Earth to the Station takes about 3 or
5 days, and the transfer from the Sun-Earth L1 or L2 to the Station may take three months but
it is cheap. Low energy transfers from L1 to L2 in the Earth-Moon system could also be used to
service satellites at L2 or even to service the link with a Lunar base in the far side of the Moon.
Low thrust transfer trajectories to L1 and L2 can be used to transfer big cargos to assemble the
Station at L1 (see Figure 4.14). In fact, the notion of human missions to libration points has
been proposed for more than a generation. Human mission concepts have examined the viability
and utility of human mission support for scientific missions in the vicinity of libration points in
the Sun-Earth, Earth-Moon and possibly Sun-Mars systems. Science fiction writers and futurists
have proposed concepts for permanent colonies at certain (linearly) stable libration points (e.g.,
Gerard K. O’neil, founder of the L5 Society, who promoted the idea of putting a colony at the
Earth-Moon L5 libration point). Here we will concentrate in the collinear libration points L1 and
L2. Moreover, the libration points provide a number of other potential human mission architecture
such as,

• Earth–Moon libration point L1: a gateway station for Lunar surface missions.

• Sun–Earth and Earth–Moon libration points as staging points for interplanetary missions.
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Human missions to the Earth-Moon libration point L1 have been proposed as a gateway
to support routine missions to the lunar surface. The libration point acts as a transfer point,
allowing human missions from the Earth to the libration point to be decoupled from the follow-on
leg leaving from the libration point to the lunar surface. In this manner, it is possible to then
land at almost any lunar location desired, at any time, and then return to the station located at
the libration point. An attractive feature of this mission concept is that only elements supporting
lunar landing/ascent from the surface actually go to the lunar surface. Earth return elements
remain at the libration point. Earth return from a libration point provides greater flexibility in
transfer opportunities than for a departure from a fixed higher latitude lunar parking orbit for
either a direct return to Earth’s surface or to a rendezvous with an orbiting space station.

For the case of departure and return to a particular parking orbit, such as the International
Space Station orbit, the L1 lunar libration point mission has certain advantages over an Apollo
style lunar orbit rendezvous approach, especially for multiple landing sites at higher latitudes.
Let us comment these advantages briefly.

• It provides a minimal orbit plane alignment issue for non-equatorial lunar landing sites.

• A free Earth return trajectory from L1 is afforded for missions to almost all lunar latitudes.

• Assuming a lunar orbit insertion prior to final descent to surface, it provides anytime access
to/from the lunar surface. The lunar orbit rendezvous approach provides access only to
sites in proximity to the lunar orbit plane.

• It allows the reuse of the lunar landing vehicle and avoids problems associated with reusing
a lunar orbit rendezvous vehicle.

• Vehicles sized for lunar orbit rendezvous missions can, in some instances, be used for lunar
libration point missions.

• Station-keeping cost at the lunar libration point is very small. The lunar libration point
approach avoids parking orbit stability problems associated with a complex selenopotiential
which, over the time, can produce peak-to-peak altitude variations for some low lunar orbits
so large that they result in surface impact. Depending on the inclination, low lunar orbits
altitudes in the range of 60 to 100 km can result in surface impact in 10 to 100 days.

On the other hand, the main disatvantatge of the lunar orbit rendezvous over the lunar libration
point is that the mission time, and sometimes the ∆v cost, can be smaller for near equatorial
sites.

The benefit and utility of the libration point gateway concept reveals itself in an evolution-
ary, rather than an expeditionary mission. Future evolutionary concepts could also incorporate
replenishing propellant oxidiser on the Moon by mining lunar rock or soil for its relatively high
oxygen content. The lack of atmosphere permits a surface launch via an electro-magnetic launch
device. In addition, unmanned satellites in halo orbits about the collinear libration points L1 and
L2 can support fully accessible, uninterrupted robotic or human communication links.

Also, human missions to the Sun-Earth and Earth-Moon libration points have been suggested
as staging/departure points for future human interplanetary trajectories. The libration points
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Figure 4.15: The natural way to transfer from the Space Gateway Station to a libration point orbit in
the Sun-Earth system, is to look at the cross of the manifolds at a certain Poincaré section and then
to use the methodology similar as the one in Figure 4.11. In this plot Sun and Earth-Moon barycentre
are aligned in the x axis. The relative position Sun-Earth-Moon repeats approximately each month
and the Poincaré section mostly depends on the angle between the Earth-Moon line and the x axis.

offer a location from which to conduct long term construction of massive interplanetary spacecraft
that has low orbit maintenance cost and is essentially free of man-made hypervelocity orbital
debris. With the aid of a powered Earth gravity assist, interplanetary injection manoeuvres,
beginning at the libration point, can be effected for a lower performance cost than for departure
from low Earth orbit.

Human presence at L2 in the Sun-Earth system has been proposed too. In 1998 Wes Huntress,
then Associate Administrator for Space Science at NASA Headquarters, suggested the use of
astronauts for the deployment of the NGST in deep space.

