
Final research project

GRAU DE MATEMÀTIQUES

Facultat de Matemàtiques
Universitat de Barcelona

Information fusion for norm
consensus in virtual communities

Author: Marc Serramià Amorós

Supervisors: Dra. Maite López Sánchez

Dr. Juan Antonio Rodŕıguez Aguilar

Made at: Departament de matemàtica aplicada

i anàlisi

Barcelona, February 12, 2016

Subject classification

68T99 (AMS 2010 Classification)

Keywords and phrases

Argumentation system, argumentation framework, information fusion, norm argu-
ment map, norm support, aggregation operators, social networks.

Abstract

Legislation in virtual communities should not be a private privilege, as well as the
application of norms. In this project a new way of deliberating about norms is
formalized, with the norm argument map, people will be able to argue and decide
the norms that rule their virtual community. Also, we will see a method to fuse
all the data introduced by participants into a single score or opinion about a given
norm, from this the decision of wether to establish the norm or not will be taken.
All of these decisions have to be taken in the most human way possible, to evaluate
the results of the method, a Java project has been coded and by comparing it with
other methods we will reason why this project’s method is better.

Acknowledgements

Thanks to both of my directors Maite and Juan Antonio, their passion for the
subject has been an inspiration and their help and guidance extremely valuable.
Also thanks to my family and friends for always being there when I needed them.

1

Contents

1 Introduction 4

1.1 Motivation . 5

1.2 Goals . 5

1.3 Document structure . 5

2 Norm argument maps and aggregation operators 7

2.1 Argumentation systems . 7

2.2 Norm argument maps . 8

2.3 Information fusion: Aggregation operators 10

3 Argument support 12

3.1 The semantics of argument opinions 12

3.2 Argument support function . 15

3.3 Opinion importance function construction and examples 16

3.3.1 Equitable opinion importance function examples 16

3.3.2 Positively biased opinion importance function examples 18

3.4 Opinion aggregation example . 20

4 Argument set support 21

4.1 α-Relevant arguments . 21

4.2 Argument set support function . 23

4.3 Argument importance function construction and alpha choice 25

5 Norm support 27

5.1 Norm support function . 27

5.1.1 Case Rα(A+
n) 6= ∅ and Rα(A−n) 6= ∅ 28

5.1.2 Other cases . 29

2

5.2 Detailed example of the overall norm support assessment process . . . 30

6 Particular Case: The social network 33

6.1 Formalizing the problem . 33

6.2 Comparing aggregation methods . 34

6.2.1 Comparison with the naive average approach 34

6.2.2 Discussion about the method in [5] 37

7 Conclusions and future work 39

7.1 Conclusions . 39

7.2 Future work . 40

Appendices 42

A Norm argument map code and mathematica notebooks 43

B Norm argument map code user guide 44

B.1 The namargumentationsystem package 44

B.2 The norm argument map file . 50

B.3 The NormSupportEvaluation Java project 51

3

Chapter 1

Introduction

Norms are the obligations everyone has to respect to keep our world civilized, but
for the norms to be fair, they must not be imposed by a dictator or an absolute
monarch, they have to be argued by all the people that will be affected by them.
Argumentation systems have been discussed at research level but, to the best of our
knowledge have not been adopted by current virtual communities. In this research
project, the work in [5] is continued in order to achieve a way of discussing norms
in virtual communities and hence moderating without moderators. The core idea in
this project, the norm argument map, is introduced in [5], but in that work is not
sufficiently formalized. This project formally defines norm argument maps, along
with other new concepts necessary to build a fair system.

This work also discusses about how to implement a way for the system to aggregate
opinions of participants into the decision of wether to enact a norm or not. The
naive average approach to this aggregation is not suitable, sometimes giving unex-
pected results. In order a system to be fair and easily adopted by humans, results
need to be intuitive and provide aggregations that turn out to be as close as possible
to what humans would decide by themselves, with a naive average approach this
does not occur most of the time. We define a further elaborated approach which
then will compare to the naive approach by means of some examples. The approach
in [5] is not suitable either and we will discuss why.

Also, since the aim of this project is to make actual virtual communities more
democratic, the theoretical work presented here is complemented with a Java imple-
mentation of the proposed approach. This implementation, together with the user
guide, are both appended to the project and available on the web.

4

1.1 Motivation

In today’s world, democracy is not only a system of governing a political entity,
we should also see it as a requirement for a virtual community. The internet is
omnipresent in our lives and growing every year with more users and virtual com-
munities. These communities, not being perfect, sometimes need moderation and
in the most democratic era of human history we should not give the privilege of
controlling content and interpreting the community legislation to a few moderators,
as to the best of our knowledge has been done in almost every community. Fur-
thermore, moderators may have limitations for dealing with the task of moderating
all the content and they can have biased opinions or even personal interests. So, to
solve this problem, we need to give the power to the users, and to do so we require
a way of discussing the norms in our social communities and deliberate about which
one to apply when a conflict takes place.

1.2 Goals

The main goal of this final research project is to help develop a democratic way
to discuss about norms in virtual communities and to define a way to aggregate
people’s opinions and arguments in order to reach consensus. So, particularly the
goals of this research project are the following:

• To formalize the notion of norm argument map and describe its components.

• To establish a way to asses the support for an argument.

• To establish a way to asses the support for an argument set.

• To establish a way to asses the support for a norm.

• To compare the support assessment method described in this project with
others.

• To implement a Java package with the structure of the norm argument map
and its support functions along with a user interface to test it.

1.3 Document structure

This document describing the final research project has been structured as follows.
Chapter 2, introduces the necessary background and a formalizes the definition
for the norm argument map. Chapter 3, specifies the semantics of participants’
opinions, assesses the support for an argument and provides some examples. In
Chapter 4, arguments are sifted in order to get α-relevant arguments. Chapter 4

5

also explains how these arguments’ supports are aggregated into a single argument
set support. Chapter 5, introduces the assessment of a norm using argument set
support. Chapter 6, discusses about how to apply the method to virtual communities
(a social network case) and compares the method described in this project to others.
Finally, in Chapter 7, the conclusions and future work are given. Readers can find
in the appendix a reference where to find the code, which is implemented in Java.
Along with the Java program, the reader can also find a user guide to use it and
some mathematica notebooks used to find examples in Chapters 3 and 4.

6

Chapter 2

Norm argument maps and
aggregation operators

In this chapter, some of the background notions are introduced, such as argumenta-
tion systems and aggregation operators. These ideas are explained in Sections 2.1
and 2.3. In Section 2.2 norm argument maps are formalized, since they have been
used before, but there is a lack of a formal definition.

2.1 Argumentation systems

An argumentation system or argumentation framework is a structure designed for
keeping a discussion with arguments. In [1], this structure is formally defined as
a pair AF = 〈A,⇀〉, where A is a finite set of arguments and ⇀⊆ A × A is a
defeat relation. An argument a is said to defeat another argument b if (a, b) ∈⇀ (or
sometimes written as a ⇀ b). This argumentation framework can be represented as
a directed graph in which vertices are arguments and directed arches characterize
defeat among arguments, hence, a directed arch from vertex representing argument
a to vertex representing argument b, means that a defeats b(in other words, a is a
counter argument of b). To asses the acceptability of the arguments, one possible
approach is to define argument labellings, an argument can be accepted(by labelling
it as in), rejected(by labelling it as out) or undecided wether to accept or reject
it(by labelling it as undec). Formally this argument labelling is a total function
L : A → {in, out, undec}. Note that, a labelling should be conflict-free(that
is, ∀a, b ∈ in(L),¬(a ⇀ b), where in(L) is the set of arguments that are labelled
in). From these definitions different labelling semantics are introduced, such as:
complete labelling, grounded labelling, preferred labelling, stable labelling, etc.

In [1] the argumentation framework is formally defined, but in practice argumenta-
tion frameworks can have a different structure, such as the one defined in [3]. In that
work, the author introduces another approach, which is an argumentation system

7

that serves as a way to have a discussion on a large scale, keeping it summarized,
with the goal of reaching consensus. This structure, called argument map, is not
formalized in [3], but the author defines it as a tree with a deliberation question as
the root and arguments as children, each child argument has its own children hence
creating argumentation branches. Participants of the debating process can add ar-
guments to the tree, these arguments are checked by moderators and relocated in
the tree if necessary.

2.2 Norm argument maps

In [5] the author explains another argumentation system, the norm argument map,
which is the system studied in this research project. The norm argument map is
an argumentation system with the goal of discussing a norm. The major difference
between the norm argument maps and the argument maps is that, in the norm ar-
gument maps, the discussion happens in a more restricted space, in the sense that
the argumentation is not structured in argumentation branches but in two sets of
supporting and attacking arguments. This argumentation system was introduced in
order to create norms in social networks, a norm is an established expected behavior,
for example, in the case of a social network, a norm could be: ”It is prohibited to
post spam in the multimedia section of the social network”.

The goal of the system explained in [5] is to avoid conflicts. Conflicts are unde-
sired states of the system, posts that visitors complain about in a sufficiently big
proportion, for example, a social network with plenty of insulting posts participants
complain about. Conflicts can be detected when the ratio between visits and com-
plaints exceeds from a predefined threshold. So, if a conflict is found, a deliberation
is started, participants can then suggest a norm to solve the conflict, hence a norm
argument map is automatically created so that all participants in the social commu-
nity can debate about the norm. In that work, the author explains and structures
this argumentation system but does not define it formally.

The goal of this research project is to provide the means to decide whether a norm
should be accepted or not, hence a formal definition of norm argument map is
needed. First we have to consider the definition of norm and argument:

Definition 2.2.1. A norm is an object of the form n = (φ, θ(α)), where φ is the
norm’s precondition, θ is a deontic operator and α is an action that can be performed
by participants.

The precondition is the condition that has to occur for the norm to be applied, the
action is the participant’s action that triggers the actual application of the norm
and for the deontic operator see [4].

Example. As previously said, consider a social network with a multimedia section
where people could post multimedia about their hobbies, then this network could have

8

the norm ”Do not post spam in the multimedia section”. In this case the precondition
would be ”be in the multimedia section”, the deontic operator would be ”prohibition”,
and the action could be ”upload spam content”. So, if a person posted spam in
the multimedia section the norm would apply and that post would be labelled as
prohibited.