As an example of a part of the mission design associated with a Space Gateway located at
L1 Earth-Moon system, let us consider the major problem of servicing satellites located at L1

and L2. This can be easily tackled using the Poincaré sections that we previously presented (see
Figure 4.15). Essentially, to transfer the satellite to be serviced from the Sun-Earth libration
point to the Space Gateway Station, we depart from the first orbit using its unstable manifold
and then, at some place, we insert the satellite on the stable manifold of the libration point orbit
where the Station is located. As we showed, this type of manoeuvres can be easily computed
once a Poincaré section is selected, and the relative position of the possible Poincaré sections
with respect to Sun, Earth and Moon repeats approximately every month. The transfer of the
spacecraft back to the Sun-Earth libration regime can be resolved in a similar way. Of course,
the transfer of the astronauts from Earth to the Space Gateway Station follows the discussion of
the previous point on direct transfers to libration point orbits as well as possible transfers form
the libration Earth-Moon regimes to the Moon. Finally, the transfer between L1 and L2 regimes
in the Earth-Moon system can be implemented either by Poincaré sections or using the maps of
asymtotic orbits discussed in section 4.2.4.
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4.3.4 Interplanetary Missions and Satellite Tours

At this point, there is some evidence that invariant manifolds associated with libration point orbits
of different planets intersect in position (see Figure 3.21 in page 106). In this case, the techniques
of mission design associated with libration point orbits of different planets, and presented in
section 4.2.3 could be used. Missions like the ones in section 2.2 and others would be potential
candidates to this type of mission design. The drawback is that, at least for the exterior planets,
the time to obtain the encounter could be of the order of hundreds of years. In this case, small
manoeuvres to obtain big deviations of the trajectory in hyperbolic regimes, and outside of the
scope of this report, could be used to asses the mission design. Other possibilities should be the
use of low trust propulsion, or the traditional transfer approach (conic orbits) in combination
with the libration point regimes.

Nevertheless there exist situations where the techniques presented in this section might work
without further assistance. This includes missions towards Mars and Venus and specially missions
related to the moons of planets. In this later case, JIMO and the Petit Grand Tour of the moons
of Jupiter are examples where the techniques associated with the Poincaré sections can be used
as mission design tools to obtain cheap transfers between the moons.

As an example and complement, let us comment the procedure that in [127] led to the con-
struction of a given itinerary to the moons of Jupiter. Using the above mentioned database of
Poincaré sections one should be able to systematise and automatise the computations.

The first step is to approximate a spacecraft motion in the n + 1 body gravitational field of
Jupiter and n of its planet-sized moons into several segments of purely three body motion involving
Jupiter, the ith moon, and the spacecraft. Koon et al. studied a transfer from Ganymede to
Europa and found that the fuel consumption for impulsive burns, as measured by the total norm
of velocity displacements, ∆v, to be less than half the Hohmann transfer value which is about
1500 m/s. Further studies using the same approach down-load this value to 20 m/s. The line of
the tour is as follows: starting beyond Ganymede’s orbit, the spacecraft is ballistically captured
by Ganymede, orbits it once, escapes in the direction of Europa, and ends in a ballistic capture
at Europa.

One advantage of this Petit Grand Tour as compared with the Voyager-type fly-bys is the
“leap-frogging” strategy. In this new approach to mission design, the spacecraft can orbit a moon
in a loose temporary capture orbit for a desired number of circuits, escape the moon, and then
perform a transfer delta-v to become ballistically captured by a nearby moon for some number of
revolutions about that moon, etc. Instead of fly-bys lasting only seconds, a scientific spacecraft can
orbit several different moons for any desired duration. Furthermore, the total delta-v necessary
is much less than that necessary using purely two-body motion segments. The design of the Petit
Grand Tour in the planar case is guided by two main ideas (see [127]) that can be implemented
using the previous gadgets.

1. The motion of the spacecraft in the gravitational field of the three bodies Jupiter, Ganymede,
and Europa is approximated by two segments of purely three body motion in the planar,
circular, restricted three-body model. The trajectory segment in the first three body sys-
tem, Jupiter-Ganymede-spacecraft, is appropriately patched to the segment in the Jupiter-
Europa-spacecraft three-body system.
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2. For each segment of purely three body motion, the invariant manifolds tubes of L1 and L2

periodic orbits leading toward or away from temporary capture around a moon, as in Figure
4.16, are used to construct an orbit with the desired behaviours. This initial solution is then
refined to obtain a trajectory in a more accurate four-body model.

The patched three-body model considers the motion of a particle (or spacecraft) in the field
of n bodies, considered two at a time, for instance, Jupiter and its ith moon, Mi. When the
trajectory of a spacecraft comes close to the orbit of Mi, the perturbation of the spacecraft’s
motion away from purely Keplerian motion about Jupiter is dominated by Mi. In this situation,
we say that the spacecraft’s motion is well modeled by the Jupiter-Mi-spacecraft restricted three-

(a)

(b) (c)

Figure 4.16: The patched three-body model. (a) The co-orbiting frame with Europa is shown, otherwise

known as the rotating frame. The spacecraft’s motion in each Jupiter-moon-spacecraft rotating frame is

limited to the region in white due to constant energy in that system (constant Jacobi integral). We work with

three-body energy regimes where the region surrounding the Moon’s orbit (shaded) is energetically forbidden to

spacecraft motion. Note small opening near moon, permitting capture and escape. (b) The four-body system

approximated as two nested three-body systems. This picture is only a schematic, as the spacecraft’s motion

conserves the Jacobi integral in only one system at a time. (c) We seek an intersection between dynamical

channel enclosed by Ganymede’s L1 periodic orbit unstable manifold and dynamical channel enclosed by

Europa’s L2 periodic orbit stable manifold (shown in schematic). Integrate forward and backward from patch

point (with ∆v to take into account velocity discontinuity) to generate desired transfer trajectory between

the moons (see [14]).
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body problem.

There comes a point along the spacecraft’s trajectory at which a rocket burn manoeuvre,
effecting a change in velocity of magnitude ∆v, will make the spacecraft’s perturbation switch
from being dominated by Mi to being dominated by another moon, Mk. The set of possible
“switching orbits,” which we will refer to as the switching region is the analogue to the “sphere of
influence” concept used in the patched-conic approach to trajectory design, which guides a mission
designer regarding when to switch the central body for the model of the spacecraft’s Keplerian
motion. The goal is to find piecewise continuous trajectories in the phase space (continuous in
position, but allowing for discontinuities in the velocity, for which impulsive rocket burns will be
necessary) which lead a spacecraft from a loose orbit about Mi to a loose orbit about Mk. We
refer to the phase space of these loose orbits as the “capture realm.” In the procedure we outline,
we seek intersections between invariant manifold “tubes” which connect the capture realm of one
moon with that of another moon.

In the planar case, as we already explained, these solid tubes are bounded by stable and
unstable invariant manifold tubes of periodic orbits about L1 and L2, which act as separatrices
separating transit orbits from non-transit orbits (see Figures 4.9 and 4.10). Transit orbits lead
toward or away from a capture realm, whereas non-transit orbits do not. The stable and unstable
manifolds of the periodic orbits about L1 and L2 are the phase space structures that provide a
conduit for orbits between realms within each three-body systems as well as between capture
realms surrounding primary bodies for separate three-body systems (see [20]).

The study of the planar circular restricted three-body problem (see [20, 187, 70, 127]) revealed
the basic structures controlling the dynamics. But current and future missions will require three-
dimensional capabilities, such as control of the latitude and longitude of a spacecraft’s escape
from and entry into a planetary or moon orbit. For example, a future mission to send a probe to
orbit Europa may desire a capture into a high inclination polar orbit around Europa ([136, 129,
134, 216]). Three-dimensional capability is also required when decomposing a multi-body system
into three-body subsystems which are not co-planar, such as the Earth-Sun-spacecraft and Earth-
moon-spacecraft systems. (The tilt in the orbital planes of the Earth around the sun and the
moon around the Earth is about 5 degrees.) These demands may imply dropping the restriction
of planar motion, and extension of results to the spatial model. In our current work on the spatial
three-body problem (see also [148]), we have shown that the invariant manifold structures of the
collinear libration points still act as the separatrices between two types of motion: (i) inside the
invariant manifold tubes, the motion consists of transit through a neck, a set of paths called
transit orbits; (ii) outside the tubes, no such transit motion is possible. We have designed an
algorithm for constructing orbits with any prescribed itinerary and obtain some initial results for
a basic itinerary (see [14]) which can be applied to the construction of a three-dimensional Petit
Grand Tour of the Jovian moon system. By approximating the dynamics of the Jupiter-Europa-
Ganymede-spacecraft four-body problem as two three-body subproblems, we seek intersections
(in position space only) between the tubes of transit orbits enclosed by the stable and unstable
manifold tubes. As shown in Figure 4.17, we have been able to design an example low energy
transfer trajectory from an initial Jovian insertion trajectory, leading to Ganymede and finally
to Europa, ending in a high inclination orbit around Europa.
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Figure 4.17: The three dimensional Petit Grand Tour space mission concept for the Jovian moons.
(a) We show a spacecraft trajectory coming into the Jupiter system and transferring from Ganymede
to Europa using a single impulsive manoeuvre, shown in a Jupiter-centred inertial frame. (b) The
spacecraft performs one loop around Ganymede, using no propulsion at all, as shown here in the
Jupiter-Ganymede rotating frame. (c) The spacecraft arrives in Europa’s vicinity at the end of its
journey and performs a final propulsion manoeuvre to get into a high inclination circular orbit around
Europa, as shown here in the Jupiter-Europa rotating frame (see [14]).