To discuss a norm, participants will use arguments and opinions. Arguments, in
general, are statements that participants assign to a norm and that represent either
a support for the norm or an attack to it. Opinions are valuations that participants
assign to arguments, in the case of the norm argument map, opinions will be in
the form of numerical values that people will provide for other people’s arguments,
the value will quantify the extent to which they support the argument or they are
against it. These opinions, in the case of the norm argument maps, are not complete,
so participants can give an opinion for a given argument but they are not forced to.

Definition 2.2.2. An argument in a norm argument map is a pair ai = (s, ~Oai)

of a statement s, the argument itself, and a vector of opinions ~Oai which contains
all the opinion values assigned to the argument and provided by the participants.

Notation.

~Oai = (oi1, . . . , o
i
ni

) is the vector of opinions, note that oij is the jth opinion about
argument ai, and that since each argument ai has different number of opinions (ni),
the last opinion about argument ai is the opinion oini

.

Determining whether two given arguments are in fact the same is out of the scope
of this work, and thus, we will consider arguments to be different. Therefore it
becomes natural to consider the idea of a set of arguments or argument set:

Definition 2.2.3. An argument set is a collection of arguments. An argument
set can be defined as such or, more practically, it can be defined related to a norm.
Thus, a norm argument set is an argument set related to a norm n, so arguments
in the norm argument set are arguments supporting or attacking the norm n.

Notation.

Argument set: A = {a1, . . . , ak}, with ai being arguments for i ∈ {1, . . . , k}.
Norm argument set related to a norm n: An = {a1, . . . , aj}, with ai being arguments
for i ∈ {1, . . . , j}.
~OA is the vector of all the opinions of the arguments in A.

With these basic concepts a norm argument map can be defined as follows:

Definition 2.2.4. A norm argument map M = (n,An, κ) is a triple of a norm
n, a norm argument set An and a function κ that classifies the arguments of An
between the ones that are in favor of the norm and the ones that are against it.

9

Comment. For convenience, we will refer hereafter to the two different argument
sets that result from the partition of κ over A instead of the norm argument set
itself. Specifically, we will denote the set of arguments in favor of norm n as A+

n ,
and the set of arguments against the norm as A−n .

For the sake of simplicity, we will also refer to the set of arguments in favor of a
norm as (the set of) positive arguments, whereas we will refer to the set of arguments
against a norm as (the set of) negative arguments.

In a norm argument map participants can add arguments to An, and can also give
their opinions on other people’s arguments. Consequently if ai = (s, ~Oai) is an

argument with ~Oai = (oi1, . . . , o
i
j) and a participant gives his/her opinion about the

argument by assigning it a value v, now the argument ai becomes a′i = (s, ~Oa′i
) with

~Oa′i
= (oi1, . . . , o

i
j, v).

Thus, whenever a conflict arises in the social network, participants have the oppor-
tunity to discuss whether a specific norm can solve this conflict. But in general,
different norms can be discussed at once, so we consider these discussions take place
in a framework defined as follows:

Definition 2.2.5. A norm argument map framework F = (P,N) is a pair of
a set of participants P and a set of norm argument maps N , so that participants in
P can deliberate about different norms by means of the norm argument maps in N.

2.3 Information fusion: Aggregation operators

In order to give an overall support to a norm, it is necessary to aggregate all the
different opinions and supports in the norm argument map, hence aggregation op-
erators are needed.

In this project some of the operators presented in [11] are used, their definition can
be found below along with other definitions of some additional concepts that are
necessary for these aggregations.

Definition 2.3.1. A weighting vector w is a vector such that if w = (w1, . . . , wn) ∈
Rn then wi ∈ [0, 1] and

∑n
i=1wi = 1.

If we have an element vector e = (e1, . . . , en) ∈ Rn and we aim to aggregate the ei’s,
we can define different ways of aggregating them. If we want to weigh the position
inside the vector e to aggregate them, in other words, weigh the importance of the
information source that gave that element, we could use a weighted mean:

Definition 2.3.2. Let w = (w1, . . . , wn) ∈ Rn be a weighting vector and let e =
(e1, . . . , en) ∈ Rn be the vector of elements we want to aggregate. A weighted
mean is a function WMw(e) : Rn → R, defined as WMw(e) =

∑n
i=1wiei.

10

Note that ,with the weighted mean, we can assign more or less importance to a
particular information source, being each position in the e vector our information
sources. If we want to weigh the values of e themselves and not its positions in the
vector we have to use an OWA, this operator was introduced by Yagger in [12] and
it is defined as follows:

Definition 2.3.3. Let q = (q1, . . . , qn) ∈ Rn be a weighting vector and let e =
(e1, . . . , en) ∈ Rn be the vector of elements we want to aggregate. An ordered
weighted average or OWA is a function OWAq(e) : Rn → R, defined as
OWAq(e) =

∑n
i=1 qieσ(i), where σ is a permutation of the ei so that they are or-

dered from the largest one to the lowest one, hence eσ(i) is the ith largest number in
e.

Thus, as previously stated, if we want to give more importance to high/central/low
values, we would use a weighting vector q with higher values at the start/center/end.

If we want to weigh both the information source and the value of the numbers
aggregated, we have to use a WOWA operator. This operator was introduced by V.
Torra in [7]. In fact, it can be defined in two different ways but the one used in this
research project corresponds to the definition using vectors given in [7]:

Definition 2.3.4. Let w = (w1, . . . , wn) ∈ Rn and q = (q1, . . . , qn) ∈ Rn be two
weighting vectors and let e = (e1, . . . , en) ∈ Rn be the vector of elements we want
to aggregate. A weighted ordered weighted average, weighted OWA or
WOWA is a function WOWAw,q(e) : Rn → R defined as:

WOWAw,q(e) =
n∑
i=1

pieσ(i)

Where σ is a permutation of the elements in e so that eσ(i) is the ith largest element
in e and:

pi = f ∗(
∑
j≤i

wσ(j))− f ∗(
∑
j<i

wσ(j))

Where f ∗ is a non decreasing interpolation function of the points:

{(i/n,
∑
j≤i

qj)}i=1,...,n ∪ {(0, 0)}

This function has to be a straight line when the points can be interpolated that way.

Comment. Note that, w acts as the vector in the weighted mean, weighting the
information source, while q acts like the OWA vector, weighting the value of the
elements being aggregated.

11

Chapter 3

Argument support

In order to compute the global support for a norm, we first need to compute the
support for each one of its arguments. Arguments are the only part of the norm
argument map that participants can create and give opinions about, thus, the pro-
cedure will establish the support for the debated norm by considering its arguments
and their associated opinions.

3.1 The semantics of argument opinions

In order to compute a meaningful aggregation of argument opinions, it becomes
necessary to define their associated semantics. Although different semantics can be
associated to participants’ opinion values, this section proposes one that fits well the
purposes of norm discussion. Needless to say, alternative semantics could also be
studied, but they remain as future work. In what follows, several definitions related
to the proposed semantics are presented.

Definition 3.1.1. An opinion spectrum or, simply, spectrum is the set λ of pos-
sible numerical values individual participants can assign to each argument meaning
his/her opinion about that argument.

The spectrum λ will be the domain of functions operating with opinion values, such
as the importance function defined below. Hence, the same spectrum will be con-
sidered for all arguments in the argumentation system.

The spectrum could be a subset of Z or N, but I will be considering a more general
case, the case λ ⊂ R. Note that in this case λ has to be a connected, closed and
bounded subset of R (i.e. a closed interval), it has to be closed and bounded so that
participants can give maximum and minimum opinions and it has to be connected
for the opinions to have a continuity of meaning in the spectrum. So, from now on,
we characterize λ as [lb, ub] where lb and ub correspond respectively to the lower
bound and the upper bound of the spectrum.

12

Since the participants have to give opinions about arguments, we have to choose
one of the possible semantics. The semantic chosen in this research project is that
the bigger end of the spectrum means to assign an opinion in favor of the argu-
ment and symmetrically, the lower end to assign an opinion that goes against it.
Therefore, the opinion ub is the strongest opinion in favor of an argument, whereas
lb is the strongest opinion against it. The opinion lying in the middle of the in-
terval lb+ub

2
has a non-positioned meaning, a neutral opinion, so we do not credit

it any importance. This way of describing the meaning of opinions separates the
spectrum in three different meaning blocks, the against block [lb, lb+ub

2
), the neutral

block { lb+ub
2
} and the pro block (lb+ub

2
, ub]. The ub and lb are the most important

opinions of the pro and against blocks respectively, the opinions in between are not
as strong as them so they are not as important either. Figure 3.1 shows an example
of the previously stated in the spectrum [1, 5].

Figure 3.1: The meaning of opinions in the spectrum λ = [1, 5] with some represen-
tative opinion values’ meanings.

Since a meaning has to be assigned to each number in λ = [lb, ub], an importance
function I(x) has to be defined to weight the importance of each argument opinion
reflecting the considerations previously stated. This I(x) function will be different
depending on the problem we are facing (possible layouts are described in Section
3.3).

Definition 3.1.2. Let λ = [lb, ub] be a spectrum, an importance function is a
function I(x) : λ→ [0, 1] that for each argument opinion in λ assigns its importance
in [0, 1], satisfying the next conditions:

• (C1) I(x) has to be a continuous and piecewise differentiable function

• (C2) I(ub) = 1

• (C3) I(lb+ub
2

) = 0

• (C4)


I ′(x) < 0 if x ∈ [lb, lb+ub

2
) and I is differentiable in x

I ′(x) = 0 if x = lb+ub
2

and I is differentiable in x

I ′(x) > 0 if x ∈ (lb+ub
2
, ub] and I is differentiable in x

13

Comment. The function has to be continuous and piecewise differentiable in order
to be able to satisfy condition C4. Since the highest value in I(x)’s codomain is
1, I(ub) has to be 1, because as we have stated, ub is the strongest opinion in the
pro block (the value of I(lb) is treated in definitions 3.1.3 and 3.1.4). I(lb+ub

2
) has

to be zero because we have established that lb+ub
2

is the less important opinion, in
fact we have considered it negligible, so we assign it the minimum number in the
function’s codomain. The function has to be decreasing (i.e., I ′(x) < 0) in the
subinterval [lb, lb+ub

2
) because lb is the most important opinion of this interval (the

against block) and the nearer an opinion is to lb+ub
2

the less important is, analogously
the function has to be increasing (i.e., I ′(x) > 0) in the subinterval (lb+ub

2
, ub], and

if the function satisfies these two conditions then the only possible value for I ′(lb+ub
2

)
is 0, if I is differentiable in that point.

We can consider different importance functions to be opinion importance functions
Iopinion(x). In this research project I have defined two types that I consider suit the
most the semantic previously defined. These two opinion importance functions are
defined as follows:

Definition 3.1.3. An importance function Iopinion is an equitable opinion im-
portance function if it satisfies that Iopinion(lb+ub

2
+ x) = Iopinion(lb+ub

2
− x) for

x ∈ [0, lub−lb
2

].

Note that, this type of function gives the same importance to the pro and against
block, and since it is a symmetric function, it is fair, but it is prone to suffer from
a group of people systematically giving the lowest opinion value to an argument. If
that happens, the overall support can be not adequate in the sense that it is not
the support that should have, therefore the argument will not be as important as it
should be in the overall process. To solve this problem a new type of function can
be defined:

Definition 3.1.4. An importance function Iopinion(x) is a positively biased opin-
ion importance function if it satisfies that Iopinion(lb) < Iopinion(ub).

With a positively biased opinion importance function we are giving more impor-
tance to positive opinions, hence if a group of people systematically gives low value
opinions to an argument, unless it is a huge group, the argument will have a more
balanced support. This type could be used for discussing controversial norms or used
in environments with high numbers of participants intentionally trying to affect the
support for a norm. This biased treatment is actually balanced out by itself, because
both the pro arguments’ opinions and the con arguments’ opinions are exposed to
this function, so if someone really wants to impact negatively to the norm it is more
effective to include a good con argument than not reasoning and only giving lower
value opinions to pro arguments, and analogously if someone wants a norm to be
established it is more effective to leave a good pro argument than giving low value
opinions in the con arguments.

14

This function can be defined reducing the importance of all the against block opin-
ions or, since people trying to affect negatively the support might only give opinions
on the most extreme contrary value, you can have a function that is symmetrical
except for the extreme against end, for example, if λ = [lb, ub], then you could define
Iopinion(x) as an equitable importance function in [lb + k, ub− k], k ∈ (0, ub−lb

2
] and

then define the function with higher importance in the (ub − k, ub] interval than
in the [lb, lb + k). By only reducing the importance in the most extreme against
opinions we have a positively biased opinion importance function that only affects
extreme opinions, the ones suspicious of being used to affect negatively, and not the
more moderate ones that might be awarded by normal participants.

Comment. Note that, the same semantic that has been applied to opinions can be
applied to an argument support, an argument set support or a norm support once
we know how to asses them.

3.2 Argument support function

The goal of this section is to define a function that takes an argument and assesses
its support within the same spectrum as the argument. We have a function that
weighs each opinion’s importance, now we have to define a support function using
an aggregation operator to aggregate the opinions considering their importance.

Let ai ∈ A be an argument and let ~Oai = (oi1, . . . , o
i
ni

), oij ∈ λ = [lb, ub], be its
associated opinions. Each oij is a real number in [lb, ub] and has its own importance
given by Iopinion(oij). In Chapter 2, we have introduced two operators suitable for
this kind of aggregation, the weighted mean (WMw) and the OWA. Since we want
to aggregate numbers weighting their values an OWA should be considered, but in
this case we will consider a weighted mean with a function giving the weights, the
opinion importance function. The reason to do so is explained in subsequent Section
3.4.

Definition 3.2.1. An argument support function is a function Sarg : A → λ,
where A is the set of arguments and λ = [lb, ub] the spectrum, that for each argument
ai ∈ A, having ni associated opinions, computes its support as follows:

Sarg(ai) = WMw(~Oai)

using the weighting vector:

w =
(Iopinion(oi1)

T
, . . . ,

Iopinion(oini
)

T

)
, where oij ∈ ~Oai, j ∈ {1, . . . , ni}

and T =

ni∑
j=1

Iopinion(oij)

15

Being oij the jth opinion of argument ai and T the overall addition of all importance
values associated to all opinions about argument ai, so that the elements in w sum
one and therefore w is a weighting vector.

3.3 Opinion importance function construction and

examples

The opinion importance function depends on the problem: for different delibera-
tions settings one has to consider different functions, thus, the way this function is
constructed is not fixed. The example functions in this research project have been
constructed with two different methods: by interpolation and geometrically. The
first one, is constructed by defining some target points (those that are desired to be
in the function) and then interpolating these points. In this case, one might have to
interpolate numerous parts, and that is the reason for the importance function to be
required to be only piecewise differentiable. Nevertheless, having sufficient points
and sufficient parts the desired opinion importance function can be constructed.

These are some possible opinion importance functions for the described layout in
each case, Mathematica notebooks with the implementation are referenced in the
appendix:

3.3.1 Equitable opinion importance function examples

The equitable natural opinion importance function

This function has concave endings and convex neutral middle part, hence opinions
in the extremes of the blocks have similar importance while in the middle of each
block the change is significant, this might be the most natural way to implement
the opinion importance function, it has been divided into 5 pieces each one has been
found interpolating a set of points as follows:

f1: Interpolation of {(lb, 1), (ub+7lb
8

, 0.9), (ub+3lb
4

, 0.65)}:

f1(x) =
ub2 − 1.8 ub lb− 0.2 ub x− 4 lb2 + 9.8 lb x− 4.8 x2

(lb− ub)2
when x ∈

[
lb,
ub+ 3lb

4

]
f2: Interpolation of {(ub+3lb

4
, 0.65), (3ub+5lb

8
, 0.25)}:

f2(x) =
1.45 ub+ 1.75 lb− 3.2 x

ub− lb
when x ∈

(ub+ 3lb

6
,
3ub+ 5lb

8

)

16

f3: Interpolation of {(3ub+5lb
8

, 0.25), (ub+lb
2
, 0), (5ub+3lb

8
, 0.25)}:

f3(x) =
4 ub2 + 8 ub lb− 16 ub x+ 4 lb2 − 16 lb x+ 16 x2

(lb− ub)2
when x ∈

[3ub+ 5lb

8
,
5ub+ 3lb

8

]
f4: Interpolation of {(5ub+3lb

8
, 0.25), (3ub+lb

4
, 0.65)}:

f4(x) =
1.75 ub+ 1.45 lb− 3.2 x

lb− ub
when x ∈

(5ub+ 3lb

8
,
3ub+ lb

4

)
f5: Interpolation of {(3ub+lb

4
, 0.65), (7ub+lb

8
, 0.65), (ub, 1)}:

f5(x) =
−4 ub2 − 1.8 ub lb+ 9.8 ub x+ lb2 − 0.2 lb x− 4.8 x2

(lb− ub)2
when x ∈

[3ub+ lb

4
, ub
]

Figure 3.2: Example of an equitable natural opinion importance function being
λ = [1, 5].

Figure 3.2 shows an example of this function in the spectrum λ = [1, 5], so that that
f1 is defined in [1, 2], f2 in (2, 2.5), f3 in [2.5, 3.5], f4 in (3.5, 4) and f5 in [4, 5].

The equitable extremist opinion importance function

In this case, the proposed function is a convex parabola, hence in this case extrem
opinions are the most important ones by difference. This importance function may
be suitable for cases when clear positions are needed. If the norm debated will
change radically a lot of aspects of the community then it can be announced that
this importance is going to be applied to the opinions, hence people that want to
influence (that is, that their opinion is really taken into account) will have to position
themselves clearly. Figure 3.3 shows an example of this function in the spectrum
λ = [1, 5].

To find this function , it would be possible to interpolate three points, the two lying
on the extremes and the vertex of the parabola, but in fact, since we know that the
function is a parabola, we can thus reason as follows:

17

A parabola with the vertex at the point (lb+ub
2
, 0) is going to be of the form :

f(x) = (x − lb+ub
2

)2. Since we want the maximum value in the interval [lb, ub]
to be 1 we have to divide by the value of the parabola in one of the extremes, hence:

f(x) =
(x− lb+ub

2
)2

(lb− lb+ub
2

)2
=

(lb+ ub− 2x)2

(lb− ub)2
when x ∈

[
lb, ub

]

Figure 3.3: Example of an equitable extremist opinion importance function being
λ = [1, 5].

3.3.2 Positively biased opinion importance function exam-
ples

The positively biased natural opinion importance function

The previous section defines the natural opinion importance function in its equitable
version. To consider the positively biased version we only have to change f1:

f1: Interpolation of {(lb, 0.84), (ub+7lb
8

, 0.8), (ub+3lb
4

, 0.65)}:

f1(x) =
−2.56 lb2 − 1.8 lb ub+ 6.92 lb x+ 0.84 ub2 + 0.12 ub x− 3.52 x2

(lb− ub)2

when x ∈
[
lb,
ub+ 3lb

4

]
Figure 3.4 shows an example of the positively biased natural opinion importance
function in the spectrum λ = [1, 5], note that the lower ending of the function has
smaller values than the bigger ending.

18

Figure 3.4: Example of a positively biased natural opinion importance function
being λ = [1, 5].

The positively biased extremist opinion importance function

The previous section defines the equitable version of the extremist opinion impor-
tance function. To construct the positively biased version we could consider the
function in two pieces f1 and f2 as follows:

f1(x) =
0.8 (x− lb+ub

2
)2

(lb− lb+ub
2

)2
=

0.8 (lb+ ub− 2x)2

(lb− ub)2
when x ∈

[
lb,
ub+ lb

2

]

f2(x) =
(x− lb+ub

2
)2

(lb− lb+ub
2

)2
=

(lb+ ub− 2x)2

(lb− ub)2
when x ∈

[lb+ ub

2
, ub
]

Figure 3.5: Example of a positively biased extremist opinion importance function
being λ = [1, 5].

Figure 3.5 shows an example of the positively biased extremist opinion importance
function in the spectrum λ = [1, 5], as in Figure 3.4, the lower ending of the function
has smaller values than the bigger ending.

19

3.4 Opinion aggregation example

Consider a norm n with the spectum λ = [1, 5]. Suppose we have an argument

a1 with opinions ~Oa1 = (5, 5, 5, 4, 4, 4, 3, 3, 3). Using the support function defined
previously and considering the equitable natural opinion importance function, the
resulting support is: Sarg(a1) = 4, 6061, this is accurate, because there are 6 opinions
in favor (3 of them extremely favorable) and 3 other opinions that are neutral and
we previously decided to discard.