4.3.5 Shoot the Moon

The general idea to obtain low energy transfers to the Moon is similar to the one of the Petit
Grand Tour. The goal is to produce transfer orbits from the Earth ending at a lunar capture
orbit, using less fuel than in a Hohmann transfer. This problem was first considered by Belbruno
and Miller (see [153]) and applied to the Hiten mission in 1991 (see section 2.2.1). The procedure
using invariant manifolds and developed by Koon et al. in [20], is based in the construction of
trajectories with prescribed itineraries and has the following three key steps:

1. Decouple the Sun–Earth–Moon-Spacecraft system (which is a restricted 4–body problem) in
two restricted 3–body problems: the Sun–Earth–Spacecraft and the Earth–Moon-Spacecraft
systems.
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2. Use the stable/unstable manifolds of the periodic orbits about the Sun–Earth system L2

libration points to provide a low energy transfer from the Earth to the unstable/stable
manifolds of periodic orbits around the Earth–Moon L2 libration point. The “low energy”
required is needed because some manoeuvres must be done in order to depart slightly from
the manifolds and also because the manifold intersection is not a true one, since they are
related to different restricted problems.

3. Finally, use the stable manifolds of periodic orbits around the Earth–Moon libration points
to provide a ballistic capture about the Moon.

In fact, the procedure works as follows: first a suitable Sun–Earth L2 periodic orbit is computed
as well as their stable and unstable manifolds. Some orbits on the stable manifold come close
to the Earth and, at the same time, points close to the unstable manifold propagated backwards
in time come close to the stable manifold. So, with an small ∆v is possible to go from the
Earth to the unstable manifold of this periodic orbit. At the same time, when we consider the
L2 point of the Earth–Moon system, is has periodic orbits whose stable manifold “intersect” the
unstable manifold that we have reached departing from the Earth and are temporary captured
by the Moon. With a second small ∆v we can force the intersection to behave as a true one (see
Figure 4.18).

Figure 4.18: Example of a low energy transfer to the Moon. The satellite departs from Earth (1) near
the stable manifold of a L2 orbit in the Sun-Earth sytem and bouncing back near the unstable manifold
(2) of the same libration point orbit. Arriving at the L2 region in the Eart-Moon system, it is inserted
at the interior region of the Poincaré section corresponding to the stable manifold and approaching
the Moon (3). Finally a small manoeuvre produces the capture by the Moon (4).

In the same framework of cheap missions related to the Moon, an example of a suitable way
for a lander to the Moon could be done launching from Earth towards L1 in the Sun-Earth system
and bouncing back to an L2 libration point orbit in the Earth-Moon system from where using
its stable manifold we arrive to the Moon. The mission could extend in the way back to Earth,
launching from the Moon towards L2 in the Sun-Earth system and returning to Earth in a Genesis
like trajectory (see Figure 4.19).
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Figure 4.19: Examples of low energy transfers from Earth to Moon (left) and from Moon to Earth.
The approach is similar to the described in Figure 4.18.

4.3.6 Asteroid Hazard and Mining

As it has already been commented in section 3.7.3, the exploration of the phase space structure
as revealed by the homoclinic/heteroclinic structures and their association with mean motion
resonances, may provide deeper conceptual insight into the evolution and structure of the asteroid
belt (interior to Jupiter) and the Kuiper belt (exterior to Neptune), plus the transport between
these two belts and the terrestrial planet region.

It is estimated that about 1% of the asteroids are in a regime with potential close encoun-
ters with the Earth. Potential Earth–impacting asteroids may use the dynamical channels as a
pathway to Earth from nearby heliocentric orbits in resonance with the Earth. This phenomena
has been observed recently in the impact of comet Shoemaker–Levy 9 with Jupiter, which was in
2:3 resonance with Jupiter just before impact. Of course at some time, many of these asteroids
or comets driven by the invariant manifolds of the Sun-Earth libration points will transit the
bottleneck that the zero velocity curves draw about the Earth. This fact constitutes a serious
hazard, and in fact, there is some evidence that the collision that caused the extinction of the
dinosaurs might have been produced by an object in these energy levels.

Sky-watchers located at selected places, such as L2 in the Sun-Earth libration point, could
prevent from possible hazards. In case of detection, only small manoeuvres would be needed
to deflect the dangerous body. At the same time, small deviations of the trajectories of some
asteroids could be used to station them in selected orbits with the purpose of mining.

4.4 Extensions and Complementary Open Problems

4.4.1 Applications of Libration Point Orbits to Formation Flight

The idea of flying multiple spacecraft with a mutual scientific goal is not new. However, attacking
this problem in such a demanding dynamical regime as it is posed by the unique behaviour in
the vicinity of the libration points has recently become apparent. Only through a combination
of the mathematical tools that have essentially affected a paradigm shift in three-body mission
design (e.g., dynamical systems theory), creativity, and confidence in the existing tools has such
a mission scenario been realized. One of the most exciting determinations in studies of this type
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is that many more valuable mission options are available.
The excellent observational properties of the L2 point of the Earth–Sun system have lead to

consider this location for missions requiring a multiple spacecraft in a controlled formation flying.
Darwing, LISA and TPF are three of the more challenging examples of such missions.