The reason to avoid using an OWA is that, for example, if we wanted to solve the
same example, we should define a weighting vector representing the semantic given
to opinions, since our semantic gives more importance to extreme values a possi-
ble vector would be: (0, 18, 0, 16, 0, 12, 0, 04, 0, 0, 04, 0, 12, 0, 16, 0, 18). This vector
weighs the extreme numbers, as it should be, but since a1 has opinions in only a
subinterval of the spectrum, the use of the OWA distorts the result, in this case
using the OWA the support would be 4. Since we consider opinions with value 3 to
be negligible this result is not accurate.

20

Chapter 4

Argument set support

Since we now know how to calculate the support for each argument individually,
we have to face the problem of calculating the support for a set of arguments. In
the norm argument map, which was introduced in [5] and has been formally defined
in Chapter 2, the sets of arguments that we have to asses the support for are A+

n ,
the set of positive arguments, the ones that support the norm, and A−n , the set of
negative arguments, the ones that attack the norm. It is clear that if we propose
a way to compute the support for a general set of arguments A, in particular, the
same procedure will also be suitable for computing the support for both A+

n and
A−n .

4.1 α-Relevant arguments

Before we start defining the procedure to asses the support for an argument set, let
us consider the following example:

Example. There is a norm n with positive and negative arguments with the spectrum
λ = [1, 5]. In particular, n has been argued with three positive arguments a1, a2, a3
and a single negative argument a1. On the one hand, in the set of positive arguments
a1 has a support of 5, which comes from a single opinion while a2 has a support of
1, which comes from 100 opinions and finally, a3 has also a support of 1 coming
from 100 opinions. On the other hand, on the set of negative arguments a1 has a
support of 5, which comes from 30 opinions:

A+
n Sarg(ai) dim(~Oai)

a1 5 1
a2 1 100
a3 1 100

A−n Sarg(ai) dim(~Oai)
a1 5 30

What should we consider to give the support for A+
n on this extreme case? We

should discard a2 or a3 because they have bad support, in fact the minimum pos-
sible support, hence people have decided that these arguments are not appropriate

21

or are not a valid reason to apply the norm under discussion. In Section 3.1 we
have defined the meaning of an argument opinion value in [lb, lb+ub

2
) as a contrary

opinion to the argument. Afterwards, in a comment, the meaning of opinions is
extrapolated and applied to all the supports. For this reason, arguments with sup-
ports outside of (lb+ub

2
, ub] are not accepted and, therefore, should not be considered

as valid arguments.

We cannot consider a1 either because although it has the maximum possible sup-
port it has only been validated by one person, hence it is negligible in front of the
other arguments. One way to treat this, is to require a minimum percentage of
opinions. Nevertheless, this option is not suitable sometimes because in case a lot of
different arguments are posted with equal number of opinions the percentage would
be minuscule and all arguments would be discarded. Alternatively, we can filter
out arguments by just considering those having at least a number of opinions that
corresponds to a certain fraction of the number of opinions of the argument with
most opinions.

Thus, we tackle this argument relevance problem by creating a new subset of argu-
ments containing only the arguments considered α-relevant and defining the criteria
needed to be considered as such:

Definition 4.1.1. Let A be a set of arguments with spectrum λ = [lb, ub], a relevant
argument of A is an ai ∈ A that satisfies:

Sarg(ai) >
lb+ ub

2

Definition 4.1.2. Let A be a set of arguments with spectrum λ = [lb, ub], and
suppose α ∈ [0, 1] and ak ∈ A the argument with most opinions, an α-relevant
argument of A is a relevant argument ai ∈ A that also satisfies:

dim(~Oai) ≥ α dim(~Oak)

Comment. Note that, in the case of the norm argument map, the α-relevant argu-
ments would be the ones that are α-relevant in An, that is, the ones that are relevant
and that have dim(~Oai) ≥ α dim(~Om), being m the argument with most opinions in
An = A+

n ∪ A−n .

Definition 4.1.3. Let A be an argument set. The subset Rα(A) ⊆ A is the subset
containing all the α-relevant arguments of A. In the case of the norm argument
map, Rα(A+

n) are the positive α-relevant arguments of the norm argument map, and
analogously, Rα(A−

n) are the negative α-relevant arguments of the norm argument
map.

This new subset of arguments contains the arguments that have been considered α-
relevant for the reasons previously explained, hence are the ones which its support
should be aggregated to assign the support to the set of arguments A.

22

Once α-relevant arguments have been defined, we are now able to choose which
arguments to consider in the previous example, we will consider α = 0, 3. In the
case of the positive argument set, we have R0,3(A

+
n) = ∅, because as explained before

a1 has not enough opinions and a2 and a3 have bad support. Nevertheless, in the case
of the negative argument set, we have R0,3(A

−
n) = {a1}, because Sarg(a1) = 5 > 3

and dim(~Oa1) = 30 ≥ 0, 3 · dim(~Oa2) = 0, 3 · 100 = 30.

Comment. Note that, the need to have a minimum number of opinions for an
argument to be considered α-relevant poses another problem. We have considered
all arguments to be different. That being said, a set could be formed of hundreds
of similar arguments with few opinions, that individually would not be considered
α-relevant, but altogether sum a large quantity of opinions and represent a strong
argument. Hence, similar arguments should be merged. This problem, which is out
of the scope of this final research project, could be solved with natural language.

4.2 Argument set support function

Let A be a finite set of arguments of a given norm n, with Rα(A) = {a1, . . . , ak}
and suppose that we know both: (i) Sarg(ai) ∀ai ∈ Rα(A), the support for each

argument in Rα(A) and (ii) ~Oai ∀ai ∈ Rα(A), the opinions that each argument in
Rα(A) has received. Then, we want to define a function Sset(A) = Sset(Rα(A)) with
values in [lb, ub], the support function of a given set of arguments. To define Sset we
have to consider different aspects of the nature of this aggregation.

Since participants will have given opinions of different arguments and some will
have received more important opinions than others(that is., the overall importance
of the opinions received may vary from argument to argument), it is natural to con-
sider that the arguments with more important opinions should have more relevance
to the support for the set. In addition, the arguments with higher support should
have more impact to the support for the set too, because they have been widely
accepted by participants as powerful arguments. In other words, we have to con-
sider the importance of the information source, as well as, the values of the support,
therefore, the WOWA operator suits well this kind of aggregation.

To define a WOWA operator we need two vectors, w the vector weighting the
information source and q, the vector weighting the aggregation values. First, we
define w: the more important opinions an argument has, the bigger its weight has
to be. The weight of each argument should be the sum of the importance of its
opinions, then each element in th vector should be divided by the appropriate num-
ber so altogether the elements sum one (required to be a weighting vector), hence

23

if Rα(A) = {a1, . . . , ak′}:

w =
(∑dim(~Oa1)

j=1 Iopinion(o1j)

τ
, . . . ,

∑dim(~Oak′)

j=1 Iopinion(ok
′
j)

τ

)

with τ =
k′∑
i=1

(dim(~Oai)∑
j=1

Iopinion(oij)
)

with oij ∈ ~Oai = {oi1, . . . oini
}

Comment. Given the argument ai, note that,
∑dim(~Oai)

j=1 Iopinion(oij) represents the
overall importance of the argument, since it is the sum of the importance of its
opinions.

Now, we define q, this vector is a weighting vector that has to weigh the importance
of each argument’s support. The higher the support the higher the weight in the
vector. For ai ∈ Rα(A), Sarg(ai) is a real number in (lb+ub

2
, ub], so we have to define

its weight with a new function, as previously done to weigh the importance of opin-
ions.

This new function has to satisfy some criteria. We consider the codomain [0, 1],
in this case, the weight of the maximum support (ub) should be 1. It is expected
that the higher the support for the argument the higher weight should have. Hence,
it has to be a strictly increasing function. To be a strictly increasing function we
require it to be continuous and piecewise-differentiable (this way, we can define it
piecewisely, like in 3.3.1). As previously said, all the α-relevant arguments must have
Sarg(ai) >

lb+ub
2

, so this function could be defined in the interval[lb+ub
2
, ub], consid-

ering f(lb+ub
2

) = 0, because conveniently we start at the minimum of the codomain.

Note that all the conditions demanded to these functions are the same as the ones
demanded for an importance function (see Definition 3.1.2) only that we only con-
sider the interval [lb+ub

2
, ub]. Hence:

Definition 4.2.1. Iarg(x) is an argument importance function if is an impor-
tance function restricted to the interval [lb+ub

2
, ub].

Once the argument importance function Iarg is defined, it becomes natural to con-
sider q as:

q =
(Iarg(Sarg(aσ(1)))

T
, . . . ,

Iarg(Sarg(aσ(k′)))

T

)
where T =

∑k′

i=1 Iarg(Sarg(aσ(i))), aσ(i) ∈ Rα(A) = {a1, . . . , ak′} and aσ(i) is the α-
relevant argument with the ith largest support. Note that, we have to order the
argument’s supports because the WOWA orders them when it applies this vector,
hence, this way the WOWA will apply each weight to its corresponding argument
support.

With all this defined, we can now give the definition for the support function:

24

Definition 4.2.2. Let λ be an opinion spectrum, an argument set support func-
tion Sset is a function that takes a non-empty argument set A, with Rα(A) 6= ∅,
and gives its support in λ as follows:

Sset(A) = Sset(Rα(A)) = WOWAw,q(Sarg(a1), . . . , Sarg(ak′))

with ai ∈ Rα(A) = {a1, . . . , ak′} and where:

w =
(∑dim(~Oa1)

j=1 Iopinion(o1j)

τ
, . . . ,

∑dim(~Oak′)

j=1 Iopinion(ok
′
j)

τ

)

with τ =
k′∑
i=1

(dim(~Oai)∑
j=1

Iopinion(oij)
)

with oij ∈ ~Oai = {oi1, . . . oini
}

and

q =
(Iarg(Sarg(aσ(1)))

T
, . . . ,

Iarg(Sarg(aσ(k′)))

T

)
where T =

∑k′

i=1 Iarg(Sarg(aσ(i))), aσ(i) ∈ Rα(A) = {a1, . . . , ak′} and aσ(i) is the
α-relevant argument with the ith largest support.

Comment. If there are no α-relevant arguments then we cannot asses the support
for the set, hence we consider Sset(∅) to be not defined.

4.3 Argument importance function construction

and alpha choice

In order to choose an argument importance function, we can take the opinion im-
portance function used in the argument support process and restrict it to the part

where x ∈
[
lb+ub

2
, ub
]
. For example, to define the natural argument importance

function we would have to take the equitable natural opinion importance function

restricted to x ∈
[
lb+ub

2
, ub
]
. Figure 4.1 shows an example of the natural argument

importance function in the spectrum λ = [1, 5], this example has been constructed
from the equitable natural opinion importance function in Figure 3.2.

The choice of the α for the α-relevant arguments is complex and depends on the
problem and the character given to the whole process. The higher the α, the less
arguments will be α-relevant. For the case of a virtual community such as the one
described in Chapter 6 we could suppose that α = 0.3.

25

Figure 4.1: Example of a natural argument importance function, in this case λ =
[1, 5].

26

Chapter 5

Norm support

Now we face the problem of assessing the support for a norm n. It is worth recalling
that we consider a norm n to be associated to two sets, the positive one A+

n and
the negative one A−n . Furthermore, we have proposed a calculation of their support
Sset(A

+
n) and Sset(A

−
n) and we know the opinions of their α-relevant arguments

~Oai with ai ∈ Rα(A+
n) and ~Oaj with aj ∈ Rα(A−n). Therefore, we aim at defining a

method to asses the support for n using this information.

5.1 Norm support function

Likewise in previous chapters, we define a support function for the object under
discussion, which in this case corresponds to a norm support function. Considering
the meaning of all the information we have: Large values in the support for the
(relevant) positive arguments of any norm n (that is, Sset(A

+
n)) should impact posi-

tively on its support. On the contrary, large values in the support for the (relevant)
negative arguments of any norm n (that is, Sset(A

−
n)) should impact negatively on

its support, meaning that they are detrimental for the enactment of this norm. So
the numbers we have to aggregate are Sset(A

+
n) and ub+lb−Sset(A−n), the symmetric

value of the support in the spectrum with respect to the center of the spectrum. Fig-
ure 5.1 shows the two values that have to be aggregated and the difference between
these values and the argument set supports with a graphical example.

Figure 5.1: Example of the aggregation numbers to asses the norm support and the
difference between these and the argument set supports.

27

We will separate the task of defining the norm support function into different cases:

5.1.1 Case Rα(A+
n) 6= ∅ and Rα(A−n) 6= ∅

In case Rα(A+
n) 6= ∅ and Rα(A−n) 6= ∅, then Sset(A

+
n) and Sset(A

−
n) are defined, so,

since they have numerical value, we can aggregate them.

We have to aggregate the two values previously explained, in order to do so, we
have to consider the overall importance of the sources because the importance of
the opinions received by the arguments in each argument set might be different
(that is, one argument set can have more important arguments than the other).
Also, as in the case of assessing the support for an argument set, we have to weigh
the importance of the aggregation values themselves, for the same reason as in the
previous chapter(i.e, extreme values are more important because represent stronger
(in favor/against) support than middle values considered to be neutral). So the
aggregation operator required is a WOWA.

First, to define the q vector of the WOWA(the one weighting the aggregation values),
we have to define an argument set importance function to weigh the importance of
the value of the argument sets’ support. Note that, the values that have to be ag-
gregated lay in [lb, ub]. Hence, the argument set importance function is, in fact, an
importance function as defined in Definition 3.1.2:

Definition 5.1.1. Let A be an argument set, Iset(x) is an argument set impor-
tance function if it is an importance function.

So the q vector of the WOWA should be:

q =
(Iset(Sset(A+

n))

T
,
Iset(ub+ lb− Sset(A−n))

T

)
where T = Iset(Sset(A

+
n)) + Iset(ub+ lb− Sset(A−n))

Comment. Note that, since we always have Sset(A
+
n) > ub + lb − Sset(A−n), we do

not have to order the q vector as in the case of the q vector in the WOWA of the
argument set support.

Regarding the weighting of the overall importance of the two sets, in the previ-
ous chapter we introduced α-relevant arguments, and the supports Sset(A

+
n) and

Sset(A
−
n) are calculated based on the supports for these α-relevant arguments, so

the proposed w vector of the WOWA has as weights the sum of the importance of
the α-relevant arguments’ opinions of each set, then the vector has to be divided by
the appropriate number, so its elements altogether sum one(required to be a weight-
ing vector). Hence, if we have Rα(A+

n) = {a1, . . . , ak1} and Rα(A−n) = {a1, . . . , ak2}
then:

w =
(∑k1

i=1(
∑ni

j=1 Iopinion(oij))

τ
,

∑k2
i=1(
∑ni

j=1 Iopinion(oij))

τ

)
28

where τ =
∑k1

i=1(
∑ni

j=1 Iopinion(oij)) +
∑k2

i=1(
∑ni

j=1 Iopinion(oij)), o
i
j is the jth opinion

in ~Oai = {oi1, . . . , oini
}, ai ∈ Rα(A+

n) and oij is the jth opinion in ~Oai = {oi1, . . . , oini
},

ai ∈ Rα(A−n).

With the WOWA vectors defined we can proceed with the definition of the norm
support function:

Definition 5.1.2. A norm support function is a function Snorm(n) that takes a
norm n (in this case, suppose Rα(A+

n) 6= ∅ and Rα(A−n) 6= ∅) and using its argument
set’s supports assesses the support for the norm in λ = [lb, ub] as follows:

Snorm(n) = WOWAw,q(Sset(A
+
n), ub+ lb− Sset(A−n))

Being w:

w =
(∑k1

i=1(
∑ni

j=1 Iopinion(oij))

τ
,

∑k2
i=1(
∑ni

j=1 Iopinion(oij))

τ

)
where τ =

∑k1
i=1(
∑ni

j=1 Iopinion(oij)) +
∑k2

i=1(
∑ni

j=1 Iopinion(oij)), oij is the jth opinion

in ~Oai = {oi1, . . . , oini
}, ai ∈ Rα(A+

n) = {a1, . . . , ak1} and oij is the jth opinion in
~Oai = {oi1, . . . , oini

}, ai ∈ Rα(A−n) = {a1, . . . , ak2}.

And being q:

q =
(Iset(Sset(A+

n))

T
,
Iset(ub+ lb− Sset(A−n))

T

)
where T = Iset(Sset(A

+
n)) + Iset(ub+ lb− Sset(A−n))

Now that we have defined a way to calculate Snorm(n), the norm n has a support
in λ, so we can decide if n has to be enacted or not. In general, n will be applied
if Snorm(n) ≥ µ, where µ ∈ (lb+ub

2
, ub] is the minimum approval support threshold.

This µ may be different depending on the conditions related to each problem. Note
that it is a necessary condition for µ to be in (lb+ub

2
, ub], because if we want to apply

a norm at least it has to have a support laying on the pro block of the spectrum.

5.1.2 Other cases

Rα(A+
n) = ∅ and Rα(A−n) = ∅

When both Rα(A+
n) and Rα(A−n) are ∅, Snorm(n) cannot be calculated with the

WOWA, as in the previous section, because the argument set supports are not a
number, hence, in this case, we define Snorm(n) to be not defined, so the norm is
not enacted.

29

Rα(A+
n) = ∅ and Rα(A−n) 6= ∅

If only Rα(A+
n) = ∅, then Sset(A

+
n) is not defined, hence we define Snorm(n) =

ub+lb−Sset(A−n), since the only numerical value we can aggregate is ub+lb−Sset(A−n).
In this case, since ub + lb − Sset(An)− ≤ ub+lb

2
, the norm is considered not having

positive support and therefore it is not applied.

Rα(A+
n) 6= ∅ and Rα(A−n) = ∅

Finally, in case only Rα(A−n) = ∅, then Sset(A
−
n) is not defined, so ub+ lb−Sset(A−n)

is not defined either, hence we define Snorm(n) = Sset(A
+
n), since the only numerical

value we can aggregate is Sset(A
+
n). In this case, since Sset(A

+
n) > ub+lb

2
, the norm

will be applied if Snorm(n) = Sset(A
+
n) ≥ µ, where µ ∈ (ub+lb

2
, ub] is the minimum

approval support threshold.

5.2 Detailed example of the overall norm support

assessment process

In Chapter 6 we will compare the proposed norm support assessment method with
other possible approaches, but before comparing it, we will apply it to an example
case. Thus, the proposed method can be understood clearly.

Comment. Since in this example there will be vectors with real numbers, I will use
a point for denoting a number’s decimals (n.dddd), by doing this, possible confusions
with the commas of the vectors are avoided.

Example. Suppose a norm n defined in the spectrum λ = [1, 5], with the following
arguments:

• Positive arguments:

– posarg1 with opinions: 5, 5, 5, 4.8, 5, 4.8, 4

– posarg2 with opinions: 4, 3.5, 3.5, 4.5, 4

– posarg3 with opinions: 1, 1, 2, 1, 2, 3, 1, 1

• Negative arguments:

– negarg1 with opinions: 4, 3.5, 5, 4, 3.5, 4, 4, 4, 4

– negarg2 with opinions: 4, 4

Comment. For the aggregation, we will use the equitable version of the natural
opinion importance function, defined in Section 3.3.1, as both the opinion impor-
tance function and the argument set importance function, and the same function
restricted to [lb+ub

2
, ub] as the argument importance function. As for the α in α-

relevant arguments, we will use α = 0.3.