Two basic orbital strategies have been analysed for a formation flying mission at the libration
points: a nominal orbit strategy and a base orbit strategy. In the nominal orbit strategy each
spacecraft follows its own predefined orbit, while in the base orbit strategy each spacecraft follows
an orbit relative to a predefined one, known as the base orbit. The base orbit may have no
spacecraft on it. In the next two sections we will briefly discuss the results that have been
obtained in both approaches.

The Nominal Orbit Strategy

Barden and Howell [217], [218] and [221] have considered the possibility of using quasi–periodic
solutions around the halo orbits and the libration points, as natural locations for a constellation.
In their studies, a certain number of spacecraft are initially placed along a planar curve close to
any of the two kinds of the above mentioned tori and, in a first step, they analyse their natural
motion (see Figure 4.20).

Figure 4.20: Simulation of formation flight in a quasi-halo orbit. The white torus represents the
quasi-halo and the small coloured spheres on it, the spacecraft. The remaining two spheres (white and
blue) represent the Earth and the Sun.

In the quasi-halo case, the torus itself is related to an underlying periodic halo orbit. As the
initial planar curve evolves in time along the torus, in the direction of motion of the underlying
halo orbit, there are certain aspects of the evolution of the curve that are of particular interest.
The curve appears simply closed and nearly circular in configuration space. When the amplitude
of the curve is small, i.e., less than 1000 km, the curve is considered to be planar. However, as
the curve evolves, it changes size and shape. By identifying the plane containing the curve, one
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can view the constellation from a point along the normal to the plane. Although the plane will
not persist, the deviations from the reference one are small: less than 1% of the distance between
spacecraft when they are on opposite sides of the constellation. In addition to the variations in
size and shape, there is a winding aspect of the motion due to the change of the relative locations
of the points of the curve. This is because the torus is self–intersecting in the configuration space
at the two xz-plane crossings.

This type of natural motion, as an option for formation flying, is very appealing from a
dynamical perspective. From a practical standpoint, however, this formation will likely not meet
the constraints and scientific requirements of a generic mission. The likely scenario is that some
pre-specified formation will be mandated.

Barden and Howell consider six spacecraft evenly distributed on a circle of radius 100 km in a
plane coincident with the rotating libration point coordinates y and z (parallel to the yz plane)
and around a Lissajous type orbit as an example of non-natural formation. At each manoeuvre,
the formation is forced to be on the plane, but there will be out-of-plane excursions for each of the
spacecraft between the manoeuvres; the amplitude of the excursions will vary for each vehicle. In
a first simulation, four manoeuvres per revolution in the xy plane (nearly equally spaced in time)
are executed, where all six spacecraft implement their respective manoeuvres simultaneously.
The size of the manoeuvres ranges from 0.043 m/s to 0.12 m/s achieving a total cost of 2.93 m/s
for a duration of 355 days (which is equivalent to two revolutions along the baseline Lissajous
trajectory in the xy plane. These manoeuvres are necessary to define a nominal path for each
of the spacecraft; additional station-keeping manoeuvres will also be required to accommodate
errors and uncertainties. Even for the baseline motion, however, out-of-plane excursions between
the manoeuvres reach a maximum value at any time of approximately 20 km in this example.
The only means of reducing this deviation is to increase the frequency of the manoeuvres. With
manoeuvres every 11 days, instead of 44 days, the out-of-plane deviations never exceed 1.8 km.
The total cost is of 2.77 m/s which is smaller than the 2.93 m/s required. However, fixed planes
can be specified where the total cost increases with the increased number of manoeuvres.

Formation Flight in the Vicinity of a Libration Point: The TPF Case

The TPF Mission (Terrestrial Planet Finder) is one of the pieces of the NASA Origins Program.
The goal of TPF is to identify terrestrial planets around stars nearby the Solar System (see
[219]). For this purpose, a space-based infrared interferometer with a baseline of approximately
100 m is required. To achieve such a large baseline, a distributed system of five spacecraft
flying in formation is an efficient approach. Since the TPF instruments need a cold and stable
environment, near Earth orbits are not suitable. Two potential orbits have been identified: a
SIRTF-like heliocentric orbit and a libration orbit near the L2 Lagrange point of the Earth-Sun
system.

There are several advantages of using a libration orbit near L2. Such orbits are easy and
inexpensive to get to from Earth. Moreover, for missions with heat sensitive instruments (e.g.
IR detectors), libration orbits provide a constant geometry for observation with half of the entire
celestial sphere available at all times. The spacecraft geometry is nearly constant with the Sun,
Earth, Moon always behind the spacecraft thereby providing a stable observation environment,
making observation planning much simpler. In this section we present some of the results of [220]
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which contain preliminary computations of the TPF mission.
From the dynamical point of view, the TPF Mission can be broken into four phases:

1. Launch and Transfer Phase. For the simulation, it is assumed that the spacecraft starts
in a typical 200 km altitude parking orbit at 28.5 deg inclination and a halo orbit is used as a
target Baseline Orbit. At the appropriate time, the spacecraft performs a major manoeuvre
of about 3200 m/s. This injects the spacecraft onto the stable manifold of the halo orbit
to begin the Transfer Phase. The transfer trajectory is designed by using an orbit of the
stable manifold with a suitable close approach to the Earth.