30

First, we have to assess the support for each argument:

• posarg1:
We have the opinion importances: Iopinion(5) = 1, Iopinion(4.8) = 0.978, Iopinion(4) =
0.65. So, i this case, the vector of the weighted mean is:
w = (1

6.06
, 1
6.06

, 1
6.06

, 0.978
6.06

, 1
6.06

, 0.978
6.06

, 0.65
6.06

). Hence the support for the argument
is: Sarg(posarg1) = WMw(5, 5, 5, 4.8, 5, 4.8, 4) = 4.8424

• posarg2:
We have the opinion importances: Iopinion(4) = 0.65, Iopinion(3.5) = 0.25,
Iopinion(4.5) = 0.9. So, in this case, the vector of the weighted mean is:
w = (0.65

2.7
, 0.25

2.7
, 0.25

2.7
, 0.9
2.7
, 0.65

2.7
). Hence the support for the argument is: Sarg(posarg2) =

WMw(4, 3.5, 3.5, 3.5, 4) = 4.0741

• posarg3:
We have the opinion importances: Iopinion(1) = 1, Iopinion(2) = 0.65, Iopinion(3) =
0. So, in this case, the vector of the weighted mean is:
w = (1

6.3
, 1
6.3
, 0.65

6.3
, 1
6.3
, 0.65

6.3
, 0, 1

6.3
, 1
6.3

). Hence the support for the argument is:
Sarg(posarg3) = WMw(1, 1, 2, 1, 2, 3, 1, 1) = 1.2063

• negarg1:
We have the opinion importances: Iopinion(4) = 0.65, Iopinion(3.5) = 0.25,
Iopinion(5) = 1. So, in this case, the vector of the weighted mean is:
w = (0.65

5.4
, 0.25

5.4
, 1
5.4
, 0.65

5.4
, 0.25

5.4
, 0.65

5.4
, 0.65

5.4
, 0.65

5.4
, 0.65

5.4
). Hence the support for the ar-

gument is: Sarg(negarg1) = WMw(4, 3.5, 5, 4, 3.5, 4, 4, 4, 4) = 4.1389

• negarg2:
We have the opinion importances: Iopinion(4) = 0.65. So, in this case, the
vector of the weighted mean is:
w = (0.65

1.3
, 0.65

1.3
). Hence the support for the argument is: Sarg(negarg2) =

WMw(4, 4) = 4

Now, the next step is to calculate Sset(A
+
n) and Sset(A

−
n), to do so, first we have

to determine Rα(A+
n) and Rα(A−n). In this case, α = 0.3, and since the argument

with most opinions is negarg1 with 9 opinions, for an argument to be α-relevant
it has to have at least 9 · 0.3 = 2.7 opinions (3 opinions) and has to have a score
greater than 3, so the α-relevant argument sets are: R0.3(A

+
n) = {posarg1, posarg2}

and R0.3(A
−
n) = {negarg1}. Note that, since negative arguments have only one α-

relevant argument, the support for the negative argument set is Sset(A
−
n) = 4.1389,

because is an aggregation of only one element. For the support for the positive
arguments, we have to aggregate the supports for the two α-relevant arguments
(that is, Sarg(posarg1) = 4.8424 and Sarg(posarg2) = 4.0741) with the WOWA.
Firstly we have to calculate the w vector using the importance of the opinions in
each argument:

w =
(4Iopinion(5) + 2Iopinion(4.8) + Iopinion(4)

τ
,
2Iopinion(3.5) + 2Iopinion(4) + Iopinion(4.5)

τ

)
31

=
(4 + 2 · 0.978 + 0.65

4 + 2 · 0.978 + 3 · 0.65 + 2 · 0.25 + 0.9
,

2 · 0.25 + 2 · 0.65 + 0.9

4 + 2 · 0.978 + 3 · 0.65 + 2 · 0.25 + 0.9

)
=
(6.606

9.306
,

2.7

9.306

)
=
(367

517
,
150

517

)
Secondly, we have to calculate the q vector using the argument importance function
and the ordered supports for the arguments(that is, Sarg(aσ(1)) = Sarg(posarg1) =
4.8424 and Sarg(aσ(2)) = Sarg(posarg2) = 4.0741, hence:

q =
(Iarg(4.8424)

Iarg(4.8424) + Iarg(4.0741)
,

Iarg(4.0741)

Iarg(4.8424) + Iarg(4.0741)

)
=
(0.984669

0.984669 + 0.696518
,

0.696518

0.984669 + 0.696518

)
≈ (0.5857, 0.4143)

With the two vectors defined the positive argument set support can be assessed as
(the WOWA is calculated using [6]):

Sset(A
+
n) = WOWAw,q(4.8424, 4.0741) = 4.6701

Since we have the supports for the two argument sets, we can now assess the support
for the norm. To calculate the support for the norm, the two values to aggregate
are: Sset(A

+
n) = 4.6701 and ub + lb − Sset(A−n) = 5 + 1 − 4.1389 = 1.8611. Since

we have to do a WOWA, first we have to define the two weighting vectors for this
aggregation. In the case of q:

q′ =
(Iset(4.6701)

Iset(4.6701) + Iset(1.8611)
,

Iset(1.8611)

Iset(4.6701) + Iset(1.8611)

)
=

(0.950855

0.950855 + 0.734497
,

0.734497

0.950855 + 0.734497

)
≈ (0.56419, 0.43581)

And w:

w′ =
(4 + 2 · 0.978 + 3 · 0.65 + 2 · 0.25 + 0.9

T
,
6 · 0.65 + 2 · 0.25 + 1

T

)
=
(9.306

9.306 + 5.4
,

5.4

9.306 + 5.4

)
=
(517

817
,
300

817

)
With the two weighting vectors for the WOWA, the norm support can be assessed
as follows (the WOWA is calculated using [6]):

Snorm(n) = WOWAw′,q′(4.6701, 1.8611) = 3.8010

32

Chapter 6

Particular Case: The social
network

In this chapter we will apply the norm argument map to a social network. Ad-
ditionally, for this particular case study, both the aggregation process and support
assessment, will be explained and compared to other methods such as a naive average
method.

6.1 Formalizing the problem

In [5] the author explains the way the social network is implemented, participants
can upload posts, complain about other participants’ posts and, in case a post is
detected as being conflictive, can create a norm to regulate that conflict. As a result,
a discussion is initiated and participants can argue about the norm by using a norm
argument map. Finally, when the discussion ends, the norm support is evaluated
and it is decided weather the norm is enacted (i.e. if it becomes active) or not in
the social network. Figure 6.1 shows an example of the norm argument map with a
norm under discussion as described in [5].

To formalize this problem, we will define the components of the norm argument map
defined in this project. We will consider that participants can give opinions to the
arguments within the real interval λ = [1, 5]1 this spectrum could represent a 5-star
rating system which might be the more commonly used way to give ratings, since
Amazon, iTunes, Netflix, TripAdvisor, Yelp and other webs use it. Note that, the
meaning of the opinions in this interval is the one reflected in Figure 3.1. In the
case of this implementation of the norm argument map the classification function
κ is in fact computed by the participants themselves who, when adding a new

1Note that, in [5] there is a difference between the opinions participants can assign to an
argument (in that case, {1, 2, 3, 4, 5}) and the spectrum in which supports are defined (in that
case, [1, 5]). This was done to simplify the interface, which is implemented with a 5-star rating
system where participants can click over the stars to assign them to the argument associated.

33

argument, choose the appropriate destination set (in favor/against the norm). As
for the aggregation, like in the example of Section 5.2, we will use the equitable
version of the natural opinion importance function, defined in Section 3.3.1, as both
the opinion importance function and the argument set importance function, and the
same function restricted to [lb+ub

2
, ub] as the argument importance function.

6.2 Comparing aggregation methods

In this section we will do some comparisons to ensure that the aggregation process
proposed in this project gives better results than other approaches, note that all
the cases will be in the spectrum λ = [1, 5], as previously stated. Specifically, two
aggregation methods are compared: the one proposed in this project2 and a naive
average approach. We will also discuss why the method in [5] is not suitable either.

6.2.1 Comparison with the naive average approach

The norm support of this naive approach is calculated by averaging all the opinions of
all the arguments. Opinions from arguments against the norm (oij) will be aggregated
as ub+ lb− oij, the symmetric value in the spectrum, as depicted in previous Figure
5.1 in Section 5.1.

Example. The norm n1 has an argument in favor posarg1 (with an opinion of
5) and an argument against negarg1 (with an opinion of 5), if we apply the naive
average approach the norm has a resulting support of 5+1

2
= 3, since an opinion

value of 5 about a negative argument is mapped into 1, its symmetric value in the
spectrum.

Notation. Let n be a norm. In this section we will use Snorm(n) as the norm
support function defined in the project and Savg(n) as the norm support calculated
with the naive average approach.

Being naive approach defined, we can proceed with the comparisons. First, we
will show some cases in which the two methods give the same result and ratify its
validity:

Comparison 1. In the case of the previous example, and in extent, any case with
two arguments (one positive and one negative) with an equal number of opinions
having value 5, we have Savg(n) = Snorm(n) = 3. This happens because this case
represents an split opinion state, and since none of the extremes has advantage over
the other the resulting support is neutral.

2Calculations have been done and can be replicated with the code attached to the project or
referenced in the appendices.

34

Comparison 2. In the case where there are only positive arguments with maximum
opinion values, then Savg(n) = Snorm(n) = 5. This case represents the unanimity
case, if everyone thinks the same the support for the norm has to be what everyone
thinks. Note that, analogously, if there are only negative arguments with maximum
opinion values, then Savg(n) = Snorm(n) = 1 for the same reason.

Now, we will show the cases in which the two methods give different results and
discuss about the reasons for our proposed method to provide a more accurate or
meaningful result:

Comparison 3. Consider the next arguments and opinions for norm n:

• posarg1 with opinions: 3.5, 3.25, 3.5, 3, 2.5

• negarg1 with opinions: 1, 1, 1.2, 1.3, 1.25

This case represents a weak positive argument, in the sense that people are neutral
about it, and a bad negative argument. In this case Savg(n) = 4, whereas Snorm(n) =
3, 1731, note that if we required a minimum support of 4 for applying the norm and
we used the average naive approach, we would apply the norm, although it does not
have a single positive argument with a single positive opinion greater than 4. This
happens because the average approach does not use α-relevant arguments. In the
case of the project’s method the support is more similar to the one expressed in the
arguments: a neutral support. Analogously, if considering this same example but
with the opinions interchanged, Savg(n) = 2 and Snorm(n) = 2, 8269, so the project’s
method is still neutral whereas now the average approach gives a low support.

A big difference in support happens when arguments are bad and are not enough,
such as in this next cases:

Comparison 4. Consider the next arguments and opinions for norm n:

• posarg1 with opinions: 2, 2.5, 1, 3, 2.8

• posarg2 with opinions: 1, 1, 1.2, 1.3, 1.25

• no negative arguments

In this case Savg(n) = 1, 705, but the fact that there are no good arguments does not
imply that the norm is not good, because for example in this case, if the norm was not
a good norm maybe someone would have given a good negative argument, so maybe
the debating period should last more, that way people could give more potentially
strong arguments, that is why the support Snorm(n) not defined is more adequate.

Analogously:

Comparison 5. Consider the next arguments and opinions for norm n:

35

• no positive arguments

• negarg1 with opinions: 1, 1, 1.2, 1.3, 1.25

In this case Savg(n) = 4, 85, but the fact that there is a bad negative argument does
not mean that the norm is validated, in fact, as in the previous comparison, this
means that maybe the debate should go on, hence in this case Snorm(n) not defined
is also an adequate support.