Figure 4.21: Simulation of some basic manoeuvres for TPF.

Deployment Time R = 1 R = 3
1 h 5.5× 10−2D 5.6× 10−2D
3 h 1.9× 10−2D 2.7× 10−2D
5 h 1.3× 10−2D 2.2× 10−2D
10 h 0.9× 10−2D 1.8× 10−2D
100 h 0.5× 10−2D 1.5× 10−2D

Table 4.1: Estimation of the deployment cost in cm/s as a function of the deployment time.

2. Deployment Phase. It is assumed that all the spacecraft of the formation reach the
Baseline Orbit in a single spacecraft. This trigger out the Deployment Phase. The five
satellites are manoeuvred to reach their initial positions on the different points of a 20-gon
of 100m diameter at the same time. The Deployment Phase can last for several hours,
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and simulations between 1 and 10 hours have been done. Assuming that deployment is
performed using two impulsive manoeuvres and that a selected satellite has to be put in
the edge of an 20-gon of diameter D meters and it will be doing R revolutions per day, the
Table 4.1 summarises the estimation of the deployment cost in cm/s as a function of the
deployment time.

3. Pattern Maintenance Phase. Once the initial configuration has been established, the
spacecraft will manoeuvre to follow the edge of the 20-gon to provide a suitable spin rate for
the formation. The nominal spin rate used for this simulation is 360 deg every 8 hours. The
period where the pattern is maintained is called the Pattern Maintenance Phase. Assuming
that a spacecraft is spinning in a 20-gon of diameter D meters and doing R revolutions per
day, is obtained that: Formation maintenance cost per satellite in cm/s per day = 0.0023
DR2.

4. Reconfiguration Phase: Once sufficient data has been acquired for one star system, the
formation will be pointed to another star for observation. Repointings occur during the
Reconfiguration Phase. The computations for the Reconfiguration Phase cost is similar to
the Deployment Phase except for the fact that the spacecraft do not depart from the same
location (i.e. the Mother Ship).

Estimation of TPF Budget for a Ten Year’s Mission

Table 4.2 presents an estimation of the ∆v cost associated to satellites located in an N-gon of 50
and 100 m around a L2 base halo orbit spinning at the rate of 3 revolutions per day and for a 10
year’s mission is also given.

Manoeuvre cost per S/C 50 m Diameter Case 100 m Diameter Case
Halo Insertion 5 m/s 5 m/s
Initial Deployment (10h) 0.009 m/s 0.018 m/s
Formation Maintenance 0.1 m/s/day 0.2 m/s/day
Station Keeping (z-Axis) 3 m/s/year 3 m/s/year
Reconfiguration (estimate) 0.05 m/s/day 0.1 m/s/day
10 Year ∆v Budget 583 m/s 1130 m/s

Table 4.2: Estimation of the ∆v cost associated to satellites located in an N-gon around a L2 base
halo orbit.

Halo insertion cost due to transfer from the Earth and station keeping, including avoidance of
the exclusion zone that could be required in case of using an L2 Lissajous orbit, is also included.
The usual station keeping can be assumed to be absorbed in the so often performed pattern
maintenance manoeuvres. Manoeuvres are also considered to be done with no error, so control
correction manoeuvres are not included.
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Some Issues that Should Be Studied in Formation Flight

Definition of the basic trajectory

The definition of the nominal trajectory of a single spacecraft is a concept that has been widely
used. The problem arises for a constellation of several satellites around the libration points. In
this case we have to face with magnitudes with very different orders. For instance, in the TPF
case

• Distance from Earth to spacecraft ∼ 1.5 ∼ 106 km.

• Distance between spacecraft ∼ 100 m or less.

• Maximum deviation between two spacecraft ∼ 20 cm. These maximum deviations allowed
are smaller than the usual tracking errors for libration point satellites. This means that the
navigation formation must be done autonomously.

The definition of the basic trajectory, suitable for working purposes, requires the specification
of two different things:

• The path followed by some distinguished point of the constellation: the basic nominal orbit.

• The relative motions of all the spacecraft with respect to the basic nominal orbit.

From the practical point of view, this implies that two separate station keeping procedures
must be developed:

• One for preventing deviations of the spacecraft form the basic trajectory. This requires
some synchronism in the execution of the manoeuvres, in order to prevent possible large
deviations between satellites due to the high instability of the libration point orbits.

• One for the acquisition and maintenance of precise formation.

Note that these two different kind of manoeuvres are also of different orders of magnitude.

Estimation of station keeping costs

It is known that for the maintenance of a single satellite around a libration point orbit, a few
cm/s per year of ∆v are needed. It remains to be analysed the cost for a set of linked (highly
correlated orbits) satellites, which is clearly not equal to the sum of the individual costs at all,
because of the instability. This station keeping can not be performed with some of the standard
strategies which just keep the spacecraft in a neighbourhood of a given nominal orbit.

Once an specific configuration has been fixed (for instance a collinear one around an equilib-
rium point, with two spacecraft with a separation of 100 m rotating on a fixed (sidereal) plane
with an angular velocity of 3 revs/day) a first estimation of the ∆v required for keeping the
formation can be done computing the residual accelerations. These are the differences between
the accelerations given by the vector-field equations and the true acceleration due to the proper
motions of the spacecraft. For the above example, some first estimations give a value of 20 cm/s
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per day, for each satellite. The same configuration, but rotating with an angular velocity of 1
rev/day, requires 2.5 cm/s per day.

We note that continuous thrust must be used to keep the formation. If the continuous thrust
is turned off, it is important to know the time that the formation will still be within constraints.

Configuration changes

The problem of changing a given configuration into another one, can be studied in a first
approximation as a “Lambert like” problem connecting two different states in the nonlinear
RTBP regime. The basic idea consists of following the natural dynamics for the orbits around
the libration points. For this purpose, we also suggest to set a good parametrisation of the space of
solutions allowing an easy identification of the states of a spacecraft. The solution of this problem
will give impulsive manoeuvres at the initial and final states, which can be used as initial guesses
in a more refined and realistic procedure.

Transfer from the Earth to the basic trajectory and deployment of the constellation

For a constellation of few and not very large satellites, in a formation of a few hundred meters
of diameter, it seems reasonable to study the transfer as a single body that has to be deployed
after reaching the basic nominal orbit. The study of the transfer is rather well known, since it is
easy to get good approximations of the invariant manifolds of the nominal solutions (at least in
the (Earth+Moon)-Sun situation). Once the final nominal orbit is reached, the problem could be
formulated in two steps:

• In the first step, the linked cluster of satellites must change its orientation, using suitable
attitude manoeuvres (one for the acquisition and maintenance of precise formation).

• In the second step the spacecraft should reach their final states using the acquisition for-
mation like manoeuvres. Since the manoeuvres must avoid collisions, the design of the
deployment becomes more complicated.

Formation Maintenance

Linear stabilising control techniques may be sufficient for formation maintenance, since only
small changes about a known nominal trajectory are presumably needed. Such techniques are
well developed for single vehicles in the context of flight control of aircraft, but the challenge of
coordinated control of multiple vehicles remains difficult. However, some tools of this sort are
available and some more are being developed in the context of Earth-bound satellites, aircraft
formations, and flocks of underwater vehicles.

Formation Reconfiguration

For large dynamic motions beyond the linear regime, such as formation reconfiguration, non-
linear tools such as optimal control that can handle low thrust trajectory design are most likely
needed. The design of low-thrust trajectories in nonlinear regimes still requires further develop-
ment. Primer vector theory, even for the impulsive case, is not immediately extensible from the
two-body to the three-body problem. Existing numerical algorithms suffer from the numerical
sensitivity of the underlying nonlinear problem. Tools such as modern software for optimal re-
configuration of a satellite group and which make use of the mechanical structure of the problem
seem to be appropriate in some cases.
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4.4.2 Obtaining Better Models of Motion

For any mission design, the first approach has to be the study of the problem in the simplest but
meaningful situation. This means that simple idealistic models should be used to get a first idea
of the different magnitudes involved. Some of these models are:

• For the motion, of either a single spacecraft or a constellations, around the equilibrium
points of the (Earth+Moon)-Sun system, the RTBP is a good starting model. The effect of
the remaining bodies of the solar system is small. This problem is rather well known and
the dynamics around the equilibrium points is well understood.

• For motions around the triangular equilibrium points of the Earth–Moon system the RTBP
is not a good model of motion. The effect of the Sun is large and the real dynamics
around the equilibrium points seems to be, in some cases, far from the one corresponding
to the RTBP model. More accurate four body problems should be introduced and studied
including the Sun, the Earth and the Moon as primaries.

These four body models should be used to reinforce the study problems like

• The ones associated with “Le Petit Grand Tour”.

• Low energy transfers to a ballistic capture at the Moon.

• Low energy transfers to mild unstable orbits around the triangular equilibrium points of
the Earth-Moon system.

The better understanding of these problems should clarify the weak stability boundary concept,
as defined by Belbruno. Some of the magnitudes that should be estimated with these simple
models are:

• The nominal orbit to be used as a first guess for more refined models.

• The requirements for the station keeping within the desired accuracy.

• Simple transfer trajectories to change formation configurations.

Aside from the gravitational models, some effort should be done in the development of models
including the solar radiation pressure. This can be useful for the station keeping strategies since, if
the station keeping manoeuvres can be executed using solar radiation pressure, the contamination
of the spacecraft due to the execution of an impulsive manoeuvre is avoided, and this enlarges
the observation intervals of the spacecraft. In addition, the solar radiation pressure can play an
important role in the formation flight problem, when the requirements for the mutual distances
are very severe.
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4.4.3 Issues that Should Be Studied Concerning the Space Gateway

• Precise determination of libration point orbits in the Earth-Moon system for long time
spans.

• Determination of the regions on the surface on the Moon that guarantee a return to the
libration point, for different values of the ∆v to be used in the departure.