A combination of the two previous comparisons (with both bad positive and negative
arguments) would be the same case, Savg(n) would give a not adequate support
whereas, Snorm(n) would be not defined, which means that maybe the debate should
go on.

Another case where the two methods give fairly different supports:

Comparison 6. Let n be a norm with the following arguments and opinions:

• posarg1 with opinions: 5

• posarg2 with opinions: 5, 5

• negarg1 with opinions: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

• negarg2 with opinions: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

In this case Savg(n) = 5, but note that as previously stated a bad negative argument
should not support favorably the norm. Also, the positive arguments have not received
big amounts of opinions. If the positive arguments were good enough they would
have received more opinions, hence in this case the norm should have a not defined
support, which is the case of Snorm(n).

Comparison 7. Let the arguments of norm n be:

• posarg1 with opinions: 5, 5, 5

• negarg1 with opinions: 3.15, 3.2, 2.8

• negarg2 with opinions: 3, 3.5, 2.6

• negarg3 with opinions: 2.5, 3.5, 3.2

In this case Savg(n) = 3, 5375, whereas Snorm(n) = 4, 9842. Note that, in this case
there is a strong positive argument and a few weak or neutral negative arguments, so
since people have not found an argument sufficiently strong to attack the norm but
they have found a strong argument to enact it, the support should be favorable to the
enacting of the norm. In this case if the minimum support to apply a norm was 4,
the average method would revoke the norm whereas the proposed method would accept
it. This happens because it is fundamental to weigh the importance of the arguments
as well as the importance of the argument sets, this way neutral arguments do not
weigh much in the overall norm support.

36

6.2.2 Discussion about the method in [5]

Suppose a discussion of the norm n with the norm argument map in the spectrum
[1, 5]. In summary, the method to asses the norm support proposed in [5] consists of
the following steps (for the sake of clarity, the notation introduced along this work
is used):

• From the two argument sets of the norm argument map (A+
n = {a1, . . . , ap}

and A−n = {a1, . . . , aq}), the vectors µn and µn are constructed as follows:

µn = (mn
1 , . . . ,m

n
p), with mn

i = median(~Oai) ∀ai ∈ A+
n

µn = (mn
1 , . . . ,m

n
q), with mn

i = median(~Oai) ∀ai ∈ A−n

• Then, using two weighting vectors ω and ω (the construction of which is de-
tailed in [5]) two OWA’s are calculated: OWAω(µn) and OWAω(µn)

• Finally the norm support is evaluated as: OWAω(µn)−OWAω(µn)

Now that we have a general idea of the method, we can start discussing. Firstly, al-
though this method does not consider the terms ”argument support” or ”argument
set support” but, from the definition of the method, it is clear that the support
for an argument consists of the median of its opinions, this is not a suitable way
of assessing the support to an argument since, for example, if an argument ai had
~Oai = (5, 5, 5, 1, 1, 1, 1), then its support would be 1, although in reality the argu-
ment has a more neutral support.

From the definition we can also establish that the argument set support is defined as
an OWA, this is not suitable either because the importance of the arguments(that
is, the sum of the importance of its opinions) in the argument sets are not weighted,
only the values of the arguments’ supports are weighted. This is problematic be-
cause, for example, an argument with support 5 and a single opinion can weigh more
than another argument with support 4 and 1000 value 4 opinions.

Finally, the norm support is evaluated as OWAω(µn)− OWAω(µn). This happens
to be problematic too, because, for example, if OWAω(µn) = 1 and OWAω(µn) = 5,
then the support for the norm would be −4 which is out of the spectrum. This is
depicted in Figure 6.1, which shows an example of a norm being discussed, note
that, in that example, the norm has a support of 1

2
stars, which is out of the spec-

trum, since the minimum value possible is one star. Furthermore, if OWAω(µn) = 5
and the positive arguments had lots of important opinions and OWAω(µn) = 4 and
the negative arguments had little opinions (hence, little important opinions), then
the support for the norm would be 1 although it should be higher, since positive
arguments have maximum support and bigger number of important opinions than
the negative ones.

37

Figure 6.1: Example of a norm discussion in [5].

38

Chapter 7

Conclusions and future work

In this project we have formalized and studied several objects achieving the expected
goals successfully. To sum up, the conclusions of this work are the following:

7.1 Conclusions

In order to provide a more democratic way of moderating virtual communities, we
have formalized the idea of the norm argument map by providing all the necessary
definitions. From that definitions, we divided the problem of assessing the support
for a norm from the community participants’ opinions, into three subsequent sub-
problems related to subsequent elements. Next, by finding the way of computing
the support for each element in the norm argument map, we finally found the way
of giving the support on the debated norm.

These three subproblems also resulted in new definitions and objects in the overall
process. Thus, the task of calculating the support for a single argument has resulted
in the creation of the opinion importance function, so we can give different impor-
tances to the opinions based on their meaning. Also, the research of a method for
aggregating argument’s support into a support for an argument set has lead us to
the definition of relevant and α-relevant arguments, hence reducing the number of
arguments to aggregate and discarding the ones that with little debate could distort
the overall support.

Finally, we compared the work done in this project to both a naive and previous
approaches on the subject and found that both of them, although can give similar
results in some cases, on others can also be very unreliable.

Regarding other matters of concern, it may be worth mentioning that the semantics
given to the opinions have been established in a way that arguments could be ac-
cepted or criticized, this way all points of view can be reflected into an opinion value.

39

A particular case of this project would be to consider that the minimum of the opin-
ion spectrum represents a neutral opinion and the nearer to the maximum the more
accepted the argument is. In this case all the work done could be reused since, for ex-
ample, the importance function in this new semantic could be as in Definition 3.1.2,
but keeping conditions (C1) and (C2) and changing condition (C3) for (C3′)I(lb) =
0 and condition (C4) for (C4′)I ′(x) > 0 if x ∈ λ and I differentiable in x.

7.2 Future work

The following are some points that could be done or improved:

• As said previously, in this project, we have considered all arguments to be
different, this assumption can lead to a debating process with several similar
or equal arguments that individually could not impact the support for the
norm debated, but altogether impact crucially to the norm’s support. To solve
this problem, we could rely on moderators to collapse similar arguments, but
since the aim of the norm argument map is to implement a system without
moderators, the only way of solving this problem would be to incorporate
a Natural Language Processing (NLP) system which could recognize similar
arguments and collapse them automatically.

• In this project we have applied the method to decide norms for virtual com-
munities, but norm argument maps can also be applied to other real world
cases, such as citizen’s juries, direct democracy debates, or referendums.

• Due to a lack of time and resources no tests involving humans have been
performed for the proposed method. Nevertheless, tests involving humans
should be done in order to truly assess the reliability of the approach.

• Further aspects of the deliberation process should be studied, for example,
the decision about when to stop the debating process or what to do when a
debating process ends with the norm having a not defined support.

40

Bibliography

[1] Edmond Awad, Richard Booth, Fernando Tohmé, and Iyad Rahwan. Judge-
ment aggregation in multi-agent argumentation. Journal of Logic and Compu-
tation, aug 2015.

[2] M Detyniecki. Fundamentals on aggregation operators. This manuscript is
based on Detyniecki’s doctoral . . . , 2001.

[3] Mark Klein. Enabling Large-Scale Deliberation Using Attention-Mediation
Metrics. Computer Supported Cooperative Work (CSCW), 21(4-5):449–473,
2012.

[4] Miguel Sánchez-Mazas. Cálculo de las normas. pages 125–180, 1973.

[5] David Sánchez Pinsach. Norms crowdsourcing. Master thesis,
http://upcommons.upc.edu/handle/2099.1/26012, may 2015.

[6] V Torra. Java implementation for WOWA, OWA and WM,
http://www.mdai.cat/ifao/wowa.php.

[7] V Torra. The weighted OWA operator. International Journal of Intelligent
Systems, 12(2):153–166, feb 1997.

[8] V Torra. The WOWA operator and the interpolation function W*: Chen and
Otto’s interpolation method revisited. Fuzzy Sets and Systems, 2000.

[9] V Torra. The WOWA Operator: A Review. In Recent Developments in the
Ordered Weighted Averaging Operators: Theory and Practice, pages 17–28.
Springer, 2011.

[10] V Torra and Z Lv. On the WOWA operator and its interpolation function.
International Journal of Intelligent Systems, 2009.

[11] V. Torra and Y. Narukawa. Modeling decisions: information fusion and aggre-
gation operators. Springer, 2007.

[12] RR Yager. On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. Systems, Man and Cybernetics, IEEE Transactions . . . , 1988.

41

Appendices

42

Appendix A

Norm argument map code and
mathematica notebooks

Since one of the goals of this project has been to compare the naive method to the
one implemented in this project, I have coded a project in Java (NormSupportEval-
uation) with all the needed tools for implementing the method and using it. This
code uses the package ww coded by V.Torra that can be found at [6]. Specifically,
I have coded a package to implement the norm argument map along with a front
end to input data from the command line or from a file. This code can be found
attached to the project or uploaded at:

https://bitbucket.org/msamsa/norm-argument-map.git

Also the mathematica notebooks of the importance functions explained in Chap-
ter 3 can be found attached to this project or at:

https://bitbucket.org/msamsa/importance-functions.git

43

Appendix B

Norm argument map code user
guide

B.1 The namargumentationsystem package

The package namargumentationsystem has all the necessary classes to implement
the norm argument map and the aggregation method explained in the associated
final research project. In the NormSupportEvaluation folder you can find the doc
folder with the javadoc for this package, to view it simply open index.html. Figure
B.1 represents the class diagram for this package. Additionally, in the following
pages each class and its methods are explained in further detail:

Norm class

The norm is implemented as an object with a string containing the norm’s state-
ment. Implementing a fully functional class norm is out of the scope of this project.
The object has get and set methods.

Opinion class

The opinion is implemented as an object with a double containing the opinion value.
The object has get and set methods.

Spectrum class

The spectrum is implemented as an object with two double variables, one containing
the lower bound and the other the upper bound. The constructor method ensures
that the lower bound is lower than the upper one, if that is not the case they are
interchanged.

Methods

• public Boolean equals(Spectrum spec): gets another Spectrum ob-

44

ject and returns true if the two spectrums are the same or false otherwise.

• public double middle(): returns a double containing the middle point
of the spectrum lb+ub

2
.

• public Boolean has(double num): gets a double number and returns
true if the number is in the spectrum or false otherwise.

• public Boolean has(Opinion o): gets an opinion and returns true if
the opinion’s value is in the spectrum or false otherwise.

• public double symmetric(double x): gets a real number x and re-
turns the number symmetric to the one got in respect to the spectrum’s middle
(ub+ lb− x), if x is not in the spectrum returns NaN.

• public String toString(): returns a string containing the representa-
tion of the spectrum in the format ”[lower bound, upper bound]”.

• The class also has get and set methods for the variables.

Importance function class

The importance function class is an abstract class, so that way, a user using the
package can either create his own importance function (extending the abstract class)
or use the DefaultImportanceFunction class where the natural opinion importance
function is implemented.

Methods

• public abstract double compute(double x): receives a double and
returns the value of the importance function in that point.

Argument class

An Argument is an object with a string, the argument’s statement; a list of Opinion
objects, containing the opinions of the argument; a Spectrum, in which the Opin-
ion values must be and an ImportanceFunction object, necessary for assessing the
support for the argument. The argument class can be initialized with all of these
objects or without an Opinion list.

Methods

• public void addOpinion(double num): Adds a new opinion (using
the double num) in the argument’s list of opinions. If num is not in the
argument’s spectrum the method prints an error message and nothing is added.

• public void addOpinion(Opinion o): This method does the same as
the previous one but instead of using a double it uses an opinion object.

45

• public double support(): Returns a double containing the support for
the argument. The support is computed with the method described in the
project and using the argument’s importance function. First the vectors of
data and weights are created and filled. Then the method computes the sup-
port using the weighted mean in the ww package.

• public Boolean in(Spectrum spec): Returns true if spec is the ar-
gument’s spectrum, false otherwise.

• public double numberOpinions(): Returns a double containing the
number of opinions received by the argument.

• public double weight(): Returns the weight of the argument as the
sum of the importance of all its opinions.

• public void printStatus(PrintStream out): Prints the status of
the argument as a line of the form ”statement support Nbr. of opinions”.
The method prints it using the PrintStream out.

• The class also has get and set methods for some variables.

ArgumentSet class

The ArgumentSet class has a list of argument objects; a spectrum object (the spec-
trum of the arguments in it) and an ImportanceFunction object to use it in the
process of assessing the support. To create a new ArgumentSet it is only necessary
to give the spectrum and the importance function, although the list of arguments
can also be given.

Methods

• public void addArgument(Argument a): Adds the argument a into
the argument set’s argument list, but only if they have the same spectrum.

• public void addArgument(String s, List<Opinion> o): Creates
a new Argument object using s and o. Then calls the previous method with
the argument created.

• public ArgumentSet alphaRelevantArguments(double num): Re-
turns an argument set with an argument list containing only the α-relevant
arguments (as defined in the project), to be considered an α-relevant argument,
an argument has to have a support greater than the middle of the spectrum
and has to have a number of opinions greater than num(which has to be the
product of α and the maximum number of opinions a single argument of the
norm has received).

• public double numberOpinions(): Returns the number of opinions of
all the arguments in the argument set.

46

• public double weight(double minimum): Returns the weight of the
argument set as the sum of the importance of the α-relevant arguments in the
set (this.alphaRelevantArguments(minimum)).

• public double weight(): Returns the weight of the argument set as the
sum of the importance of all its arguments.

• public double numberRelevantOpinions(double numrel): Re-
turns the number of opinions of all the arguments in the α-relevant argument
set returned by the method this.alphaRelevantArguments(numrel).

• public double support(double num): Returns a double containing
the support for the argument set. First the method extracts the α-relevant
arguments, then fills the data vector and the two weighting vectors of the
WOWA, finally computes the WOWA using the ww package. If there are no
α-relevant arguments or an error is produced, the method returns NaN.

• public void printStatus(PrintStream out, double num): Prints
the status of all the arguments in the α-relevant argument set returned by
this.alphaRelevantArguments(num),calling the printStatus(out)
method of each argument.

• The class also has get and set methods for some variables.

NormArgumentMap class

This class implements the norm argument map from which all the argumentation
process will develop. It has a norm, the norm being discussed; two argument sets,
one for arguments in favor of the norm and one for arguments against the norm; a
spectrum, the spectrum of valid opinions and a real number alpha, the alpha used
to distinguish α-relevant arguments from the others. To construct a new NormAr-
gumentMap object you will need a norm and a spectrum. The importance function
and the alpha are optional, if they are not introduced the default ones will be used.
Arguments will be introduced via methods not in the creation of the NormArgu-
mentMap.

Methods

• public void addArgument(Argument a, Boolean positive): If
positive is true and a is an argument which has the same spectrum as the
NormArgumentMap, then a is added to the argument set of arguments in
favor of the norm. Analogously if positive is false, the argument a is added to
the argument set of arguments against the norm. If the argument a has not
the same spectrum as the NormArgumentMap, nothing happens.

• public void addArgument(String a, Boolean positive): This
method has the same functionality as the previous, the only difference is that

47

in this case instead of receiving an argument, the method receives a string
from which an argument will be created.

• public double numberOpinions(Boolean relevant): If relevant
is true returns the number of opinions of all α-relevant arguments (whether in
favor or against the norm). Otherwise if relevant is false returns the number
of opinions of all arguments.

• public double minimumOpinions(double alpha): Returns the min-
imum number of opinions that an argument has to have to be considered an
α-relevant argument, it is computed using the alpha passed as parameter.

• public double minimumOpinions(): Returns the same as the previous
method but using the alpha in the NormArgumentMap instance.

• public double support(double alpha): This method returns the
support for the norm. For assessing the support, the method in the project
is used. The alpha passed as a parameter is used as the α in the α-relevant
argument choosing step.

• public double support(): As in the previous method, this one returns
the norm support but using the alpha in the NormArgumentMap instance.

• public void printStatus(PrintStream out): Using out, prints the
status of the whole norm argument map, the data of the norm, the spectrum,
the alpha and the results of support for each argument set and its arguments.
Finally, also prints the support for the norm.

• public static NormArgumentMap loadFile(File f): Loads the
components of the norm argument map from the file f. For the structure
that a norm argument map file has, head to the next section of this guide.

• The class also has get and set methods for some variables.

DefaultImportanceFunction class

This class has the implementation of the natural opinion importance function de-
scribed in the project memo. To create a DefaultImportanceFunction instance you
only need to define the spectrum of the function and a double containing the toler-
ance for the double values(as explained in methods). As an extension of the abstract
class ImportanceFunction, this class has the methods defined in ImportanceFunc-
tion along with others:

Methods

• public double compute(double x): As in the ImportanceFunction,
this method receives a double and returns the value of the importance function
in that point.

48

• public double correct(double x): This method receives a double
and corrects it with the tolerance. This is important because in some cases if
arguments have some opinions of the highest value possible when aggregated
the double can be higher than expected, hence be out of the spectrum. In this
method this flaw is corrected.

DEFAULT class

The DEFAULT class only has three static methods and cannot be instantiated.

Methods

• public static ImportanceFunction importanceFunction
(Spectrum s, double tol): Returns an ImportanceFunction object which
is the default importance function in the spectrum s and tolerance tol.

• public static ImportanceFunction importanceFunction
(Spectrum s): Returns an ImportanceFunction object which is the default
importance function in the spectrum s and default tolerance 10−5.

• public static double alpha(): Returns the default alpha which is
0.3.

ArgumentComparator class

This class implements a comparator to compare arguments, an argument will be
greater than another argument if it has greater support. This is used to order ar-
guments in q vector of the WOWA for the argument set support.

Methods

• public int compare(Argument o1, Argument o2): Compares the
two arguments comparing their support.

49

Figure B.1: The class diagram for the namargumentationsystem package.

B.2 The norm argument map file

The structure of a file loadable for the norm argument map must be as follows:

• The first line has all the data for structuring the argumentation in the norm
argument map, it has to have 4 values separated by commas in the following
order: norm statement, alpha, spectrum lower bound, spectrum upper bound.
The norm statement and the spectrum bounds have to be introduced, whereas
alpha can be left empty and the default alpha will be used.

• The next lines are for arguments and its opinions, each argument uses a differ-
ent line, each argument line will have variable amounts of values separated by
commas in the following order: argument type, argument statement, opinion1,
opinion2, opinion3, etc. Argument type is either true (argument in favor of the
norm) or false (argument agains the norm). For an argument to be considered
valid only the type and the statement are necessary, because the number of
opinions may vary from none to huge amounts.

50

Example. Imagine we have a norm argument map debating the norm n, with the
default alpha and the spectrum [1, 5]. And we have the positive arguments:

• posarg1 with opinions 1, 2, 4, 5

• posarg2 with opinions 4, 5, 4, 4, 5

And the negative arguments:

• negarg1 with opinions 1, 2, 1, 3

• negarg2 with opinions 1, 5, 4, 5

Then the text in the file representing this norm argument map would be:

n,,1,5
true,posarg1, 1, 2, 4, 5
true,posarg2, 4, 5, 4, 4, 5
false,negarg1, 1, 2, 1, 3
false,negarg2, 1, 5, 4, 5

This example is saved in the file testdata.txt in the NormSupportEvaluation
Java project, and can be loaded to the program to view the support results. The
example in 5.2 is also in NormSupportEvaluation as file example.txt.

B.3 The NormSupportEvaluation Java project

The implementation in the NormSupportEvaluation Java project uses the package
namargumentationsystem and the ww package done by V.Torra to execute a norm
argument map evaluation in a command-line interface.

The FrontEnd.java file has all the methods necessary for the program and the
command-line interface. To execute it (you will need to have Java installed) fol-
low these steps:

• Open your command line interpreter in the NormSupportEvaluation directory.

• To execute the program enter: java FrontEnd (The program is already
compiled, to compile it you could use javac FrontEnd.java).

• The menu of the program will appear, you can choose between two options,
entering the data manually or from a file.

• If you decide to enter data manually, simply follow the steps shown in the
screen.

51

• To load a file, simply type the file name (make sure the file is at the Norm-
SupportEvaluation folder), you can use the test file provided in the package
entering testdata.txt.

• When all the data is entered or loaded the program will show the results. If
an error occurred it will also be shown.

52