• For fixed values of ∆v (for the departure from the Moon) and an upper bound ∆t for the
transfer time, determination of the regions on the surface of the Moon that guarantee a
return to the libration point orbit.

• Parametric study of the ∆v and transfer time required for the transfer to and from the
Earth to the libration point orbit, for a large set of libration point orbits.

• Contingency plans for different kinds of errors in the execution of manoeuvres.

Moreover, in the case of human support the space mission designers must balance the benefits
versus payoffs taking into account the following items,

• Crew de-conditioning due to long-term weightlessness.

• Crew exposure to galactic cosmic radiation and solar particle events.

• Limitations on mission opportunities and stay times at the libration points, for missions
to/from an Earth based parking orbit facility (i.e., International Space Station).

• Additional mass associated with crew habitat and consumables.

• Additional propellant mass associated with faster transfers to/from the libration points and
associated transfer abort considerations.
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[17] À. Jorba and J.J. Masdemont. Dynamics in the Center Manifold of the Restricted Three–
Body Problem. Physica D, 132:189–213, 1999.
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[49] G. Gómez, J.J. Masdemont, and C. Simó. Quasihalo Orbits Associated with Libration
Points. Journal of The Astronautical Sciences, 46(2):1–42, 1999.

[50] K.C. Howell and J.V. Breakwell. Almost Rectilinear Halo Orbits. Celestial Mechanics,
32(1):29–52, 1984.

[51] J.M. Jensen. Hamiltonian Bifurcation Theory Applied to the Halo Periodic Orbits in the
Restricted Three Body Problem. Master’s thesis, The University of Texas at Austin, Austin,
Texas, USA, 1996.

[52] M.L. Lidov and V.Y. Rabinovich. Investigation of Families of Three–Dimensional Periodic
Orbits of the Three–Body Problem. Cosmic Research, 17(3), 1979.

[53] A.P. Markeev. Two–Dimensional Periodic Motion of a Satellite Relative to the Center of
Mass Near a Collinear Libration Point. Cosmic Research, 17(3), 1979.

[54] D.L. Richardson. Analytical Construction of Periodic Orbits About the Collinear Points.
Celestial Mechanics, 22(3):241–253, 1980.

[55] D.L. Richardson. Halo Orbit Formulation for the ISEE-3 Mission. Journal of Guidance and
Control, 3(6):543–548, 1980.



BIBLIOGRAPHY 157

[56] D.L. Richardson. A note on the Lagrangian Formulation for Motion About the Collinear
Points. Celestial Mechanics, 22(3):231–235, 1980.

[57] D.L. Richardson and N.D. Cary. A Uniformly Valid Solution for Motion About the Interior
Libration Point of the Perturbed Elliptic-Restricted Problem. In AAS/AIAA Astrodynamics
Specialist Conference, AAS Paper 75-021., July 1975.

[58] L. Steg and J.P: De Vries. Earth–Moon Libration Points: Theory, Existente and Applica-
tions. Space Science Reviews, 5(3):210–233, 1966.

[59] W. Wiesel. Floquet Reference Solutions for the Lunar Theory and the Jovian Moon System.
Journal of Guidance and Control, 4(6):586–590, 1981.

Weak Stability Boundaries
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2002.
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[220] G. Gómez, M.W. Lo, J.J. Masdemont, and K. Museth. Simulation of formation flight near
L2 for the tpf mission. In ASS/AIAA Space Flight Mechanics Conference. Paper AAS
01-305, 2001.

[221] K.C. Howell and B.T. Barden. Trajectory Design and Station Keeping for Multiple Space-
craft in Formation Near de Sun-Earth L1 Point. In General Conference of the International
Astronautical Federation. Paper IAF-99-A.7.07, 1999.

[222] K.C. Howell and B.G. Marchand. Control Strategies for Formation Flight in the Vicinity
of the Libration Points. In AAS Paper 03-113, Ponce, Puerto Rico, 2003.

[223] B.G. Marchand and K.C. Howell. Formation Flight Near L1 and L2 in the Sun-Earth/Moon
Ephemeris System Including Solar Radiation Pressure. In AAS Paper 03-596, Ponce, Puerto
Rico, 2003.

[224] B.G. Marchand and K.C. Howell. Aspherical Formations Near the Libration Points in the
Sun-Earth/Moon Ephemeris System. In AAS Paper 04-157, Maui, Hawai, 2003.

Triangular Libration Points

[225] K.B. Bhatnagar and P.P. Hallan. Effect of Perturbed Potentials on the Stability of Libration
Points in the Restricted Problem. Celestial Mechanics, 20(1):95–103, 1979.

[226] J.V. Breakwell and R. Pringle. Resonances Affecting Motion Near the Earth–Moon Equi-
lateral Libration Points. Progress Astronautics and Aeronautics, 17, 1966.

[227] R. Broucke. Traveling Between the Lagrange Points and the Moon. Journal of Guidance
and Control, 2(4):257–263, 1979.



BIBLIOGRAPHY 169
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